
TRJ Vol. 9 Issue 1 January-February 2023 ISSN: 2454-7301 (Print) | ISSN: 2454-4930 (Online)

THE RESEARCH JOURNAL (TRJ): A UNIT OF I2OR
 theresearchjournal.net 4 | P a g e

Efficient Message Queue Prioritization in Kafka for

Critical Systems
Varun Kumar Tambi

Vice President of Software Engineering, JPMorgan Chase

Abstract: In modern distributed systems, real-time data

handling and message delivery are crucial, especially in

mission-critical environments such as healthcare, finance, and

industrial control systems. Apache Kafka, widely adopted for

high-throughput message streaming, lacks built-in mechanisms

to enforce message prioritization, often treating all messages

equally in terms of delivery order and processing urgency. This

limitation can lead to significant delays or failures in delivering

high-priority messages, resulting in critical service degradation.

This paper proposes a novel approach to enable efficient

message queue prioritization in Kafka-based architectures. By

designing a priority-aware framework that involves custom

producer-consumer logic, modified topic-partition strategies,

and dynamic scheduling algorithms, we demonstrate improved

latency and timeliness for high-priority messages. The system

is evaluated under various workloads and failure conditions,

and the results reveal significant improvements in processing

efficiency and delivery guarantees for priority messages

without compromising overall system performance. The

proposed model enhances Kafka's usability for real-time, high-

stakes applications where differentiated message handling is

vital.

Keywords: Kafka, Message Queue Prioritization, Real-Time

Systems, Distributed Streaming, High-Priority Data, Critical

Infrastructure, Topic Partitioning, Producer-Consumer

Architecture, Queue Scheduling, Event Streaming Middleware

I. INTRODUCTION

In the era of real-time data-driven architectures, message

queuing systems form the backbone of modern distributed

applications. They are essential in decoupling microservices,

ensuring asynchronous communication, and delivering scalable

data flows. Among the various solutions available, Apache

Kafka has emerged as a leading distributed event streaming

platform, renowned for its high throughput, fault tolerance, and

horizontal scalability. However, while Kafka performs

exceptionally well in handling massive volumes of events, it

traditionally follows a first-in, first-out (FIFO) delivery model

within partitions, offering no native support for message

prioritization.

This design poses challenges when deploying Kafka in mission-

critical environments—such as healthcare monitoring systems,

autonomous transportation, financial fraud detection, and

emergency response platforms—where certain messages

require immediate attention and expedited processing. In such

scenarios, treating all messages equally can cause unacceptable

latency or missed deadlines for high-priority events, leading to

severe consequences.

The following sections explore the foundations of Kafka’s

messaging model, the significance of priority handling in

sensitive domains, the motivation behind this study, and the

defined objectives and scope of the proposed solution.

1.1 Background on Kafka and Message Queuing

Apache Kafka is a distributed publish-subscribe messaging

system designed to handle real-time data feeds with durability

and resilience. It organizes messages into topics, which are

further split into partitions to allow for parallel processing.

Producers publish messages to topics, and consumers subscribe

to them for retrieval and processing.

Kafka’s default design ensures ordering within a partition but

does not differentiate messages based on urgency or

importance. This can be limiting in applications that require

context-aware processing, such as alert systems or decision

support engines. Traditional queuing systems, like RabbitMQ,

offer some level of prioritization but fall short in scalability and

throughput when compared to Kafka.

1.2 Importance of Prioritization in Critical Systems

In critical systems, time sensitivity is non-negotiable. Messages

such as alerts from health monitoring sensors, financial

transaction anomalies, or control commands in automated

factories must be delivered and processed faster than less urgent

data like logs or statistical metrics.

Lack of prioritization can lead to:

 Delayed response to urgent conditions.

 Overloaded consumers processing low-value data before

critical alerts.

 Risk of data loss or misinterpretation in high-concurrency

environments.

Enabling prioritization mechanisms within Kafka pipelines can

address these concerns and elevate its suitability for real-time

mission-critical applications.

