
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu

2

• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 was due on Tuesday 10/3

– Remember that you have up to 4 late days to use throughout

the semester.

• HW2 out last week, due 10/17

• Midterm on 10/19

– Covering search (uninformed, informed, local, adversarial,

CSP), logic, and optimization

– Review during half of class on 10/17

3

Upcoming lectures

• 10/5: Continue CSP

• 10/10: Wrap up CSP, start logic (propositional logic, first-order

logic)

• 10/12: Wrap-up logic (logical inference), start optimization

(integer, linear optimization)

• 10/17: Wrap up optimization (nonlinear optimization), midterm

review

• 10/19: Midterm

• 10/24: TA will go over midterm and homework solutions in

lecture

• Planning lecture will be after midterm on 10/26

4

HW1

• Will be back before midterm

• Received 29 on moodle (33 students enrolled)

• Will be lenient regarding late days for HW1 due to the

hurricane

– 0-24 hours late: 0 late days

– 1-3 days late: 1 late day

– 3-5 days late: 2 late days

– > 5 days late: 3 late days

5

HW2

• Due 10/17 at 2:05 in class (or 2pm on Moodle)

• Several exercises from textbook

• Logic puzzles that you must formulate models for as

search/optimization problems using two different

approaches (e.g., could be CSP, logical inference,

integer programming). You can solve them using built-

in Python solver libraries (e.g., for CSP and ILP) or

build your own solver (possibly for extra credit). Open-

ended question and many possible correct answers and

approaches.

• http://www.logic-puzzles.org/

6

Quizzle

7

CSP summary

• Constraint satisfaction problems represent a state with a set of variable-

value pairs and represent the conditions for a solution by a set of constraints

on the variables. Many real-world problems can be described as CSPs.

• A number of inference techniques use the constraints to infer which

variable/value pairs are consistent and which are not. These include node,

arc, path, and k-consistency.

• Backtracking search, a form of depth-first search, is commonly used for

solving CSPs. Inference can be interwoven with search.

• The minimum-remaining values and degree heuristics are domain-

independent methods for deciding which variable to choose next in a

backtracking search. The least-constraining value heuristic helps in

deciding which value to try first for a given variable. Backtracking occurs

when no legal assignment can be found for a variable. Conflict-directed

backjumping backtracks directly to the source of the problem.

• Local search using the min-conflicts heuristic has also been applied to

constraint satisfaction problems with great success.

8

Logical agents

• The problem-solving (search) agents “know things,” but only in

a very limited, inflexible sense. For example, the transition

model for the 8-puzzle—knowledge of what the actions do—is

hidden inside the domain-specific code of the RESULT

function. It can be used to predict the outcome of actions but not

to deduce that two tiles cannot occupy the same space or that

states with odd parity cannot be reached from states with even

parity, etc. The atomic representations used by problem-solving

agents are also very limiting. In a partially observable

environment, an agent’s only choice for representing what it

knows about the current state is to list all possible concrete

states—a hopeless prospect in large environments.

9

Logical agents

• Constraint satisfaction introduced the idea of representing states

as assignments of values to variables; this is a step in the right

direction, enabling some parts of the agent to work in a domain-

independent way and allowing for more efficient algorithms. We

now take this step to its logical conclusion—we develop logic as

a general class of representations to support knowledge-based

agents. Such agents can combine and recombine information to

suit myriad purposes. Often this process can be quite far

removed from the needs of the moment—as when a

mathematician proves a theorem or an astronomer calculates the

earth’s life expectancy. Knowledge-based agents can accept

new tasks in the form of explicitly-described goals; they can

achieve competence quickly by being told or learning new

knowledge about the environment; and they can adapt to

changes in the environment by updating the relevant knowledge.

10

Logical agents

• The wumpus world is a cave consisting of rooms

connected by passageways. Lurking somewhere in the

cave is the terrible wumpus, a beast that eats anyone

who enters its room. The wumpus can be shot by an

agent, but the agent has only one arrow. Some rooms

contain bottomless pits that will trap anyone who

wanders into these rooms (except for the wumpus,

which is too big to fall in). The only mitigating feature

of this bleak environment is the possibility of finding a

heap of gold. Although the wumpus world is rather

tame by modern computer game standards, it illustrates

some important points about intelligence.

