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Disclaimer
This report was prepared as an account of work sponsored by an agency of the United 
States government. Neither the United States government nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States government or any agency 
thereof. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States government or any agency thereof.

Download a copy of the report:
www.solarabcs.org/windload
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Executive Summary
Today’s photovoltaic (PV) industry must rely on licensed structural engineers’ various 
interpretations of building codes and standards to design PV mounting systems that will 
withstand wind-induced loads. This is a problem, because–although permitting agencies 
require assessments of the structural attachment of solar equipment to rooftops—the 
safety and sufficiency of these attachments are not adequately addressed in any codes 
or standards. The result is a multitude of code interpretations from a range of individuals 
and groups, often yielding different design loads for the same design specifications. 

It is important to evaluate equipment and attachment methods to ensure that PV 
equipment will remain attached to structures during windstorm events, and that 
additional loads or load concentrations do not exceed the structural capacity of the 
building. ASCE Standard-7-05 (American Society of Civil Engineers Standard 7-05) is the 
standard for wind forces on structures, but it does not provide adequate guidance to the 
design professionals and code officials tasked with assessing PV installations.

This lack of guidance creates obstacles for the PV industry. The resulting problems 
include frustrated installers, unhappy customers, and wind-related structural failures. 
In addition, uncertainty about what constitutes a safe and secure installation for a 
given wind load can slow or even stop the approval process for PV installations and 
complicates the training of code officials.

In this report, we provide sample calculations for determining wind loads on PV arrays 
based on ASCE Standard 7-05. We focus on applying the existing codes and standards 
to the typical residential application of PV arrays mounted parallel to the roof slope 
and relatively close (3 to 6 inches) to the roof surface. We do not address other array 
configurations or building-integrated PV. 

It will require much more work to gather information and develop standards specific to 
wind loading on rooftop PV installations. Although the information in this report does not 
completely solve the problem, it does provide initial guidance to designers and code officials. 

In this paper, we recommend an approach for the structural design of roof-mounted PV 
systems based on ASCE Standard 7-05. We provide examples that demonstrate a step-
by-step procedure for calculating wind loads on PV arrays. The 
approach is applicable to PV modules mounted on rooftops 
that are no more than 60 feet high, when the PV array is 
oriented parallel to the roof surface, and when the mounting 
structure is sufficiently rigid. The PV array should be mounted a 
maximum of six inches above the roof surface. This distance is 
measured from the bottom of the PV frame to the roof surface, 
and is based on assumptions about typical mounting system 
configurations. The building should meet all requirements listed 
in Section 6.4.1.1 of ASCE Standard 7-05. 

It is important that design professionals read and understand the appropriate codes and 
standards when designing rooftop PV systems. This report is not meant to be a substitute 
for existing codes and standards. It is also important for design professionals to stay current 
with existing codes and standards, because we expect the body of information about 
designing PV systems to withstand local wind loading to grow rapidly in the near future.

Recommendations
1. 	At present, we recommend basing the structural design of roof-mounted PV systems 	
	 on the ASCE Standard 7-05 as follows:

	 a. 	 Section 6.5.12.2, main wind-force resisting system (MWFRS), is the recommended 	
		  starting point for designing the PV mounting structure, with the PV module 		
		  oriented above and parallel to the roof surface. 

“ASCE Standard-7-05. . . does 
not provide adequate guidance 
to the design professionals and 
code officials tasked with 
assessing PV installations.”		
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	 b.	 Section 6.5.12.4.1 addresses wind loads on components and cladding. We 
		  recommend the use of Section 6.5.12.4.1 and supporting Figures only for 	 	
		  the design of the PV module attachment clips and hardware to the structure, and 	
		  for calculating loads on individual PV modules.

	 c.	 We do not recommend Section 6.5.15, 6.5.15.1, and Figure 6-21 for the design 	
		  of PV systems.

	 d.	 This report provides basic guidance for applying ASCE Standard 7-05 to existing 	
		  codes and standards for the typical residential application of PV arrays mounted 	
		  parallel to the roof slope and relatively close (3 to 6 inches) to the roof surface.