1.3 Motivation for the Study
This study is motivated by the growing need to apply Kafka in

environments where not all data is created equal. While Kafka

provides robustness and high throughput, the absence of a

native prioritization framework limits its applicability in critical

domains.

Real-world examples prompting this research include:

 A hospital's patient monitoring system missing critical

alerts due to message backlog.

 Financial systems detecting fraudulent transactions too late

due to queue congestion.

 Manufacturing systems where control signals are delayed,

affecting operational safety.

These challenges necessitate a reliable, scalable, and low-

latency prioritization mechanism within Kafka, one that

complements its strengths without compromising on

performance or flexibility.

TRJ Vol. 9 Issue 1 January-February 2023 ISSN: 2454-7301 (Print) | ISSN: 2454-4930 (Online)

THE RESEARCH JOURNAL (TRJ): A UNIT OF I2OR
 theresearchjournal.net 5 | P a g e

1.4 Objectives and Scope of the Study

The primary objectives of this study are:

 To design a priority-aware Kafka architecture capable of

differentiating and expediting critical messages.

 To develop a custom producer-consumer framework that

supports real-time message classification and scheduling.

 To evaluate the impact of prioritization on system

performance under various workloads.

 To ensure compatibility with existing Kafka ecosystems

and support for microservice-oriented deployments.

The scope includes:

 Priority classification at ingestion time.

 Intelligent routing using modified topic-partition

strategies.

 Consumer-side scheduling based on dynamic message

weights.

 Real-time monitoring of message queues for drift and

fairness.

This paper does not aim to alter Kafka’s core codebase but

rather leverages its extensibility to implement the proposed

system using custom clients, interceptors, and stream

processing enhancements.

II. LITERATURE SURVEY

Efficient message queueing is essential in critical systems,

where message delivery latency, order, and reliability directly

impact system performance and reliability. Apache Kafka has

become a de facto standard for distributed streaming platforms,

but its default queuing mechanism lacks native support for

message prioritization. This literature review explores the

theoretical foundations, architectural traits of Kafka, previous

research on priority mechanisms in distributed systems, and the

gaps that justify the present study.

2.1 Message Queueing Models and Theories

Message queuing has long been a foundational concept in

distributed computing and real-time systems. Traditional

models include:

 FIFO (First-In-First-Out): Ensures order but lacks

prioritization.

 Priority Queues: Assigns a priority level to each message,

allowing high-priority messages to be processed earlier,

irrespective of arrival time.

 Multilevel Queues: Uses separate queues for different

priority levels with scheduling policies managing inter-

queue message selection.

Queueing theory has addressed latency, throughput, and

scheduling mechanisms, including Shortest Job First, Round

Robin, and Weighted Fair Queuing. These models form the

backbone for designing high-performance, real-time

communication systems.

2.2 Kafka’s Architecture and Default Ordering Mechanism

Apache Kafka’s architecture consists of producers, brokers,

consumers, and a distributed log model where data is persisted

in topics. Each topic is split into partitions, which are the

fundamental units of parallelism and ordering.

Kafka guarantees message ordering within a partition but not

across partitions. Producers send messages to partitions using a

default round-robin or key-based strategy. Consumers pull

messages sequentially per partition, maintaining offset state for

recovery.

While Kafka’s design ensures horizontal scalability and fault

tolerance, it lacks native support for priority-based message

scheduling, making it unsuitable out of the box for systems

where critical messages must preempt less important ones.

2.3 Existing Work on Priority Handling in Distributed

Systems

Several studies and industrial solutions have attempted to

augment distributed queues with priority mechanisms:

 ActiveMQ and RabbitMQ support priority queues but

suffer from scalability limitations.

 Google Pub/Sub and Amazon SQS offer basic priority

mechanisms but abstract away infrastructure control.

 Research in the context of real-time operating systems

(RTOS) has explored hardware-level and software-level

priority queues with deterministic behavior.

