
IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1397 | P a g e

Role of Code Clone Detection, Analysis and Removal in

Enhancing Software Quality
Sarveshwar Bharti1, Hardeep Singh2

1, 2 Guru Nanak Dev University, Amritsar, Punjab, India

(E-mail: sarveshwar.dcsrsh@gndu.ac.in, hardeep.dcse@gndu.ac.in)

Abstract—Improving Software Quality with minimized

development as well as maintenance cost is the main focus of

Software Engineering. But there are number of definite causes

that decrease the software quality and increases the

maintenance cost. Duplicate code fragments, popularly known

as Code Clones, have emerged as one of the main causes of

Software Quality depreciation, due to increased code size as

well as complexity. This paper answers the basic questions that

need to be studied to discuss the role of Code Clone Detection,

Analysis and Removal in enhancing Software Quality and thus

attempts to make a single canvas of whole research on code

clones found in literature.

Keywords—Software Quality; Structural Quality; Code

Clones; Code Bloating; Refactoring

I. Introduction

The main aim of Software Engineering is to improve the

Software Quality and minimize the software development cost.

In spite of using various engineering principles in the design,

development and maintenance of software, literature lists

different definite causes of software quality depreciation and

increased maintenance cost, and Code Clones are one of them.

Even though effect of code clones on software quality is not very

much clear, but most of the literature points to harmfulness of

code clones. These code clones are nothing but a copy of the

original code snippet, with or without modifications.

This paper attempts to provide a brief overview of Code

Cloning literature and its relation to the Software Quality. In this

paper authors discusses how Software Quality is enhanced using

the concept of code clones. These duplicated code fragments

present in the source code needs to be detected first, so that they

can be analysed and removed. Presently there are number of

clone detection tools available that can be used for this purpose.

To study the role of Code Clone Detection, Analysis and

Removal in enhancing Software Quality, this paper answers

some basic questions listed below in the form of Research

Questions (RQ):

RQ1: How are Code Clones related with Software Quality?

RQ2: What is the effect of Code Clones on Software

Quality?

RQ3: How are Code Clones Detected, Analysed and

Removed?

RQ4: How Software Quality is enhanced using Code Clone

Detection, Analysis and Removal?
To answer these questions, this paper first discusses the

notion of Software Quality and Code Clones, in Section II (A)

and Section II (B) respectively. Then, Section III (A) discusses
the relation of Code Clones with Software Quality and Section
III (B) discusses various consequences of Code Cones. Section
III (C) presents an overview of whole literature on Code Clones,
with discussion on Clone Detection in Section III (C(a)),
Analysis in Section III (C(b)) and Removal in Section III (C(c)).
And then, Section III (D) discusses how clone detection and
removal is helpful in improving the Software Quality and thus
provides a way to enhance the Software Quality. Finally this
paper is concluded in Section IV, along with acknowledgements,
and then references are given in support of what is mentioned in
this paper.

II. Background

To answer the Research Questions mentioned in the

Section-I, there is a need to understand the concept of Code

Clones and Software Quality. Next two sub sections presents the

concept of Software Quality and Code Clones, as found in

literature.

A. Software Quality

Assessing quality means measuring a value of its various

parameters. The term “Software Quality” seems to be simple to

define, but is very complicated. The best way to understand this

concept is to divide it into three aspects: functional quality,

structural quality and process quality [1] as shown in figure 1.

The figure 1 also shows the three groups of people who cares

about the value of Quality.
Functional quality is related to the software performance,

process quality is related to the software development process

and structural quality is related to code structure. Various

Structural Quality attributes are [1]:

 Code Testability

 Code Maintainability

 Code Understandability

 Code Efficiency

 Code Security

Code testability means, how easy is it to test a code. Code

maintainability means, how easy is it to update a code or add a

new code, without introduction of bugs. Code understandability

relates to the readability of the code. Code efficiency indicates

the way of utilizing the resources and finally code security

depicts that, is code prone to common attacks such as buffer

overruns.