2.	 We recommend wind tunnel testing be conducted for the most common rooftop PV 	
	 installations to verify methods and calculations. The installation types include stand-	
	 off mounting parallel to the roof, stand-off mounting at an incline relative to the roof, 	
	 and ballasted installations on flat roofs. 

3.	 We recommend that codes and standards be modified to specifically address the 	
	 mounting of PV arrays to rooftops to eliminate potential barriers to market 		
	 development in high wind regions. 

4.	 We recommend that local jurisdictions and design professionals use the 			 
	 recommendations in this report to ensure continuity in interpreting existing codes 
	 and standards.
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Introduction

Today’s photovoltaic (PV) industry must rely on licensed structural engineers’ various 
interpretations of building codes and standards to design PV mounting systems that will 
withstand wind-induced loads. Ensuring that PV installations are safe and secure can 
involve custom testing methods such as wind tunnel testing or computer simulations, 
which are acceptable if approved by a structural engineer. The result is a multitude of code 
interpretations from a range of individuals and groups, often yielding different design loads 
for the same design specifications.

Please note that Chapter 6 of the ASCE Standard 7-05 describes the procedure for determining 
wind loads on buildings and structures. All figures, tables, and sections of Chapter 6 begin with 
the prefix “6.” For example, Figure 6-10, Table 6-3, and Section 6.3 are all parts of ASCE Standard 
7-05, Chapter 6. These conventions have been adopted in this report, therefore any references to 
tables and figures beginning with a “6” refer to tables and figures in ASCE Standard 7-05, while 
those that do not begin with a “6” are contained within the body of this report.

Background
The American Society of Civil Engineers (ASCE) Minimum Design Loads for Buildings and 
Other Structures (ASCE Standard 7-05) is the most comprehensive wind design standard 
in the United States. Other building codes such as the International Building Code (IBC) 
contain wind design requirements that are less comprehensive than ASCE Standard 7-05. 
This is especially true for design problems with atypical building geometry such as roof-
mounted PV systems. 

Fortunately, the IBC and other building codes explicitly permit the use of the ASCE 
Standard 7-05 for the design of buildings and structures. However, it is difficult—and in 
some cases inappropriate—to derive the design loads on roof-mounted PV arrays from 
the existing standards, because there is no specific provision for these structures. The 
recommended design approach for roof-mounted PV systems presented in this report is 
based on the most recent version of the ASCE standard, ASCE Standard 7-05 (ASCE 2006). 
This work is an initial attempt to provide some guidance to design professionals and begin 
a dialogue in the PV community that will move this issue further toward consensus. 

Existing Codes and Standards
In this report, we recommend an approach for the structural design of roof-mounted PV 
systems that is based on the ASCE Standard 7-05. We provide examples that demonstrate 
a step-by-step procedure for calculating wind loads on PV arrays. Our approach is 
applicable to PV modules mounted on rooftops that are no more than 60 feet high, when 
the modules are oriented parallel to the roof surface, the mounting structure is sufficiently 
rigid,� and the PV array is mounted a maximum of six inches above the roof surface. 
This distance is measured from the bottom of the PV frame to the roof 
surface and is based on assumptions about typical mounting system 
configurations. The building should meet all requirements listed in 
Section 6.4.1.1 of ASCE Standard 7-05. 

Existing codes and standards do not cover PV modules oriented at an 
angle to the roof surface, and an analysis of this configuration is beyond 
the scope of this report. Designing for wind loading on this type of 
orientation and mounting structure is significantly more complex than 
designing for modules parallel and close to the roof, and will require 
further research and possible testing. This report also does not address 
building-integrated PV.

1 Note: ASCE Standard 7-05, Section 6.2, defines rigid buildings and structures as having a fundamental 
frequency of at least 1 Hz. The 1 Hz limitation was developed as a worst-case value for high-rise buildings, 
and the application of this limitation has been the subject of some controversy in the ASCE community. PV 

“The result is a multitude of 
code interpretations from a 
range of individuals and groups, 
often yielding different design 
loads for the same design 
specifications.”
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mounting structures are typically less than 10 feet in height and often substantially shorter, and will likely 
have a fundamental frequency higher than 1 Hz. ASCE Standard 7-05 supports adopting the 1 Hz limitation 
for PV systems, but this should be verified as applicable by a licensed structural engineer on a case-by-case 
basis. Defining a maximum fundamental frequency for rigid PV structures will require further testing. 

