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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 was due on Tuesday 10/3 

– Remember that you have up to 4 late days to use throughout 

the semester.

• HW2 out last week, due 10/17

• Midterm on 10/19

– Covering search (uninformed, informed, local, adversarial, 

CSP), logic, and optimization

– Review during half of class on 10/17



3

Upcoming lectures

• 10/5: Continue CSP

• 10/10: Wrap up CSP, start logic (propositional logic, first-order 

logic) 

• 10/12: Wrap-up logic (logical inference), start optimization 

(integer, linear optimization)

• 10/17: Wrap up optimization (nonlinear optimization), midterm 

review 

• 10/19: Midterm

• 10/24: TA will go over midterm and homework solutions in 

lecture

• Planning lecture will be after midterm on 10/26
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HW1

• Will be back before midterm

• Received 29 on moodle (33 students enrolled)

• Will be lenient regarding late days for HW1 due to the 

hurricane

– 0-24 hours late: 0 late days

– 1-3 days late: 1 late day

– 3-5 days late: 2 late days

– > 5 days late: 3 late days
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HW2

• Due 10/17 at 2:05 in class (or 2pm on Moodle)

• Several exercises from textbook

• Logic puzzles that you must formulate models for as 

search/optimization problems using two different 

approaches (e.g., could be CSP, logical inference, 

integer programming). You can solve them using built-

in Python solver libraries (e.g., for CSP and ILP) or 

build your own solver (possibly for extra credit). Open-

ended question and many possible correct answers and 

approaches. 

• http://www.logic-puzzles.org/
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Quizzle
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CSP summary

• Constraint satisfaction problems represent a state with a set of variable-

value pairs and represent the conditions for a solution by a set of constraints 

on the variables. Many real-world problems can be described as CSPs. 

• A number of inference techniques use the constraints to infer which 

variable/value pairs are consistent and which are not. These include node, 

arc, path, and k-consistency.

• Backtracking search, a form of depth-first search, is commonly used for 

solving CSPs. Inference can be interwoven with search.

• The minimum-remaining values and degree heuristics are domain-

independent methods for deciding which variable to choose next in a 

backtracking search. The least-constraining value heuristic helps in 

deciding which value to try first for a given variable. Backtracking occurs 

when no legal assignment can be found for a variable. Conflict-directed 

backjumping backtracks directly to the source of the problem.

• Local search using the min-conflicts heuristic has also been applied to 

constraint satisfaction problems with great success.
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Logical agents

• The problem-solving (search) agents “know things,” but only in 

a very limited, inflexible sense. For example, the transition 

model for the 8-puzzle—knowledge of what the actions do—is 

hidden inside the domain-specific code of the RESULT 

function. It can be used to predict the outcome of actions but not 

to deduce that two tiles cannot occupy the same space or that 

states with odd parity cannot be reached from states with even 

parity, etc. The atomic representations used by problem-solving 

agents are also very limiting. In a partially observable 

environment, an agent’s only choice for representing what it 

knows about the current state is to list all possible concrete 

states—a hopeless prospect in large environments. 
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Logical agents

• Constraint satisfaction introduced the idea of representing states 

as assignments of values to variables; this is a step in the right 

direction, enabling some parts of the agent to work in a domain-

independent way and allowing for more efficient algorithms. We 

now take this step to its logical conclusion—we develop logic as 

a general class of representations to support knowledge-based 

agents. Such agents can combine and recombine information to 

suit myriad purposes. Often this process can be quite far 

removed from the needs of the moment—as when a 

mathematician proves a theorem or an astronomer calculates the 

earth’s life expectancy. Knowledge-based agents can accept  

new tasks in the form  of explicitly-described goals; they can 

achieve competence quickly by being told or learning new 

knowledge about the environment; and they can adapt to 

changes in the environment by updating the relevant knowledge.
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Logical agents

• The wumpus world is a cave consisting of rooms 

connected by passageways. Lurking somewhere in the 

cave is the terrible wumpus, a beast that eats anyone 

who enters its room. The wumpus can be shot by an 

agent, but the agent has only one arrow. Some rooms 

contain bottomless pits that will trap anyone who 

wanders into these rooms (except for the wumpus, 

which is too big to fall in). The only mitigating feature 

of this bleak environment is the possibility of finding a 

heap of gold. Although the wumpus world is rather 

tame by modern computer game standards, it illustrates 

some important points about intelligence.
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Wumpus world
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Wumpus world

• Performance measure: +1000 for climbing out of the 

cave with the gold, -1000 for falling into a pit or being 

eaten by the wumpus, -1 for each action taken and -10 

for using up the arrow. The game ends either when the 

agent dies or when the agent climbs out of the cave.