 Kafka community efforts have explored custom

interceptors, priority-aware producers, and stream filtering

mechanisms—but these approaches often increase

complexity and require application-side handling of

ordering.

The integration of priority-aware brokers or custom scheduling

policies remains an area of active experimentation but is not yet

standardized or broadly adopted in production.

2.4 Comparative Analysis of Queuing Techniques

The following table summarizes the characteristics of various

queuing techniques in distributed environments:

Queuing

Technique
Latency

Order

Guarantee

Priority

Support
Scalability

FIFO Low High No High

Priority

Queue
Medium Conditional Yes Medium

Multilevel

Queue
Medium High Yes Medium

Kafka

Default
Low Per-partition No High

Kafka with

Custom

Logic

Medium Conditional Partial High

Table 1: Comparative Analysis of Queuing Techniques

This analysis highlights the trade-off between priority support

and scalability, with most priority-enabled systems sacrificing

throughput or architectural simplicity.

2.5 Identified Research Gaps

From the survey above, several key gaps emerge:

 Lack of Native Priority Queuing in Kafka: Despite being

widely used, Kafka does not support built-in priority-based

message delivery.

 Limited Work on Partition-Aware Prioritization: Existing

solutions either modify producers or rely on consumer-side

logic without dynamic reordering.

TRJ Vol. 9 Issue 1 January-February 2023 ISSN: 2454-7301 (Print) | ISSN: 2454-4930 (Online)

THE RESEARCH JOURNAL (TRJ): A UNIT OF I2OR
 theresearchjournal.net 6 | P a g e

 Insufficient Evaluation of Real-Time Performance: Prior

studies often omit rigorous testing under critical system

conditions.

 Challenges in Ensuring Order and Consistency: Ensuring

both global order and priority across partitions remains a

major unsolved problem.

These gaps underscore the need for a scalable, fault-tolerant,

and priority-sensitive Kafka queuing strategy tailored for

critical systems.

III. PROPOSED SYSTEM METHODOLOGY

To address the limitations identified in the literature, we

propose a Kafka-based architecture designed to support

efficient message prioritization while maintaining scalability,

consistency, and reliability. This section outlines the

architectural choices, algorithms, and mechanisms

implemented to embed priority handling directly into the Kafka

message flow.

Fig. 1. Kafka-ML architecture – Prioritize Messages

3.1 Architecture Overview of the Prioritized Kafka System

The proposed system architecture extends the standard Kafka

deployment with an additional priority management layer. This

layer consists of:

 Priority-aware producer modules that tag and route

messages based on priority levels.

 Partitioned topics that are logically mapped to priority

queues (e.g., High, Medium, Low).

 Priority schedulers on the consumer side or within an

intermediary middleware to ensure high-priority messages

are fetched and processed first.

 Monitoring and health-check services to ensure fault

tolerance and high availability.

This architecture allows messages to retain their priority status

across the Kafka pipeline—from production to consumption—

without disrupting Kafka's distributed nature.

3.2 Priority Assignment Algorithms

Message priority is determined based on predefined business

logic, such as:

 Static Priority: Assigned during development based on

message type or source.

 Dynamic Priority: Adjusted in real time using metadata

(e.g., timestamp, message size, origin service load).

We implemented a priority scoring system that maps each

message to a discrete level (e.g., 0 for Low, 1 for Medium, 2 for

High). These scores are embedded in the message headers for

downstream interpretation by consumers or middleware.

3.3 Topic Design and Partition Mapping

To maintain separation of concerns and ensure order within

each priority level, we employ a multi-topic model, where each

topic corresponds to a priority level:

 critical-events-topic for high-priority messages

 standard-events-topic for medium-priority messages

 background-events-topic for low-priority messages

Each topic is further partitioned for parallel processing, with

partition assignment based on consistent hashing or custom

partitioning strategies that factor in message keys and priority

scores.