Experts in the areas of PV system design, aerodynamics, wind tunnel testing, and ASCE 
Standard 7-05 conducted a thorough review of the code. Based on this review, the team 
concluded that:

1.	 Unfortunately, there is no prescribed method in the standard that clearly addresses 
the specific geometry of roof-mounted PV systems. 

2.	 Sections 6.5.15 and 6.5.15.1 and Figure 6-21 are not recommended for the design of 
PV systems.

3.	 Section 6.5.12.4.1 addresses wind loads on components and cladding, but the use of 
this section and the supporting figures are recommended only for the design of the 
PV module attachment clips and hardware to the structure, and for calculating loads 
on individual PV modules.

4.	 Section 6.5.12.2 (main wind-force resisting system [MWFRS]) is the recommended 
starting point for designing the PV mounting structure with the PV module oriented 
above and parallel to the roof surface. 

Discussion

We studied Section 6.5.15, 6.5.15.1, Figure 6-21, and the commentary on Figure 6-21 
in ASCE Standard 7-05 to determine their potential applicability to roof-mounted PV 
systems. Section 6.5.15.1, “Rooftop Structures and Equipment for Buildings with h </= 
60 feet” is a new addition to this version of the standard. The text would appear to be 
applicable to PV systems. 

However, it is the opinion of the authors that this was due to a lack of clarity in the 
actual text. This section of the standard was intended to be applicable to roof-mounted 
structures with a prismatic shape, such as chimneys, air conditioners, etc. It was not 
intended for rooftop installations like PV systems that have gaps between the equipment 
and the roof. These gaps can allow pressurization below the surface of the PV modules 
independent of pressure in the building interior. 

Put another way, ASCE Standard 7-05 was written for buildings, not the tops of buildings. 
Wind loading for installations like PV systems that leave gaps between the equipment 

and the roof surface is very different from wind 
loading for roof-mounted structures with a 
prismatic shape. For this reason, the authors do 
not recommend the use of Section 6.5.15.1 or 
Figure 6-21 for the design of PV systems.

Section 6.5.12.4.1 addresses wind loads on 
components and cladding. “Components and 
cladding” is defined by ASCE as an “element 

of the building that does not qualify as the MWFRS.” Many structural engineers and 
PV designers have considered roof-mounted PV systems to qualify as components 
and cladding, and not the MWFRS, due to the fact that the PV support structure is 
not the wind resisting structure for the building. The MWFRS is defined by ASCE as 
“an assemblage of structural elements assigned to provide support and stability for 
the overall structure. The system generally receives wind loading from more than one 
surface.” 

Components receive wind forces directly or from the cladding system. Those loads are 
transferred to the MWFRS, which bears the structural loads. Based on the descriptions of 

“Unfortunately, there is no prescribed method 
in the standard that clearly addresses the specific 
geometry of roof-mounted PV systems..”
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the differences between components and cladding and the MWFRS, we concluded that 
the PV modules themselves and the hardware that secures the modules to the structure 
could be considered components and cladding. However, the means of attachment to 
the roof is the MWFRS, because the PV mounting system provides support and stability 
for the overall structure. It is this means of attaching the modules to the structure (via 
the roof) that is of primary concern. Therefore, we recommend using Section 6.5.12.4.1 
and the supporting figures for calculating loads on individual PV modules and attachment 
hardware, and Section 6.5.12.2 for the design of PV rooftop mounting structures.

ASCE Standard 7-05 differentiates between components and cladding and the MWFRS 
because the small tributary area of components and cladding can result in higher 
instantaneous loads than the MWFRS. Components and cladding transfer loads to the 
MWFRS. At one instant in time, some of the components and cladding may experience 
extreme uplift while others experience less uplift or even a downward force. The 
MWFRS can distribute these varying loads, and the net effect is reduced wind loading 
on the structure. Section 6.5.12.4.1 provides a procedure for calculating wind loads on 
components and cladding, and 6.5.12.2 provides a procedure for calculating wind loads 
on the MWFRS. These are the recommended starting points for designing mounting 
structures for roof-mounted PV installations in which the PV module is oriented parallel to 
the roof surface. 

