Fourier Series

Consider the series

1 nix

= nix ,
flx) = 570 + Tg <an cos —— + by sin T) (1)

where L is a positive number and ag,a, and b, constant coefficients. The question is:

“How do we choose the coefficients as to give an accurate representation of f(x)?” Well,

we use the following properties of cos “7* and sin "1+
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First, if we integrate (1) from —L to L, then by the properties in (2), we are left with
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from which we deduce

Next we multiply the series (1) by cos giving
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Again, integrate from —L to L. From (2), the mtegratlon of ag cos "= is zero, from (3),

the integration of cos ™7 cos /= is zero except when n = m and further from (5) the

integrations of sin " cos "% is zero for all m and n. This leaves
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or |
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Similarly, if we multiply the series (1) by sin “* then we obtain
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which we integrate from —L to L. From (2), the integration of ag sin /= is zero, from (5)

the integration of sin "= cos "= is zero for all m and n and further from (4) the integra-

tion of sin % sin @ is zero except when n = m. This leaves
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b= 1 /_ f(x)sin i
Therefore, the Fourier series representation of a function f(x) is given by
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where the coefficients a,, and b,, are chosen such that
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