11

Wumpus world

12

Wumpus world

• Performance measure: +1000 for climbing out of the

cave with the gold, -1000 for falling into a pit or being

eaten by the wumpus, -1 for each action taken and -10

for using up the arrow. The game ends either when the

agent dies or when the agent climbs out of the cave.

• Environment: A 4x4 grid of rooms. The agent always

starts in the square labeled [1,1], facing to the right. The

locations of the gold and the wumpus are chosen

randomly, with a uniform distribution, from the squares

other than the start square. In addition, each square

other than the start can be a pit, with probability 0.2.

13

Wumpus world

• Actuators: The agent can move Forward, TurnLeft by 90

degrees, or TurnRight by 90 degrees. The agent dies a miserable

death if it enters a square containing a pit or a live wumpus. (It

is safe, albeit smelly, to enter a square with a dead wumpus.) If

an agent tries to move forward and bumps into a wall, then the

agent does not move. The action Grab can be used to pick up

the gold if it is in the same square as the agent. The action Shoot

can be used to fire an arrow in a straight line in the direction the

agent is facing. The arrow continues until it either hits (and

hence kills) the wumpus or hits a wall. The agent has only one

arrow, so only the first Shoot action has any effect. Finally, the

action Climb can be used to climb out of the cave, but only from

square [1,1].

14

Wumpus world

• Sensors: The agent has five sensors, each of which gives a

single bit of information:

– In the square containing the wumpus and in the directly (not diagonally)

adjacent squares, the agent will perceive a Stench.

– In the squares directly adjacent to a pit, the agent will perceive a Breeze.

– In the square where the goal is, the agent will perceive a Glitter.

– When an agent walks into a wall, it will perceive a Bump.

– When the wumpus is killed, it emits a woeful Scream that can be

perceived anywhere in the cave.

• The percepts will be given to the agent program in the form of a

list of five symbols; for example, if there is a stench and a

breeze, but no glitter, bump, or scream, the agent program will

get [Stench, Breeze, None, None, None].

15

Wumpus world

• Consider a knowledge-based wumpus agent exploring the

environment in the Figure 7.2. We use an informal knowledge

representation language consisting of writing down symbols in a

grid. The agent’s initial knowledge base contains the rules of the

environment, as described previously; in particular, it knows that

it is in [1,1] and that [1,1] is a safe square; we denote that with

an “A” and “OK,” respectively in square [1,1].

• The first percept is [None,None,None,None,None], from which

the agent can conclude that its neighboring squares, [1,2] and

[2,1], are free of dangers—they are OK. Figure 7.3a shows the

agent’s state of knowledge at this point.

16

Wumpus world

17

Wumpus world

18

Wumpus world

• A cautious agent will move only into a square that it knows to

be OK. Let us suppose the agent decides to move forward to

[2,1]. The agent perceives a breeze (denoted by “B”) in [2,1], so

there must be a pit in a neighboring square. The pit cannot be in

[1,1], by the rules of the game, so there must be a pit in [2,2] or

[3,1] or both. The notation “P?” indicates a possible pit in those

squares. At this point, there is only one known square that is OK

and that as not yet been visited. So the prudent agent will turn

around, go back to [1,1], and then proceed to [1,2].

19

Wumpus world

• The agent perceives a stench in [1,2], resulting in the state of

knowledge shown in 7.4a. The stench in [1,2], means that there

must be a wumpus nearby. But the wumpus cannot be in [1,1[,

by the rules of the game, and it cannot be in [2,2] (or the agent

would have detected a stench when it was in [2,1]). Therefore,

the agent can infer that the wumpus is in [1,3]. The notation W!

indicates this inference. Moreover, the lack of a breeze in [1,2]

implies that there is no pit in [2,2]. Yet the agent has already

inferred that there must be a pit in either [2,2] or [3,1], so this

means it must be in [3,1]. This is a fairly difficult inference,

because it combines knowledge gained at different times in

different places and relies on the lack of a percept to make one

crucial step.

20

Wumpus world

• The agent has now proved to itself that there is neither

a pit nor a wumpus in [2,2], so it is OK to move there.

We do not show the agent’s state of knowledge at

[2,2]; we just assume that the agent turns and moves to

[2,3], giving us 74b. In [2,3], the agent detects a glitter,

so it should grab the gold and then return home.