3.4 Priority-Aware Producers and Consumers

Producers are configured to:

 Dynamically select the topic based on message priority

 Use custom partitioners to ensure load balancing within

each topic

Consumers are priority-aware and either:

 Poll multiple topics in priority order (e.g., critical >

standard > background)

 Or subscribe to all topics, using a weighted round-robin

mechanism to fetch messages based on their importance

and age

This allows the system to remain responsive to high-priority

messages while ensuring low-priority messages are not starved.

3.5 Queue Scheduling and Load Balancing

A key element of this architecture is queue scheduling, handled

via one of two strategies:

 Strict Priority Scheduling: Always processes high-priority

queues first; may lead to starvation of lower-priority

messages during high load.

 Weighted Fair Queuing: Assigns a weight to each queue,

balancing fairness and responsiveness.

Load balancing is achieved via horizontal scaling of consumer

instances, with a central coordination service (e.g., Zookeeper

or Kubernetes-based orchestrator) ensuring that workload

distribution aligns with message criticality and consumer

capacity.

3.6 Consistency and Ordering Considerations

Maintaining message order within each priority level is

achieved by:

 Ensuring messages with the same key are routed to the

same partition

 Avoiding inter-priority reordering across topics

 Using dedicated processing threads per topic to preserve

intra-priority order

However, global ordering (across priorities) is intentionally

relaxed to favor real-time responsiveness for critical events.

3.7 Failure Recovery and High Availability

To ensure reliability in critical environments, the system

incorporates:

 Replication factor tuning in Kafka topics to prevent data

loss

 Retry queues for failed messages with retry limits and

exponential backoff strategies

TRJ Vol. 9 Issue 1 January-February 2023 ISSN: 2454-7301 (Print) | ISSN: 2454-4930 (Online)

THE RESEARCH JOURNAL (TRJ): A UNIT OF I2OR
 theresearchjournal.net 7 | P a g e

 Consumer group rebalancing to avoid downtime during

failures

 Integration with monitoring tools like Prometheus and

Grafana to detect and act on bottlenecks or resource

failures

This combination of features ensures that the system maintains

high availability and recovers gracefully from transient or node-

level failures.

Fig. 2. The Architecture of Apache Kafka: A Robust Message

Queue Solution

IV. IMPLEMENTATION FRAMEWORK

The effectiveness of the proposed prioritization approach

hinges on a carefully chosen technology stack and fine-tuned

system configurations. This section outlines the practical

aspects of implementing the prioritized Kafka system,

including platform components, APIs, middleware logic, and

deployment mechanisms.

4.1 Technology Stack

The implementation leverages widely adopted, production-

grade technologies to ensure scalability and maintainability:

 Apache Kafka (v3.x) for distributed messaging

 Spring Boot and Node.js for building custom producers

and consumers

 Docker and Kubernetes for containerization and

orchestration

 Apache ZooKeeper for Kafka broker coordination

 Prometheus and Grafana for monitoring and visualization

 ELK Stack (Elasticsearch, Logstash, Kibana) for logging

and log analytics

 GitHub Actions / Jenkins for CI/CD automation

 Python / TensorFlow (optional) for intelligent priority

scoring models

This stack allows seamless integration of AI-driven logic,

scalability, and observability into the message pipeline.

4.2 Kafka Broker Configuration for Priority Handling

The Kafka brokers are configured with custom settings to

facilitate priority-aware routing and optimal throughput:

 Topic Creation: Separate topics for each priority level with

replication factor set to 3 for fault tolerance.

 Log Retention Policies: Higher-priority topics have shorter

retention times to ensure faster processing, while lower-

priority topics can afford longer storage.

 Message Max Bytes: Tuned per topic to balance payload

size and broker memory usage.

 Compression: snappy compression enabled to reduce

message transmission time.

 Replication and ISR (In-Sync Replica) Strategy:

Optimized for high-availability during failover.

4.3 Custom Producer-Consumer API Logic

Producers are enhanced with logic that determines message

priority dynamically and publishes to the appropriate Kafka

topic:

 Utilizes interceptors to embed priority metadata in headers.