• Environment: A 4x4 grid of rooms. The agent always 

starts in the square labeled [1,1], facing to the right. The 

locations of the gold and the wumpus are chosen 

randomly, with a uniform distribution, from the squares 

other than the start square. In addition, each square 

other than the start can be a pit, with probability 0.2.
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Wumpus world

• Actuators: The agent can move Forward, TurnLeft by 90 

degrees, or TurnRight by 90 degrees. The agent dies a miserable 

death if it enters a square containing a pit or a live wumpus. (It 

is safe, albeit smelly, to enter a square with a dead wumpus.) If 

an agent tries to move forward and bumps into a wall, then the 

agent does not move. The action Grab can be used to pick up 

the gold if it is in the same square as the agent. The action Shoot

can be used to fire an arrow in a straight line in the direction the 

agent is facing. The arrow continues until it either hits (and 

hence kills) the wumpus or hits a wall. The agent has only one 

arrow, so only the first Shoot action has any effect. Finally, the 

action Climb can be used to climb out of the cave, but only from 

square [1,1].
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Wumpus world

• Sensors: The agent has five sensors, each of which gives a 

single bit of information:

– In the square containing the wumpus and in the directly (not diagonally) 

adjacent squares, the agent will perceive a Stench. 

– In the squares directly adjacent to a pit, the agent will perceive a Breeze.

– In the square where the goal is, the agent will perceive a Glitter.

– When an agent walks into a wall, it will perceive a Bump.

– When the wumpus is killed, it emits a woeful Scream that can be 

perceived anywhere in the cave.

• The percepts will be given to the agent program in the form of a 

list of five symbols; for example, if there is a stench and a 

breeze, but no glitter, bump, or scream, the agent program will 

get [Stench, Breeze, None, None, None].
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Wumpus world

• Consider a knowledge-based wumpus agent exploring the 

environment in the Figure 7.2. We use an informal knowledge 

representation language consisting of writing down symbols in a 

grid. The agent’s initial knowledge base contains the rules of the 

environment, as described previously; in particular, it knows that 

it is in [1,1] and that [1,1] is a safe square; we denote that with 

an “A” and “OK,” respectively in square [1,1].

• The first percept is [None,None,None,None,None], from which 

the agent can conclude that its neighboring squares, [1,2] and 

[2,1], are free of dangers—they are OK. Figure 7.3a shows the 

agent’s state of knowledge at this point.
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Wumpus world
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Wumpus world
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Wumpus world

• A cautious agent will move only into a square that it knows to 

be OK. Let us suppose the agent decides to move forward to 

[2,1]. The agent perceives a breeze (denoted by “B”) in [2,1], so 

there must be a pit in a neighboring square. The pit cannot be in 

[1,1], by the rules of the game, so there must be a pit in [2,2] or 

[3,1] or both. The notation “P?” indicates a possible pit in those 

squares. At this point, there is only one known square that is OK 

and that as not yet been visited. So the prudent agent will turn 

around, go back to [1,1], and then proceed to [1,2].
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Wumpus world

• The agent perceives a stench in [1,2], resulting in the state of 

knowledge shown in 7.4a. The stench in [1,2], means that there 

must be a wumpus nearby. But the wumpus cannot be in [1,1[, 

by the rules of the game, and it cannot be in [2,2] (or the agent 

would have detected a stench when it was in [2,1]). Therefore, 

the agent can infer that the wumpus is in [1,3]. The notation W! 

indicates this inference. Moreover, the lack of a breeze in [1,2] 

implies that there is no pit in [2,2]. Yet the agent has already 

inferred that there must be a pit in either [2,2] or [3,1], so this 

means it must be in [3,1]. This is a fairly difficult inference, 

because it combines knowledge gained at different times in 

different places and relies on the lack of a percept to make one 

crucial step.
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Wumpus world

• The agent has now proved to itself that there is neither 

a pit nor a wumpus in [2,2], so it is OK to move there. 

We do not show the agent’s state of knowledge at 

[2,2]; we just assume that the agent turns and moves to 

[2,3], giving us 74b. In [2,3], the agent detects a glitter, 

so it should grab the gold and then return home.