• Note that in each case for which the agent draws a

conclusion from the available information, that

conclusion is guaranteed to be correct if the available

information is correct. This is a fundamental property

of logical reasoning.

21

Logic

• Consider the situation in 7.3b: the agent has detected nothing in

[1,1] and a breeze in [2,1]. These percepts, combined with the

agent’s knowledge of the rules of the wumpus world, constitute

the knowledge base (KB). The agent is interested (among other

things) in whether the adjacent squares [1,2], [2,2], and [3,1]

contain pits. Each of the three squares might or might not

contain a pit, so (for the purposes of this example) there are

2^3=8 possible models. These eight models are shown in 7.5.

22

23

Logical agents

• The KB can be thought of a set of sentences or as a single

sentence that asserts all the individual sentences. The KB is false

in models that contradict what the agent knows—for example,

the KB is false in any model in which [1,2] contains a pit,

because there is no breeze in [1,1]. There are in fact just three

models in which the KB is true, and these are shown surrounded

by a solid line in 7.5. Now let us consider two possible

conclusions:

– A1 = “There is no pit in [1,2]”

– A2 = “There is no pit in [2,2]”

• A1 and A2 are surrounded with dotted lines in 7.5a and 7.5b. By

inspection, we see the following:

– In every model in which KB is true, A1 is also true.

24

Logical agents

• Hence, KB |= A1; there is no pit in [1,2]. We can also

see that

– In some models in which KB is true, A2 is false.

• Hence, KB !|= A2; the agent cannot conclude that there

is no pit in [2,2]. (Nor can it conclude that there is a pit

in [2,2].)

25

Logical agents

• The preceding example not only illustrates

entailment (i.e., one sentence following

logically from another) but also shows how the

definition of entailment can be applied to derive

conclusions—that is, to carry out logical

inference. The inference algorithm in Figure

7.5 is called model checking, because it

enumerates all possible models (i.e., possible

“worlds”) to check that alpha is true in all

models in which KB is true, that is, that M(KB)

is a subset of M(alpha).

26

Propositional logic

27

Propositional logic

28

Wumpus world

• Now that we have defined the semantics for

propositional logic, we can construct a knowledge base

for the wumpus world. We use the following symbols

for each [x,y] location:

– Pxy is true if there is a pit in [x,y]

– Wxy is true if there is a wumpus in [x,y], dead or alive

– Bxy is true if the agent perceives a breeze in [x,y]

– Sxy is true if the agent perceives a stench in [x,y]

29

Wumpus world

• The sentences we write will suffice to derive !P12 (there is no

pit in P12), as was done informally before. We label each

sentence Ri so that we can refer to them:

– There is no pit in [1,1]: R1 : !P11

– A square is breezy if and only if there is a pit in a

neighboring square. This has to be stated for each square; for

now, we include just the relevant squares:

• R2: B11 <-> (P12 V P21)

• R3: B21 <-> (P11 V P22 V P31)

– The preceding sentences are true in all wumpus worlds. Now

we include the breeze percepts for the first two squares

visited in the specific world the agent is in, leading up to the

situation in Figure 7.3b:

• R4: !B11, R5: B21

30

Wumpus world

• Our goal now is to decide whether KB |= A for some sentence

A. For example, is !P12 entailed by our KB? Our first algorithm

for inference is a model-checking approach that is a direct

implementation of the definition of entailment: enumerate the

models, and check that A is true in every model in which HV is

true. Models are assignments of true or false to every

proposition symbol. Returning to our wumpus-world example,

the relevant proposition symbols are B11,B21,P11,P12,P21,P22,

and P31. With seven symbols, there are 2^7=128 possible

models; in three of these, KB is true (Figure 7.9(. In those three

models, !P12 is true, hence there is no pit in [1,2]. On the other

hand, P2,2 is true in two of the three models and false in one, so

we cannot yet tell whether there is a pit in [2,2].

31

Wumpus world

• Figure 7.9 reproduces in a more precise form the

reasoning illustrated in Figure 7.5. A general algorithm

for deciding entailment in propositional logic is in

Figure 7.10. Like the BACKTRACKNIG-SEARCH

algorithm for CSP, TT-ENTAILS? Performs a

recursive enumeration of a finite space of assignments

to symbols. The algorithm is sound because it

implements direction the definition of entailment, and

complete because it works for any KB and A and

always terminates—there are only finitely many

models to examine.