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1398 | P a g e

For evaluation of software there is an international standard

ISO 9126. ISO 9126-1 quality model specifies 6 quality

characteristics as [2]:

 Functionality

 Reliability

 Usability

 Efficiency

 Maintainability

 Portability
Functionality relates to the satisfaction of needs. Reliability

means the capability to maintain the specific level of
performance. Understandability, learn ability and operability are
sub attributes that are taken into consideration under usability.
Efficiency describes the capability to provide the appropriate
performance relative to the efficient use of resources.
Maintainability relates to the capability to modify the system
and portability means the adaptability to different environments.

B. Code Clones

The term ‘Clone’ despite being so popularly used in the

field of computer science, has its origin from Plant Physiology,

coined in 1903 by Plant Physiologist Herbert J. Webber [3]. The

term ‘Clone’ is derived from the Greek word ‘klon’. Code

Clones are basically copies of the original code fragment. So,

clones represent duplicated fragments in the code base. Till now,

in literature, we found that, there is not any unanimously agreed

definition of the term clone in computer science and the use of

term clone for syntactically or semantically similar code

fragments is still an open question of debate. But, in most of the

literature, authors found a mostly used definition of the term

clone, defined by Ira D. Baxter [4] as “a clone is a program

fragment that [is] identical to another fragment”. The process of

replicating a code fragment is referred to as ‘Code Cloning’.

Code fragments have been seen replicated with or without

modifications and so these can be of different types. In literature,

the popular classification of Clones among researchers is, given

by S Bellon et al. [5], that classify clones into four types based

on syntactic and semantic similarity. Based on syntactic

similarity they classify clones into three types as:

Type 1: These are exact copy without modification, except

white spaces and comments

Type 2: These are Type 1 syntactically identical copy with

allowed modification in identifiers

Type 3: These are Type 2 clones with statements changed,

added are removed

Then based on the semantic similarity they defined a new

type of clones called semantic clones, and in literature this type

of clones are referred as Type 4 Clones.

III. Answers to Research Questions

Based on literature study, this section attempts to answer the
Research Questions pointed in Section I.

A. Answer to RQ1: How are Code Clones related with

Software Quality?

As discussed in Section II (A), the Structural Quality is

related to the Code Structure i.e. it specifies whether the code is

well structured or not. The concept of Code Clones as

discussed in Section II (B) is related with this Structural Quality

aspect of the Software Quality and thus this quality aspect in

mainly addressed by code clone detection and removal, along

with the functional quality aspect, because code structure also

affects the software performance.

Figure 1 clearly depicts the relation of Code Clones with

Software Quality, because duplicate code fragments are part of

the overall code structure of the software, and this code structure

is specified with the Structural Quality of the software.

With the presence of duplicate code fragments, updating

and deletion of these fragments becomes very difficult, thus

severely affects the maintainability of the software.

Section II (A) also discussed the six quality attributes as

defined in ISO 9126 Quality Model. Most of the literature

mentions that Code Clones (discussed in Section II (B)) have a

direct impact on the maintainability and reliability, which are

part of the six quality characteristics mentioned in ISO 9126-1

Quality Model.
Thus, in this way we can relate Code Clones with Software

Quality.

Figure 1. The Three Aspects of Software Quality: Functional, Structural, and Process

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1399 | P a g e

B. Answer to RQ2: What is the effect of Code Clones on

Software Quality?

In spite of having few advantages, most of literature

mentions the harmfulness of code clones present in the software

systems. These duplicated code fragments are the main cause of

increasing the size of the code base, so clones cause ‘Code

bloating’.

With the presence of multiple copies of same code

fragment, causes updating and deletion of these fragment very

difficult, because cloning is not documented and thus severely

affects the maintainability of the software. This causes

maintenance cost to increase and Software Quality to decrease.