Although the referenced figures in 6.5.12.2 have geometries that appear to be similar to 
tilted PV modules, we do not recommend applying this section to modules oriented at a 
tilt relative to the roof surface. None of the referenced figures in this section address the 
geometry of tilted PV, which is inherently non-aerodynamic when it is mounted on top 
of a building. Future work will include the consideration of analytical techniques based 
on fundamentals of aerodynamics, combined with publicly available wind tunnel test 
data as well as data in ASCE Standard 7-05 to develop a procedure for estimating loads for 
tilted modules. Although wind tunnel testing would be the preferred solution, sufficient 
information is not currently available, and empirical data analysis is left to future studies.

When modules are oriented parallel to the roof surface—provided that they are mounted 
close to the roof—they are subjected to the same type of wind flow as a roof at the same 
pitch. Based on typical roof-mounted PV array hardware configurations and current 
practices, the authors recommend limiting the PV array height to six inches above the 
roof in order to use the approaches discussed in this report. It is unknown at this time 
how much internal pressurization (positive pressure below the module) will be created 
because of the gap distance between the roof and module frame (the opening) and 
the distance between the roof and the back of the module (the structural diaphragm). 
Although ASCE Standard-7-05 does provide values for internal pressure coefficients, 
these coefficients were developed for buildings more than 15 feet tall with various types 
of openings around the building that are specific to common buildings—open (at least 
80% of each wall is open), enclosed (walls have very few openings), or partially enclosed 
(walls have some openings). The geometry of the air space below the PV module could 
be categorized similarly. However, while analogous, it may be very different from the 
geometry of the walls and interior airspace of a building because of the significant scaling 
differences. 

The problem of not having accurate internal pressure coefficients for common PV 
geometries is a key weakness in applying the ASCE Standard 7-05 to roof-mounted PV 
systems. Of the three building classifications described in ASCE Standard 7-05, one 
could easily justify classifying the PV module as an “open building,” (internal pressure 
coefficient GCpi = 0), which would yield the lowest wind load of the three options. Given 
the proximity of the PV module to the roof, and the presence of structural and electrical 
components between the modules and the roof, one could also consider the module as 
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a “partially enclosed” building (internal pressure coefficient GCpi = +/- 0.55), which 
would yield the highest wind load of the three options. 

Based on discussions with experts in the field of wind tunnel testing and the ASCE 
Standard, we believe that a value of +/- 0.1 to +/-0.3 is a reasonable choice for 
systems with limited restrictions to airflow below the module. Some authorities 
having jurisdiction (AHJs) or structural engineers may require designers to apply the 
classification of a partially enclosed building. However, we expect that most AHJs will 
defer the decision to a licensed engineer. 

The decision about how conservative a designer should be when choosing an internal 
pressure coefficient may also be influenced by the potential reduction in wind loads 
most PV systems experience due to pressure equalization. ASCE Standard 7-05 does not 
account for this reduction. 

With stand-off mounted PV systems parallel to the roof, most of the uplift load on 
modules is due to pressure differentials above and below the module. The difference 
in pressure between the top and bottom surface gives the total uplift or downward 
pressure acting on the module. Because modules have a relatively small area compared 
to roofs, and because there are typically one-half to two-inch gaps between modules, 
pressure differentials above and below modules typically equalize in a short amount of 
time, on the order of fractions of seconds. ASCE Standard 7-05 does acknowledge the 
phenomenon of pressure equalization in the discussion of “air permeable cladding” in 
Section 6.4.3, because pressure equalization is entirely dependent upon the geometry 
of the cladding. Properties that affect the amount of pressure equalization are the length 
and width of the module (smaller modules will have better equalization, larger modules 
will take longer to equalize), the vertical distance of the module from the roof surface 
(closer to the roof will reduce the volume of air to pressure equalize), the horizontal 
distance between modules (larger distances will create a better path for pressure 
transmission), and the degree of restriction to airflow below the module due to the 
presence of structural or electrical components (fewer restrictions will enhance pressure 
equalization). 