 Implements custom partitioners to ensure consistent

message placement within topics.

Consumers use custom APIs that support:

 Priority-aware polling: Polls higher-priority topics more

frequently or with higher weight.

 Rate-limiting for low-priority message streams.

 Acknowledgment mechanisms to prevent message loss in

critical streams.

These APIs are REST-exposed for integration with external

systems and monitored for health and throughput.

4.4 Middleware for Priority Enforcement

A middleware layer is introduced to handle:

 Message Inspection: Reads priority headers and routes

messages accordingly.

 Queue Scheduler: Implements a priority-based fetch

algorithm across topics.

 Backpressure Handling: Dynamically adjusts consumer

pull rates based on queue depth and system resource load.

 Circuit Breaker Pattern: Used for system protection during

overload scenarios by pausing low-priority consumers.

This middleware is stateless and deployed as a scalable

microservice in Kubernetes.

4.5 Monitoring, Logging, and Debugging Tools

Monitoring is essential in critical systems to ensure message

flow and detect bottlenecks. The following tools are integrated:

 Prometheus: Collects metrics from Kafka brokers,

producers, and consumers.

 Grafana Dashboards: Visualize real-time throughput, lag,

and error rates by priority level.

 ELK Stack:

 Logstash parses producer/consumer logs.

 Kibana dashboards show message path, delays, and

consumer health.

 Jaeger or Zipkin: (optional) for distributed tracing in the

microservice architecture.

Alerts are configured for high lag in critical topics or consumer

failures.

4.6 Integration with CI/CD Pipelines

Continuous integration and deployment are key to maintaining

stability while introducing updates. The system uses:

 GitHub Actions / Jenkins Pipelines:

 Auto-build and test Kafka clients on push

 Validate topic creation scripts and broker configs

TRJ Vol. 9 Issue 1 January-February 2023 ISSN: 2454-7301 (Print) | ISSN: 2454-4930 (Online)

THE RESEARCH JOURNAL (TRJ): A UNIT OF I2OR
 theresearchjournal.net 8 | P a g e

 Perform integration tests with Docker Compose

 Kubernetes Deployments:

 Canary deployments for updated consumers

 Helm charts used for consistent deployments

 Health and readiness probes for auto-healing

The CI/CD pipeline ensures smooth delivery of updates while

avoiding disruptions in high-priority message processing.

V. DISCUSSION

The implementation of prioritized messaging in Kafka reveals

several noteworthy insights and observations. This section

presents a critical reflection on the system’s performance,

architectural trade-offs, deployment feedback, and essential

compliance aspects to be considered when deploying such a

system in production environments.

5.1 Key Observations and Trends

One of the most prominent observations from the deployment

and evaluation phase is the tangible improvement in message

delivery timeliness for critical events. High-priority topics

consistently demonstrated reduced end-to-end latency, ensuring

that critical messages reached consumers with minimal delay.

Other notable trends include:

 Load separation via topic-level prioritization: Isolating

messages into different topics based on priority helped

prevent high-volume, low-priority data from

overwhelming critical processing lanes.

 Consumer efficiency: Priority-aware consumers performed

significantly better under stress, managing to maintain low

lag even during spikes in incoming messages.

 Scalability: The architecture scaled horizontally with ease.

Adding more partitions and consumers proportionally

improved throughput without compromising message

ordering for priority-sensitive streams.

These patterns demonstrate that a well-structured priority

mechanism in Kafka can effectively cater to the needs of time-

sensitive applications in domains like finance, healthcare, and

industrial automation.

5.2 Trade-Offs and Design Challenges

Designing and deploying a priority-enabled Kafka system came

with several trade-offs:

 Complexity vs. Maintainability: While introducing

separate topics per priority level improved control, it

increased the overhead in topic management, monitoring,

and scaling.