Code Clones have a direct impact on the Structural Quality

of software and its various attributes and also maintainability

and reliability, which are part of the six quality characteristics

mentioned in ISO 9126-1 Quality Model.

For this reason these Code Clones have become one of the

mature areas of research under the domain of software

engineering. Thus these Code Clones needs to be detected and

if needed removed from the software system.

C. Answer to RQ3: How are Code Clones Detected, Analysed

and Removed?

Due to the harmfulness of Code Clones, these duplicated
code fragments needs to be detected. After detection, these
should be analysed and if needed removed from the code base,
so that Software Quality can be enhanced and the maintenance
cost can be set to as minimum as it can be. Based on literature
study, the next three sections present various Code Clone
Detection, Analysis and Removal techniques, as found in
literature.

1) Code Clone Detection: As the process of clone creation

is not documented and as different developers are involved in

coding and maintenance of software system, so there is no way

to identify where the copies of a particular code are present in

the code base. To identify these code fragments different

researchers gave different methods or more specifically we can

say different algorithms. These algorithms implement different

code similarity detection techniques, popularly known as Code

Clone detection techniques. In literature, authors found a

classification of these algorithms given by C. K. Roy and J. R.

Cordy [6] as discussed below:

a) String Based: In this type of source code similarity

detection algorithms, exact textual matches of source code

segments are taken into consideration. This technique is seen to

be fast but cannot find similarity when identifiers are renamed.

b) Token Based: This technique is basically same as of

string based techniques but here in the case of token based

techniques, the source code is first converted into tokens using

lexer. This technique works a step further than string based

algorithms, by discarding white spaces, comments and identifier

names, thus making algorithm more robust to text replacements.

c) Parse Tree Based: With this technique higher level

similarity can be detected by creating parse tree from the source

code and then comparing its subtrees.

d) Program Dependency Graph (PDG) Based: To locate

much higher-level equivalence among source code fragments,

the actual flow of control in a program is captured and

represented in the form of Program Dependency Graph.

e) Metrics Based: In this type of similarity detection,

firstly various software metrics are calculated, then these metrics

are compared to capture the similarity among code fragments.

Various software metrics used are, for example, LOC, SLOC,

No. of Loops etc.

f) Hybrid Techniques: This type of code similarity

detection combines the capability of more than one code

similarity detection algorithm. Present literature mostly points

towards the use of this type of clone detection algorithm.

In literature there are number of different tools mentioned
that implements the above mentioned code similarity detection
algorithms. For example CCFinder, Duploc, CloneDr, Dup etc.
These tools can be used to detect clones in a software system.

2) Code Clone Analysis: After the Code Clones are detected

using any technique implemented by any tool, next step is to

analyse them, so that decision can be made to deal with the

results efficiently. To have a better decision, analysis must be

efficient. In literature there are various visualization techniques

that can be used to analyse the detected clones in software.

Various visualization techniques are discussed below:

a) Scatter Plot / Dot Plot: In this type of visualization

technique, the clones are represented in the form of two-

dimensional charts. The two axes of the chart represent all the

units of the software system under study.

b) Hasse Diagrams: This type of visualization consists of

nodes and edges, where a node represents the code clone and the

edge represents the relationship among them.

c) Metrics Graphs and File Similarity Tables:

Visualization through metrics graphs and file similarity table

allows user to browse the clones, either using clone classes or by

clone pair.

d) Polymetric Views: This visualization technique

provides more information about the cloning in the software

system. It uses different levels of abstraction for investigation of

clones.

e) Hyper-Linked Web: This technique uses the hyperlink

functionality of the HTML. This technique provides very

efficient navigation between source files having clone relations.

f) Coupling and Cohesion: This technique visualizes the

clone relations in the architectural level, thus extending the

concept of Coupling and Cohesion to code clones.

In addition to the above mentioned visualization techniques
for representing the information about code clones in a software
system there are other techniques also that are used for this
purpose like tree maps, dependency graphs etc.