Because PV modules are typically close to the roof surface and have gaps on all sides, 
pressure differentials between the top and back of the PV surface likely equalize quickly. 
This phenomenon could reduce wind loads on the module by 50% to 80% or even 
more, but quantifying the degree of pressure equalization that occurs in various PV 
systems will require wind tunnel testing on a variety of geometric configurations. 

Sample Calculations

In Sample Calculation 1, we determine wind loads on a PV mounting structure based on 
the assumption that it is part of the MWFRS. In Sample Calculation 2, we outline how a 
designer should determine wind loads on PV modules and mounting hardware.

Again, this approach is limited to applications in which the PV module is oriented 
parallel to the roof surface and is a maximum of about six inches above the roof deck. 
In addition, the building must be 60 feet high or less and the mounting structure should 
have a fundamental frequency of 1 Hz or greater.

Sample Calculation 1
Wind Load on PV Mounting Structure (MWFRS, Section 6.5.12.2)

Location: Phoenix, Arizona

Terrain: Open desert, very few buildings.

Building height: 17’3” at the eave, 22’9” at the ridge, 20’ mean roof height

Building shape: Gable roof with a 20o pitch
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Building type: Residential

Building dimensions: 60’ (along the ridge) x 30’ (perpendicular to the ridge)

Module orientation: Parallel to roof, 5” above roof surface, minimum 4’ from the 
roof edge.

PV array area: 100 square foot array (10’ x 10’)

Figure 1.  Array mounted parallel to the roof slope

Steps:

1.	 Reference Figure 6-1 to determine the basic wind speed for the Phoenix, Arizona, 
location. From this Figure, the wind speed is V = 90 mph.

2.	 Reference Section 6.5.6.3 to determine the surface roughness category. Do a physical 
site inspection or review photographs of the surrounding terrain in all directions to 
properly classify the surrounding terrain using the definitions in this section. If the 
terrain varies in the upwind direction or if the location is in a transitional zone, use 
the worst-case wind loads. For this sample problem, we assumed that Exposure C 
applies for this open desert location.

3.	 Determine the occupancy category using Table 1-1. In this case, it is Type II for a 
residential building.

4.	 Determine the importance factor using Table 6-1. In this case, I = 1.00 for a Type II 
building.

5.	 Reference Section 6.5.7.1 to determine the topographic factor, Kzt. For this sample 
calculation, we will assume that the site is on level terrain, so Kzt = 1.0. 

6.	 Determine a velocity pressure exposure coefficient using Table 6-3. As discussed in 
the definition of the height (h) in Section 6.3, use the mean roof height (note that 
eave height is used for a roof pitch < 10o). The mean height in this case is 20 feet. For 
an exposure terrain classification of C, and a roof height of 20, we obtain a velocity 
pressure exposure coefficient of Kz = 0.90.

7.	 Determine enclosure classification and internal pressure coefficients (GCpi). Section 
6.2 provides definitions of enclosure types (open, partially enclosed, and enclosed 
buildings), and the designer must identify the enclosure classification in order to 
determine the internal pressure coefficients. Many racking systems create very little 
obstruction below the PV module, which may lead the designer to choose an “open 
building” classification. However, the typically small vertical space (on the order of 
3 to 6 inches), as well as the PV frame, wiring, conduit, and structural components 
below the module will cause a restriction in airflow. For this reason, the PV array 
could also be considered to be a “partially enclosed building.” Sections 6.5.3, 6.5.11.1, 
and ultimately Figure 5 provide internal pressure coefficients for the various enclosure 
classifications. In actuality, most PV systems likely have internal pressure coefficients 
somewhere between those given for an open building (GCPi = 0) and a partially 
enclosed building (GCpi+/-0.55). Based on consultations with numerous wind loading 
experts and engineers, we recommend a range of +/-0.1 to +/-0.3. Because the 
ASCE Standard is not clear, a designer could justify classifying the PV array as an open 
building (GCpi=0), but our recommendation provides an added margin of safety. 