• Note that in each case for which the agent draws a 

conclusion from the available information, that 

conclusion is guaranteed to be correct if the available 

information is correct. This is a fundamental property 

of logical reasoning. 
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Logic

• Consider the situation in 7.3b: the agent has detected nothing in 

[1,1] and a breeze in [2,1]. These percepts, combined with the 

agent’s knowledge of the rules of the wumpus world, constitute 

the knowledge base (KB). The agent is interested (among other 

things) in whether the adjacent squares [1,2], [2,2], and [3,1] 

contain pits. Each of the three squares might or might not 

contain a pit, so (for the purposes of this example) there are 

2^3=8 possible models. These eight models are shown in 7.5. 
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Logical agents

• The KB can be thought of a set of sentences or as a single 

sentence that asserts all the individual sentences. The KB is false 

in models that contradict what the agent knows—for example, 

the KB is false in any model in which [1,2] contains a pit, 

because there is no breeze in [1,1]. There are in fact just three 

models in which the KB is true, and these are shown surrounded 

by a solid line in 7.5. Now let us consider two possible 

conclusions:

– A1 = “There is no pit in [1,2]”

– A2 = “There is no pit in [2,2]”

• A1 and A2 are surrounded with dotted lines in 7.5a and 7.5b. By 

inspection, we see the following:

– In every model in which KB is true, A1 is also true.
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Logical agents

• Hence, KB |= A1; there is no pit in [1,2]. We can also 

see that

– In some models in which KB is true, A2 is false.

• Hence, KB !|= A2; the agent cannot conclude that there 

is no pit in [2,2]. (Nor can it conclude that there is a pit 

in [2,2].)
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Logical agents

• The preceding example not only illustrates 

entailment (i.e., one sentence following 

logically from another) but also shows how the 

definition of entailment can be applied to derive 

conclusions—that is, to carry out logical 

inference. The inference algorithm in Figure 

7.5 is called model checking, because it 

enumerates all possible models (i.e., possible 

“worlds”) to check that alpha is true in all 

models in which KB is true, that is, that M(KB) 

is a subset of M(alpha).
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Propositional logic
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Propositional logic
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Wumpus world

• Now that we have defined the semantics for 

propositional logic, we can construct a knowledge base 

for the wumpus world. We use the following symbols 

for each [x,y] location:

– Pxy is true if there is a pit in [x,y]

– Wxy is true if there is a wumpus in [x,y], dead or alive

– Bxy is true if the agent perceives a breeze in [x,y]

– Sxy is true if the agent perceives a stench in [x,y]
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Wumpus world

• The sentences we write will suffice to derive !P12 (there is no 

pit in P12), as was done informally before. We label each 

sentence Ri so that we can refer to them:

– There is no pit in [1,1]: R1 : !P11

– A square is breezy if and only if there is a pit in a 

neighboring square. This has to be stated for each square; for 

now, we include just the relevant squares:

• R2: B11 <-> (P12 V P21)

• R3: B21 <-> (P11 V P22 V P31)

– The preceding sentences are true in all wumpus worlds. Now 

we include the breeze percepts for the first two squares 

visited in the specific world the agent is in, leading up to the 

situation in Figure 7.3b:

• R4: !B11, R5: B21
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Wumpus world

• Our goal now is to decide whether KB |= A for some sentence 

A. For example, is !P12 entailed by our KB? Our first algorithm 

for inference is a model-checking approach that is a direct 

implementation of the definition of entailment: enumerate the 

models, and check that A is true in every model in which HV is 

true. Models are assignments of true or false to every 

proposition symbol. Returning to our wumpus-world example, 

the relevant proposition symbols are B11,B21,P11,P12,P21,P22, 

and P31. With seven symbols, there are 2^7=128 possible 

models; in three of these, KB is true (Figure 7.9(. In those three 

models, !P12 is true, hence there is no pit in [1,2]. On the other 

hand, P2,2 is true in two of the three models and false in one, so 

we cannot yet tell whether there is a pit in [2,2].
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Wumpus world

• Figure 7.9 reproduces in a more precise form the 

reasoning illustrated in Figure 7.5. A general algorithm 

for deciding entailment in propositional logic is in 

Figure 7.10. Like the BACKTRACKNIG-SEARCH 

algorithm for CSP, TT-ENTAILS? Performs a 

recursive enumeration of a finite space of assignments 

to symbols. The algorithm is sound because it 

implements direction the definition of entailment, and 

complete because it works for any KB and A and 

always terminates—there are only finitely many 

models to examine. 
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Wumpus world
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Logical inference algorithm
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Constraint satisfaction problems

• A constraint satisfaction problem consists of three 

components, X, D, and C:

– X is a set of variables, {X1,…,Xn}.