32

Wumpus world

33

Logical inference algorithm

34

Constraint satisfaction problems

• A constraint satisfaction problem consists of three

components, X, D, and C:

– X is a set of variables, {X1,…,Xn}.

– D is a set of domains, {D1,…,Dn}, one for each variable.

– C is a set of constraints that specify allowable combinations

of values.

35

Example problem: Map coloring

• Suppose that, having tired of Romania, we are looking at a map

of Australia showing each of its states and territories. We are

given the task of coloring each region either red, green, or blue

in such a way that no neighboring regions have the same color.

• To formulate this as a CSP, we define the variables to be the

regions: X = {WA, NT, Q, NSW, V, SA, T}

• The domain of each variable is the set Di = {red, green, blue}.

• The constraints require neighboring regions to have distinct

colors. Since there are nine places where regions border, there

are nine constraints: C = {SA!=WA, SA!=NT,SA!=Q, etc.}

• SA!=WA is shortcut for ((SA,WA),SA!=WA), where SA!=WA

can be fully enumerated in turn as {(red,green),(red,blue),…}

36

Integer programming

• Special case of a CSP where domain set for each

variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite,

{0,1,2,3,…..}

– Often it is just binary {0,1}

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables

together

37

Objective functions

• In most CSP examples we saw, the goal was just to

find a single assignment of values to variables that

satisfied all the constraints, and it did not matter which

solution was found. We also considered the more

general setting where we have “preference constraints”

which are encoded as costs on individual variable

assignments, leading to an overall objective function

that want would like minimize, subject to all of the

constraints being adhered to.

38

CSP variations

• The constraints we have described so far have all been absolute

constraints, violation of which rules out a potential solution.

Many real-world CSPs include preference constraints

indicating which solutions are preferred. For example, in a

university class-scheduling problem there are absolute constraints

that no professor can teach two classes at the same time. But we

also may allow preference constraints: Prof. R might prefer

teaching in the morning, whereas Prof. N prefers teaching in the

afternoon. A schedule that has Prof. R teaching at 2 p.m. would

still be an allowable solution (unless Prof. R happens to be the

department chair) but would not be an optimal one.

39

CSP variations

• Preference constraints can often be encoded as costs on

individual variable assignments—for example,

assigning an afternoon slot for Prof. R costs 2 points

against the overall objective function, whereas a

morning slot costs 1. With this formulation, CSPs with

preferences can be solved with optimization search

methods, either path-based or local. We call such a

problem a constraint optimization problem, or COP.

Linear/integer/nonlinear programming problems do

this kind of optimization.

40

Integer programming

• Special case of a CSP where domain set for each (or

some) variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite,

{0,1,2,3,…..}

– Often it is just binary {0,1}

– Some variables do not have integer restrictions and can be

any real number

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables

• Objective function of the variables to optimize

41

Integer linear programming

• Often the constraints and the objective are both

LINEAR functions of the variables, and we referring to

integer programming (IP) as integer linear

programming in this case (ILP). One could also

consider other forms for the constraints and objective

(e.g., quadratic program, quadratically-constrained

program, conic program). Specialized algorithms exist

for these as well, though more attention has been given

to the linear case and typically those algorithms are

much more effective in practice.

42

Manufacturing site selection

• A manufacturer is planning to construct new buildings at four

local sites designated 1, 2, 3, and 4. At each site, there are three

possible building designs labeled A, B, and C. There is also the

option of not using a site. The problem is to select the optimal

combination of building sites and building designs. Preliminary

studies have determined the required investment and net annual

income for each of the 12 options. This information is shown in

Table 7.1 with A1, for example, denoting design A at site 1. The

company has an investment budget of $100 million ($100M).

The goal is to maximize total annual income without exceeding

the investment budget. As the optimization analyst, you are

given the job of finding the optimal plan.

43

Manufacturing site selection

• It is an obvious requirement here that only whole

buildings may be built and only whole designs may be

selected. To begin creating a model, variables must be

defined to represent each decision. Let I = {A,B,C} be

the set of design options, and let J = {1,2,3,4} be the

set of site options.