6 Wind Load Calculations for PV Arrays

Some AHJs or structural engineers may require a more conservative value of GCpi = 
+/0.55. In this sample calculation, we used a value of GCpi = +/- 0.3.

8.	 Determine external pressure coefficient. To select the correct data from Figure 6-6 for 
buildings more than 60 feet high or Figure 6-10 for buildings less than 60 feet high, 
the designer must consider the geometry of the roof. However, Figure 6-18A through 
6-18D should be used in place of Figures 6-6 or 6-10 for buildings with no walls 
(see the definition in Section 6.2 for Free Roofs). In our example, the building is a 
residence, which we assume is an enclosed or partially enclosed building with a roof 
that has a 20-degree pitch. We took the external pressure coefficients from Figure 
6-10 for this sample building.

Figure 6-10 shows eight basic load combinations, illustrated in the eight building 
images and the “reference corners” on the first page of Figure 6-10. For buildings 
more than 30 feet high, there are two torsional load cases to consider. To calculate 
wind loads on the 10-foot by 10-foot PV array on the roof of our sample 20-foot tall 
building, the application of Figure 6-10 can be greatly simplified to one load case, 
although the result will be slightly conservative. We present a simplified process 
in this section of this report (see Figure 3), but first we propose a more rigorous 
application of Figure 6-10.

Figure 1 A, B, C, and D and Figure 2 A, B, C, and D show how we applied ASCE 
Figure 6-10 to the sample rooftop PV array. Each of the eight images corresponds 
to the load cases shown in the images on the first page of Figure 6-10. The first four 
images are used for the design of the PV mounting structure when analyzing loads 
on components in a transverse direction (the “Direction of MWFRS Being Designed” 
arrows in ASCE Figure 6-10 and the red arrows in Figure 1 A-D and Figure 2 A-D). The 
second four images are used for designing the structure when analyzing loads in a 
longitudinal direction. 

Note that each image has a “reference corner.” When wind hits the corner of a 
building, wind loads on the roof reach a peak. Rather than require that the building 
be designed under the assumption that each corner is subjected to a “corner wind 
load” at the same moment in time, which is not possible, ASCE Standard 7-05 allows 
designers to analyze loads on the building one corner at a time. The same can be 
done for the PV mounting structure, although the analysis can be simplified as we 
discuss later in this section. The reference corners in each of the images represent 
the upwind corner of the building at one moment in time. 

The zones that are applicable to the sample rooftop PV system on a 20-foot tall 
building are 2, 3, 2E, and 3E. The other zones in Figure 6-10 are applicable only to 
walls. The “E” in these zone categories stands for “edge.” The differentiation between 
edge and interior regions is important, because upwind edge locations on a roof are 
known to have higher wind loads than interior regions. For this reason, it is wise to 
place PV arrays as far from the edges of buildings as possible. As shown in Figure 1 
A-D and Figure 2 A-D, various parts of the sample PV array are situated in each of 
these zones, depending on the direction of the structural component being analyzed 
(transverse or longitudinal) and the upwind reference corner. 

In order to define the boundaries zones 2, 3, 2E, and 3E, the designer must 
determine the dimension noted as ‘a’ in Figure 6-10. Figure 6-10 defines ‘a’ as “10% 
of the least horizontal dimension or 0.4h, whichever is smaller, but not less than 4% 
of the least horizontal dimension or 3 feet.” We determined the value for ‘a’ for this 
building follows:
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1.	 10% of the least horizontal dimension for this building is 0.10 times the smallest 
horizontal building dimension of 30’ = 3’.

2.	 0.4 times the building height (h, defined in Section 6.3) for this building is 0.4 
times the mean roof height. The mean roof height is 20’; 0.4 x 20’ = 8’.

3.	 4% of the least horizontal dimension is 0.04 x 30’ = 1.2’.

4.	 Applying the definition of ‘a’ in the previous paragraph and calculations 1, 2, and 
3, we obtain a = 3’.

Figure 6-10 shows edge and interior roof zones, defined as the area within a distance 
of two times a, or six feet from the upwind edge. The edge regions are shown in 
Figure 1 A-D and Figure 2 A-D as dark shaded areas on our sample rooftop system.