3) Code Clone Removal: After clone detection and analysis

we have to make decision on clone removal, which is the main

objective of the clone detection process. The removal of clones

from the system is done through automatic ‘refactoring’ so that

systems quality can be improved. Refactoring means, changing

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1400 | P a g e

the internal structure of the software system without affecting its

overall functionality. With the help of refactoring complexity

can be decreased while increasing the understandability of the

software system.

There are 72 refactoring patterns for refactoring source code

mentioned in a book by Fowler [7]. Presently there is a

refactoring catalog8] that lists 93 refactoring patterns. Out of

these refactoring patterns, few patterns that are suitable for clone

refactoring are discussed below:

a) Extract Method: In this method, block of code is

extracted as a new method and the block is replaced with the

call to that new method.

b) Pull Up Method: In this method of refactoring, all the

similar methods present in subclasses are removed and pulled

up to the common superclass.

c) Move Method: This type of refactoring is used to

merge identical methods, with relocation of method from one

class to another.

d) Extract Superclass: This type of refactoring includes

extraction of two or more classes having common methods into

a new common superclass.

e) Extract utility-class: In this refactoring extraction of

common methods from different classes is carried out to a new

class.

f) Rename Refactor: This type of refactoring involves

simply renaming the names of variables, methods, classes etc.

In addition to the above mentioned refactoring patterns, there
are other refactoring patterns like method parameter reordering,
identifier renaming, changes in type declarations, splitting of
loops, substitution of conditionals, algorithms, loops, and
relocation of method or field, that are also necessary to be taken
into consideration while dealing with near-miss clones i.e.
similar, but not exact clones.

D. Answer to RQ4: How Software Quality is enhanced using

Code Clone Detection, Analysis and Removal?

To confer to the main objective of the software engineering,

i.e. to enhance the software quality with minimized maintenance

as well as overall cost of the software system, the above

discussed Code Clone Detection, Analysis and Removal

techniques plays a vital role in achieving it. The duplicated code

fragments are first detected, analysed and then removed from the

software system using above mentioned code clone detection,

analysis and removal techniques.

With the induction of code clones in the software system,

the code base of the software increases, thus making it memory

inefficient. The increased LOC (Lines of Code) has a severe

effect on the efficiency of the software by increasing the

memory usage. The removal of replicated fragments can

enhance the efficiency of the system.

In case of updating any code fragment, and if it has replicas

in the system, then updating is also very difficult, as each code

clone fragment needs to be updated. But by using clone removal

technique i.e. refactoring, all replicas are extracted into a single

fragment, thus there is a need of updating only one fragment,

thus decreases the maintenance cost, with increased quality.

As there is no documentation of the replicated fragments

present in the software system, to update all the clone fragments

seems to be impossible, so clone detection and removal

techniques can be useful in this case.

If there is a defect in a code fragment i.e. if it contains a bug

and if it is duplicated by the developer, may be by copy and

pasting, then the defect or bug will be propagated into the

system. To remove the bug or correct the defect, it needs to be

done in each copy of the duplicated code fragment, that is very

inefficient to the maintenance point of view. In this case code

clone detection techniques are used to detect the duplicated code

fragments and then the refactoring is performed, so that

maintenance cost can be minimized.

Code Clones also cause the complexity of the software to

get increased. With increased technical depth of the software

system, its maintenance becomes difficult. Code Clone Removal

with the refactoring helps in minimizing the technical depth of

the software.

Code clones if not removed from the system affects the

evolvability of the software. Thus with clone detection and

removal, the effect on evolvability of the software system can

also be minimized.

Thus, with code clone detection and removal, performance

of the software system in terms of time and space complexity

can be enhanced, and with the minimization of the maintenance

effort, the maintenance cost of the system is also decreased.

With the refactoring techniques, system understandability is

enhanced along with the decreased effort in modification or

improvement of the software system.