– D is a set of domains, {D1,…,Dn}, one for each variable.

– C is a set of constraints that specify allowable combinations 

of values.
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Example problem: Map coloring

• Suppose that, having tired of Romania, we are looking at a map 

of Australia showing each of its states and territories. We are 

given the task of coloring each region either red, green, or blue 

in such a way that no neighboring regions have the same color. 

• To formulate this as a CSP, we define the variables to be the 

regions: X = {WA, NT, Q, NSW, V, SA, T}

• The domain of each variable is the set Di = {red, green, blue}.

• The constraints require neighboring regions to have distinct 

colors. Since there are nine places where regions border, there 

are nine constraints: C = {SA!=WA, SA!=NT,SA!=Q, etc.}

• SA!=WA is shortcut for ((SA,WA),SA!=WA), where SA!=WA 

can be fully enumerated in turn as {(red,green),(red,blue),…}
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Integer programming

• Special case of a CSP where domain set for each 

variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite, 

{0,1,2,3,…..}

– Often it is just binary {0,1}

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables 

together



37

Objective functions

• In most CSP examples we saw, the goal was just to 

find a single assignment of values to variables that 

satisfied all the constraints, and it did not matter which 

solution was found. We also considered the more 

general setting where we have “preference constraints” 

which are encoded as costs on individual variable 

assignments, leading to an overall objective function 

that want would like minimize, subject to all of the 

constraints being adhered to.
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CSP variations

• The constraints we have described so far have all been absolute 

constraints, violation of which rules out a potential solution. 

Many real-world CSPs include preference constraints

indicating which solutions are preferred. For example, in a 

university class-scheduling problem there are absolute constraints 

that no professor can teach two classes at the same time. But we 

also may allow preference constraints: Prof. R might prefer 

teaching in the morning, whereas Prof. N prefers teaching in the 

afternoon. A schedule that has Prof. R teaching at 2 p.m. would 

still be an allowable solution (unless Prof. R happens to be the 

department chair) but would not be an optimal one. 



39

CSP variations

• Preference constraints can often be encoded as costs on 

individual variable assignments—for example, 

assigning an afternoon slot for Prof. R costs 2 points 

against the overall objective function, whereas a 

morning slot costs 1. With this formulation, CSPs with 

preferences can be solved with optimization search 

methods, either path-based or local. We call such a 

problem a constraint optimization problem, or COP. 

Linear/integer/nonlinear programming problems do 

this kind of optimization.
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Integer programming

• Special case of a CSP where domain set for each (or 

some) variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite, 

{0,1,2,3,…..}

– Often it is just binary {0,1}

– Some variables do not have integer restrictions and can be 

any real number

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables

• Objective function of the variables to optimize
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Integer linear programming

• Often the constraints and the objective are both 

LINEAR functions of the variables, and we referring to 

integer programming (IP) as integer linear 

programming in this case (ILP). One could also 

consider other forms for the constraints and objective 

(e.g., quadratic program, quadratically-constrained 

program, conic program). Specialized algorithms exist 

for these as well, though more attention has been given 

to the linear case and typically those algorithms are 

much more effective in practice. 
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Manufacturing site selection

• A manufacturer is planning to construct new buildings at four 

local sites designated 1, 2, 3, and 4. At each site, there are three 

possible building designs labeled A, B, and C. There is also the 

option of not using a site. The problem is to select the optimal 

combination of building sites and building designs. Preliminary 

studies have determined the required investment and net annual 

income for each of the 12 options. This information is shown in 

Table 7.1 with A1, for example, denoting design A at site 1. The 

company has an investment budget of $100 million ($100M). 

The goal is to maximize total annual income without exceeding 

the investment budget. As the optimization analyst, you are 

given the job of finding the optimal plan.
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Manufacturing site selection

• It is an obvious requirement here that only whole 

buildings may be built and only whole designs may be 

selected. To begin creating a model, variables must be 

defined to represent each decision. Let I = {A,B,C} be 

the set of design options, and let J = {1,2,3,4} be the 

set of site options.