The second page of Figure 6-10 is used to identify the applicable external pressure 
coefficients for the sample building. For a 20-degree pitched roof, these values are 
shown below in Table 1.

Table 1: External Pressure Coefficients for Sample Calculation 1

Zone GCpf

2 -0.69

3 -0.48

2E -1.07

3E -0.69
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Figure 1-A, B, C, and D: Roof zones for Sample Calculation 1, based on ASCE Figure 6-10 
and the geometry of the sample building. Red arrows indicate the direction of the struc-
tural members being designed (transverse direction). 
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Figure 2 A, B, C, and D: Roof zones for Sample Calculation 1, based on ASCE Figure 6-10 
and the geometry of the sample building. Red arrows indicate the direction of the 
structural members being designed (longitudinal direction).
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9.  Calculate velocity pressure as described in Section 6.5.10: 
qh = 0.00256*Kz*Kzt*Kd*V2*I (in pouns per square foot [psf])

qh = 0.00256*0.90*1*1*902*1 = 19 psf

10.	Determine the design wind pressure as described in Section 6.5.12.2.1: 
p = q*(GCpf – GCpi)

In Step 9, we quantified q as 19 psf, in Step 7, we determined GCpi to be +/-0.3, and in 
Step 8, we determined four values for GCpf for four possible roof zones. Table 3 shows 
the resulting pressures for uplift and downward pressures in each of the roof zones. We 
calculated uplift using the equation in Step 10 above, and the lowest exterior pressure 
coefficient (GCpf) provided in the Figures in ASCE Standard 7-05 for a given roof zone, 
which is typically a negative number, and the positive interior pressure coefficient (GCpi) 
from Step 7, above. The negative exterior pressure coefficient represents uplift pressure 
on the top surface of the PV, and the positive interior pressure coefficient represents 
pressurization under the module. The combined action of each of these pressure 
coefficients is to exert an uplift force normal to the PV structure, away from the roof. 

Downward pressure is calculated by using the highest exterior pressure coefficient 
provided in the Figures in ASCE Standard 7-05 for a given roof zone, and the negative 
interior pressure coefficient from Step 7. In some cases, the highest exterior pressure 
coefficient may be a negative number. 

Figure 6-10 provides only one exterior pressure coefficient for each roof zone, so 
the same exterior pressure coefficient is used to calculate the worst-case uplift and 
downward pressure at each roof location. This is not always the case, so designers 
should use appropriate Figures in Chapter 6 of the ASCE Standard 7-05, applied carefully 
on a case-by-case basis.

The recommended exterior and interior pressure coefficients and resulting uplift and 
downward pressures are shown in Table 2.

Table 2: Uplift and Downward Pressures for All Roof Locations

The results show that downward pressure need not be considered in this case, because all 
values in the right-most column are negative, indicative of uplift pressures that are lower in 
magnitude than the design wind uplift pressures in the second to last column. This may not 
always be the case, so the designer should check for each system design. In this example, we 
need only consider the design wind uplift pressure values for each of the zones. 

A structural engineer would need to consider the uplift and downward loads shown in 
Table 2 on various sections of the array, depending on the location of the array relative 
to the four roof zones in each load case. The load cases are summarized in Table 3, 
below. These load cases should be used to evaluate loads on the PV mounting structure 
as well as loads on the building resulting from the installation of the PV system. 

Roof 
Zone

Positive Interior 
Pressure Coefficient,  

+GCpi (to calculate 
uplift pressure)

Negative Interior 
Pressure Coefficient,  

-GCpi (to calculate 
downward pressure)

Exterior Pressure 
Coefficient, GCpf

Design Wind
Uplift Pressure, p=

q*(GCpf -GCpi)

Design Wind
Downward Pressure, p=

q*(GCpf -GCpi)

2 0.3 -0.3 -0.69 -18.81 -7.41

3 0.3 -0.3 -0.48 -14.82 -3.42

2E 0.3 -0.3 -1.07 -26.03 -14.63

3E 0.3 -0.3 -0.69 -18.81 -7.41
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Table 3: Load Cases for PV Structure, Based on ASCE Figure 6-10