Thus, in this way, the Software Quality is enhanced with the

help of Code Clone Detection, Analysis and Removal

techniques.

IV. Conclusion

In this paper, authors attempted to discuss the Software

Quality enhancement using the Code Clone Detection, Analysis

and Removal techniques. This paper started with the creation of

four basic Research Questions and then authors attempted to

answer these question, based on literature study. This paper

discussed the three aspects of the Software Quality viz.

structural, functional and process quality. Then authors discuss

the relation of the Structural Quality aspect with the Code

Clones and provide an overview of the Code Clone literature,

including Code Clone Detection, Analysis and Removal. Finally

this paper discusses the various consequences of code clones and

how these are addressed with code clone detection, analysis and

removal, so, discussing how a Quality of the Software System is

enhanced with minimized maintenance cost.

This paper discusses how code clones are related with

Software Engineering and thus attempts to present the concept

of Code Clones as one of the research areas under the domain of

software engineering, so, this paper may serve as the potential

roadmap for young researchers who want to choose Code Clones

as their research area.

Acknowledgment

Authors are very thankful to the University Grants
Commission, Govt. of India, for providing financial assistance

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1401 | P a g e

for the current research in the form of fellowship, and also wish
to thank the Department of Computer Science, Guru Nanak Dev
University, Amritsar for providing the needed infrastructure for
the ongoing research.

References

[1] David Chappell. David Chappell & Associates Website.
[Online].
http://www.davidchappell.com/writing/white_papers/The_T
hree_Aspects_of_Software_Quality_v1.0-Chappell.pdf

[2] Wikipedia, the free Encyclopedia. [Online].
https://en.wikipedia.org/wiki/ISO/IEC_9126

[3] NPR. [Online].
http://www.npr.org/2011/03/11/134459358/Science-
Diction-The-Origin-Of-The-Word-Clone

[4] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo
Sant' Anna, and Lorraine Bier, "Clone Detection Using
Abstract Syntax Tree," in Proceedings of 14th International
Conference on Software Maintenance(ICSM'98), Bethesda,
Mayland, 1998, pp. 368 - 377.

[5] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens
Krinke, and Ettore Merlo, "Comparision and Evaluation of
Clone Detection Tools," IEEE Transaction on Software
Engineering, vol. 33, no. 9, pp. 577 - 591, 2007.

[6] Chanchal K. Roy and James R. Cordy, "A Survey on
Software Clone Detection Research," Queen's University,
Kingston, Technical Report 2007-541, 2007.

[7] Martin Fowler, Refactoring: Improving the design of
Existing Code.: Addison Wesley, 1999.

[8] Martin Fowler. Catalog of Refactoring. [Online].
http://refactoring.com/catalog/

Mr. Sarveshwar Bharti is presently working at

the Department of Computer Science, Guru

Nanak Dev University, Amritsar, India, as a

Phd Research Fellow. He has received his

Master of Computer Applications (MCA)

degree from University of Jammu, Jammu,

India. He is a Software Engineering

Researcher with research interests including

Software Clones, Integrated Clone

Management, and Clone Management Plug-in.

Dr. Hardeep Singh is a Professor and Head at
the Department of Computer Science, Guru
Nanak Dev University, Amritsar, India. His
research interests lie within Software
Engineering and Information Systems. He has
been awarded with various prestigious awards
including Dewang Mehta Award for best
Professor in Computer Engineering, ISTE
Award for Best Teacher in Computer Science
and Rotract International Award for best
Teacher.

http://www.davidchappell.com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf
http://www.davidchappell.com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf
https://en.wikipedia.org/wiki/ISO/IEC_9126
http://www.npr.org/2011/03/11/134459358/Science-Diction-The-Origin-Of-The-Word-Clone
http://www.npr.org/2011/03/11/134459358/Science-Diction-The-Origin-Of-The-Word-Clone
http://refactoring.com/catalog/