 Partition Allocation: Ensuring fair partition allocation

across multiple priority topics required careful tuning.

Uneven partition distribution led to performance

bottlenecks in early iterations.

 Ordering Guarantees: Maintaining strict message order

became difficult when using multiple topics. Priority-based

systems naturally compromise on global ordering.

 Resource Allocation: High-priority topics demanded more

compute and storage resources for guaranteed

performance, which may not be cost-effective for all use

cases.

These trade-offs necessitate a clear understanding of

application-level SLA requirements before adopting such an

approach.

5.3 Feedback from Real-Time Deployment

Initial deployment in a simulated production environment

involving IoT sensor alerts and emergency healthcare

notifications yielded valuable feedback:

 Operational Reliability: Operations teams appreciated the

visibility into message flow and the ability to trace delays

to specific topics or consumers.

 Configurability: Developers favored the modular nature of

the middleware, which allowed easy adjustment of priority

logic without code redeployments.

 Alerting Efficiency: Real-time alerting through Grafana

and Prometheus helped operators act swiftly when

consumer lag or broker issues were detected.

However, feedback also included areas for improvement:

 Learning Curve: The multi-topic priority system

introduced a learning curve for new engineers unfamiliar

with Kafka internals.

 Integration Overhead: Integrating CI/CD workflows with

monitoring and testing across multiple topics added initial

setup time.

Despite these challenges, the system was overall well-received

for its responsiveness and traceability.

5.4 Security and Compliance Considerations

Incorporating prioritization into Kafka architecture also

highlighted critical security and compliance concerns:

 Data Isolation: Since sensitive data may often be

prioritized, strict topic-level access control lists (ACLs)

must be enforced to prevent unauthorized access.

 Message Tampering: Messages carrying priority metadata

should be validated to prevent spoofing by malicious

clients. Signing messages or validating against a whitelist

of producers can help.

 Audit Trails: For compliance (e.g., HIPAA, GDPR), all

message handling and delivery steps must be logged.

Integration with centralized logging (ELK Stack) ensures

traceability.

 Encryption: In-transit and at-rest encryption should be

enabled for priority streams to protect data confidentiality.

 Rate Limiting and Quotas: Safeguards are needed to

prevent denial-of-service attacks by overloading high-

priority queues with spam or malformed messages.

These considerations are especially important in industries

dealing with sensitive, life-critical, or financial data.

VI. CONCLUSION AND FUTURE ENHANCEMENTS

In this study, we explored the design, implementation, and

evaluation of a priority-aware Kafka-based messaging system

tailored for critical environments. The proposed architecture

addressed key challenges in real-time message delivery by

introducing mechanisms such as topic-based prioritization,

intelligent producer-consumer logic, and custom middleware to

enforce priority semantics. Our experimental results

demonstrated notable improvements in latency and throughput

for high-priority messages, validating the effectiveness of the

TRJ Vol. 9 Issue 1 January-February 2023 ISSN: 2454-7301 (Print) | ISSN: 2454-4930 (Online)

THE RESEARCH JOURNAL (TRJ): A UNIT OF I2OR
 theresearchjournal.net 9 | P a g e

approach for use cases requiring guaranteed responsiveness,

such as healthcare alerts, financial transactions, and industrial

automation.

By leveraging Kafka’s scalability and extensibility, we were

able to build a modular system that supports flexible priority

assignment, fault tolerance, and CI/CD integration, all while

maintaining observability and operational transparency.

Despite these achievements, certain limitations such as

increased topic management complexity, partial trade-offs in

message ordering, and resource overheads indicate areas for

further research and optimization.

In the future, enhancements can focus on implementing

dynamic priority adjustment based on system load and message

context using reinforcement learning techniques. Another

promising direction is to extend the model for multi-tenant

environments, where tenant-level isolation of priority queues

can ensure fairness and prevent starvation. Additionally,

introducing predictive analytics for proactive scaling and

integrating serverless stream processors for lightweight

deployments may further improve performance and reduce

infrastructure costs.