• Let yij = 1 if design i is used at site j, and 0 otherwise

• Also, denote by pij the annual net income and by aij

the investment required for the design/site combination 

i,j. As a first try, you propose the following model for 

finding the maximum of annual income:
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Manufacturing site selection

• Maximize z = sumi sumj pij yij

• Subject to:

– sumi sumj aij yij <= 100

– yij in {0,1} for all i in I and j in J
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Manufacturing site selection

• Solving the model with an appropriate algorithm for 

the parameter values given in the table, the optimal 

solution is:

– yA1=yA3=yB3=yB4=yC1=1, with all other values of yij

equal to zero and z = 40. Of the available budget, $99M is 

used.
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Manufacturing site selection

• Your supervisor reviews the solution and questions your basic 

reasoning. You seem to have omitted some of the logic of the 

problem, because two designs are built on the same site—that is, 

A1 and C1, and also A3 and B3, are all in the solution. In 

addition, your supervisor now realizes that you were not alerted 

to several other logical restrictions imposed by the owners and 

architects—i.e., site 2 must have a building, design A can be 

used at sites 1, 2, and 3 only if it is also selected for site 4, and at 

most two of the designs may be included in the plans.

• Your solution violates all of these restrictions and must be 

discarded. The following additional constraints are needed to 

guarantee a feasible solution:
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Manufacturing site selection

• Site 2 must have a building: sumi yi2 = 1

• There can be at most one building at each of the other 

sites: sumi yij <= 1 for j = 1,3,4

• Design A can be used at sites 1, 2, and 3 only if it is 

also selected for site 4: yA1 + yA2 + yA3 <= 3yA4.

• To formulate the constraints associated with design 

selection, three new binary variables are introduced. 

– Let wi = 1 if design i is used, 0 otherwise, for I = A,B,C

– At most two designs may be used: wA + wB + wC <= 2

– Finally, the yij and wi variables must be tied together: sumj

yij <= 4wi for i = A, B, C 
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Manufacturing site selection

• The new model has 15 variables and 10 constraints not 

including the integrality requirement. Solving, you find 

that the optimal solution is 

yA1=yA4=yB2=yB3=wA=wB=1 with all other 

variables equal to zero and z = 37. All the budget is 

spent, but the profit has decreased.
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Traveling salesman problem

• The travelling salesman problem (TSP) asks the following 

question: "Given a list of cities and the distances between each 

pair of cities, what is the shortest possible route that visits each 

city exactly once and returns to the origin city?“

• The problem was first formulated in 1930 and is one of the most 

intensively studied problems in optimization. It is used as a 

benchmark for many optimization methods. Even though the 

problem is computationally difficult, a large number of 

heuristics and exact algorithms are known, so that some 

instances with tens of thousands of cities can be solved 

completely and even problems with millions of cities can be 

approximated within a small fraction of 1%.
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Traveling salesman problem
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Traveling salesman problem

• The TSP has several applications even in its purest formulation, 

such as planning, logistics, and the manufacture of microchips. 

Slightly modified, it appears as a sub-problem in many areas, 

such as DNA sequencing. In these applications, the concept city

represents, for example, customers, soldering points, or DNA 

fragments, and the concept distance represents travelling times 

or cost, or a similarity measure between DNA fragments. The 

TSP also appears in astronomy, as astronomers observing many 

sources will want to minimize the time spent moving the 

telescope between the sources. In many applications, additional 

constraints such as limited resources or time windows may be 

imposed.
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Traveling salesman problem
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Linear programming

• Similar to ILP (both constraints and objective are linear 

functions of the variables). However, for LP the 

variables are not restricted to be integers; they can be 

any real number. So not only are the domains infinite 

for each variable, they are uncountably infinite. Integer 

(and e.g., binary) variables are not allowed for LP.

– Often there are nonnegativity constraints on some of the 

variables, e.g., Xi >= 0.

– Cannot impose integrality constraints, e.g., for manufacturing 

problem could not use binary variables to ensure whole 

buildings are built, and may end up with solution such as 

yij=0.8, which is nonsensical (can’t build 0.8 of a building).
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LP vs ILP

• Which is easier to solve, LP or ILP?
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Nonlinear programming

• Quadratic objective?

• Quadratic constraints?

• Cubic objective?

• Conic objective?

• Arbitrary objective and constraints (like CSP)?
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Homework for next class

• Chapters 25 from Russel/Norvig

• HW2: due 10/17 at 2:05 in class (or 2pm on Moodle)