• Let yij = 1 if design i is used at site j, and 0 otherwise

• Also, denote by pij the annual net income and by aij

the investment required for the design/site combination

i,j. As a first try, you propose the following model for

finding the maximum of annual income:

44

Manufacturing site selection

• Maximize z = sumi sumj pij yij

• Subject to:

– sumi sumj aij yij <= 100

– yij in {0,1} for all i in I and j in J

45

Manufacturing site selection

• Solving the model with an appropriate algorithm for

the parameter values given in the table, the optimal

solution is:

– yA1=yA3=yB3=yB4=yC1=1, with all other values of yij

equal to zero and z = 40. Of the available budget, $99M is

used.

46

Manufacturing site selection

• Your supervisor reviews the solution and questions your basic

reasoning. You seem to have omitted some of the logic of the

problem, because two designs are built on the same site—that is,

A1 and C1, and also A3 and B3, are all in the solution. In

addition, your supervisor now realizes that you were not alerted

to several other logical restrictions imposed by the owners and

architects—i.e., site 2 must have a building, design A can be

used at sites 1, 2, and 3 only if it is also selected for site 4, and at

most two of the designs may be included in the plans.

• Your solution violates all of these restrictions and must be

discarded. The following additional constraints are needed to

guarantee a feasible solution:

47

Manufacturing site selection

• Site 2 must have a building: sumi yi2 = 1

• There can be at most one building at each of the other

sites: sumi yij <= 1 for j = 1,3,4

• Design A can be used at sites 1, 2, and 3 only if it is

also selected for site 4: yA1 + yA2 + yA3 <= 3yA4.

• To formulate the constraints associated with design

selection, three new binary variables are introduced.

– Let wi = 1 if design i is used, 0 otherwise, for I = A,B,C

– At most two designs may be used: wA + wB + wC <= 2

– Finally, the yij and wi variables must be tied together: sumj

yij <= 4wi for i = A, B, C

48

Manufacturing site selection

• The new model has 15 variables and 10 constraints not

including the integrality requirement. Solving, you find

that the optimal solution is

yA1=yA4=yB2=yB3=wA=wB=1 with all other

variables equal to zero and z = 37. All the budget is

spent, but the profit has decreased.

49

Traveling salesman problem

• The travelling salesman problem (TSP) asks the following

question: "Given a list of cities and the distances between each

pair of cities, what is the shortest possible route that visits each

city exactly once and returns to the origin city?“

• The problem was first formulated in 1930 and is one of the most

intensively studied problems in optimization. It is used as a

benchmark for many optimization methods. Even though the

problem is computationally difficult, a large number of

heuristics and exact algorithms are known, so that some

instances with tens of thousands of cities can be solved

completely and even problems with millions of cities can be

approximated within a small fraction of 1%.

50

Traveling salesman problem

51

Traveling salesman problem

• The TSP has several applications even in its purest formulation,

such as planning, logistics, and the manufacture of microchips.

Slightly modified, it appears as a sub-problem in many areas,

such as DNA sequencing. In these applications, the concept city

represents, for example, customers, soldering points, or DNA

fragments, and the concept distance represents travelling times

or cost, or a similarity measure between DNA fragments. The

TSP also appears in astronomy, as astronomers observing many

sources will want to minimize the time spent moving the

telescope between the sources. In many applications, additional

constraints such as limited resources or time windows may be

imposed.

52

Traveling salesman problem

53

Linear programming

• Similar to ILP (both constraints and objective are linear

functions of the variables). However, for LP the

variables are not restricted to be integers; they can be

any real number. So not only are the domains infinite

for each variable, they are uncountably infinite. Integer

(and e.g., binary) variables are not allowed for LP.

– Often there are nonnegativity constraints on some of the

variables, e.g., Xi >= 0.

– Cannot impose integrality constraints, e.g., for manufacturing

problem could not use binary variables to ensure whole

buildings are built, and may end up with solution such as

yij=0.8, which is nonsensical (can’t build 0.8 of a building).

54

LP vs ILP

• Which is easier to solve, LP or ILP?

55

Nonlinear programming

• Quadratic objective?

• Quadratic constraints?

• Cubic objective?

• Conic objective?

• Arbitrary objective and constraints (like CSP)?

56

Homework for next class

• Chapters 25 from Russel/Norvig

• HW2: due 10/17 at 2:05 in class (or 2pm on Moodle)