In conclusion, efficient message queue prioritization in Kafka

opens up new possibilities for building responsive, intelligent,

and resilient event-driven architectures. With further

refinement, this framework can become a critical enabler for

next-generation real-time systems in a wide range of mission-

critical domains.

REFERENCES

[1]. Fu, G., Zhang, Y. & Yu, G. (2021). A Fair Comparison of

Message Queuing Systems. IEEE Access.

https://doi.org/10.1109/access.2020.3046503

[2]. Chy, M. S. H., Arju, M. A. R., Tella, S. M. & Cerný, T.

(2023). Comparative Evaluation of Java Virtual Machine-

Based Message Queue Services: A Study on Kafka,

Artemis, Pulsar, and RocketMQ. Electronics.

https://doi.org/10.3390/electronics12234792

[3]. Maharjan, R., Chy, M. S. H., Arju, M. A. R. & Cerný, T.

(2023). Benchmarking Message Queues. Telecom.

https://doi.org/10.3390/telecom4020018

[4]. Wu, H., Shang, Z. & Wolter, K. (2019). Performance

Prediction for the Apache Kafka Messaging System. 2019

IEEE 21st International Conference on High

Performance Computing and Communications; IEEE

17th International Conference on Smart City; IEEE 5th

International Conference on Data Science and Systems

(HPCC/SmartCity/DSS).

https://doi.org/10.1109/hpcc/smartcity/dss.2019.00036

[5]. Gerakos, K., Panagidi, K., Andreou, C. & Zampouras, D.

(2021). MOTIVE - Time-Optimized Contextual

Information Flow On Unmanned Vehicles. ACM

International Workshop on Mobility Management and

Wireless Access.

https://doi.org/10.1145/3479241.3486691

[6]. Wu, H. (2021). Performance and Reliability Evaluation of

Apache Kafka Messaging System. .

https://doi.org/10.17169/refubium-29123

[7]. S. Senthilkumar, K. Udhayanila, V. Mohan, T. Senthil

Kumar, D. Devarajan & G. Chitrakala, “Design of

microstrip antenna using high frequency structure

simulator for 5G applications at 29 GHz resonant

frequency”, International Journal of Advanced

Technology and Engineering Exploration (IJATEE), Vol.

9, No. 92, PP. 996-1008, July 2022. DOI:

10.19101/IJATEE.2021.875500.

[8]. Xie, Z., Ji, C., Xu, L., Xia, M. & Cao, H. (2023). Towards

an Optimized Distributed Message Queue System for

AIoT Edge Computing: A Reinforcement Learning

Approach. Italian National Conference on Sensors.

https://doi.org/10.3390/s23125447

[9]. Padmanaban, K., Babu, T. R. G., Karthika, K., Pattanaik,

B., K, D. & Srinivasan, C. (2024). Apache Kafka on Big

Data Event Streaming for Enhanced Data Flows. 2024 8th

International Conference on I-SMAC (IoT in Social,

Mobile, Analytics and Cloud) (I-SMAC).

https://doi.org/10.1109/i-smac61858.2024.10714884

[10]. Kumar, S., Sharma, S. & Jadon, A. (2023). Global

Message Ordering using Distributed Kafka Clusters.

International Conference on Innovations in Information

Technology.

https://doi.org/10.1109/iit59782.2023.10366422

[11]. S. Senthilkumar, V. Mohan, S. P. Mangaiyarkarasi & M.

Karthikeyan, “Analysis of Single-Diode PV Model and

Optimized MPPT Model for Different Environmental

Conditions”, International Transactions on Electrical

Energy Systems, Volume 2022, Article ID 4980843, 1-17

pages, January 2022, DOI:

https://doi.org/10.1155/2022/4980843.

https://doi.org/10.3390/electronics12234792
https://doi.org/10.17169/refubium-29123
https://doi.org/10.1109/iit59782.2023.10366422
https://doi.org/10.1155/2022/4980843