Load 
Case

Direction of 
MWFRS1

Ref. 
Corner Ref. Figure Array Loading Diagram

1 Transverse A Figure 1 A

2 Transverse B Figure 1 B

3 Transverse C Figure 1 C

4 Transverse D Figure 1 D

5 Longitudinal A Figure 2 A

6 Longitudinal B Figure 2 B

7 Longitudinal C Figure 2 C

8 Longitudinal D Figure 2 D

2 Reference ASCE Figure 6-10 and the red arrows in the Table 3 column labeled “Array
   Loading Diagram.”
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Simplified Approach

A slightly conservative but simpler approach can be used to design the array by simply 
designing for the worst-case wind loads in any section. From Table 2, it is clear that downward 
pressure can be neglected, that zone 2 has the highest uplift for interior sections of the array, 
and zone 2E has the highest uplift for any edge location. This gives the following loading 
diagram for the sample array, which could be applied to structural members in both the 
transverse and longitudinal directions:

Figure 3. Simplified Conservative loading for the PV mounting structure

Sample Calculation 2
Wind Loads on PV Module, Mounting Clips and Hardware 

(Components and Cladding, Section 6.5.12.4)

Location: Phoenix, Arizona
Terrain: Open desert, very few buildings.
Building height: 17’3” at the eave, 22’9” at the ridge
Building shape: Gable roof with a 20o pitch
Building type: Residential
Building dimensions: 60’ (along the ridge) x 30’ (perpendicular to the ridge)
Module orientation: Parallel to roof, 5” above roof surface, 4 ft from the roof edge.
PV module area: 2’ x 5’

Figure 4. Array mounted parallel to the roof slope

Steps:

1.	 Reference Figure 6-1 to determine the basic wind speed for the Phoenix, Arizona, 
location. From this Figure, the wind speed is V = 90 mph.

2.	 Reference Section 6.5.6.3 to determine the surface roughness category. Do a physical 
site inspection or review photographs of the surrounding terrain in all directions to 
properly classify the surrounding terrain using the definitions in this section. If the 
terrain varies in the upwind direction or if the location is in a transitional zone, use 
the worst-case wind loads. For this sample problem, we assumed that Exposure C 
applies for this open desert location.

3.	 Determine the occupancy category using Table 1-1. In this case, it is Type II for a 
residential building. 
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4.	 Determine the importance factor using Table 6-1. In this case, I = 1.00 for a Type II 
building.

5.	 Reference Section 6.5.7.1 to determine the topographic factor, Kzt. For this sample 
calculation, we will assume that the site is on level terrain, so Kzt = 1.0. 

6.	 Determine a velocity pressure exposure coefficient using Table 6-3. As discussed in 
the definition of the height (h) in Section 6.3, use the mean roof height (note that 
eave height is used for a roof pitch < 10o). The mean height in this case is 20 feet. 
For an exposure terrain classification of C, and a roof height of 20, we obtain a 
velocity pressure exposure coefficient of Kz = 0.90. 

7.	 Determine enclosure classification and internal pressure coefficients. As we discussed 
in the preceding Sample Calculation 1, Step 7, the recommended value for GCpi is 
+/- 0.1 to +/- 0.3. In this example, we used +/- 0.3.

8.	 Determine the external pressure coefficient. Compare the building height and shape 
to those shown in Figures 6-11B – D, 6-12, 6-13, 6-14A-B, 6-15, 6-16, 6-17, 6-18A-
D, and 6-19A-C in ASCE Standard 7-05. Note that Figures 6-18 and higher are for 
“free roofs,” or buildings without walls (see formal definition in Section 6.2). In this 
example, the building has a gable roof with a 20-degree slope, and the left side of 
Figure 6-11C is a good match. Figure 6-11C shows three roof zones, representing 
interior (zone 1), edge (zone 2), and corner (zone 3) locations on the roof.

Section 6.2 defines the effective wind area, but it is slightly ambiguous. We 
recommend that the designer use the area of the PV module to calculate wind loads 
on the PV itself. However, for determining loads on fasteners, the effective wind area 
should be the fraction of the PV module that is secured by the fastener. 

For example, in many arrays, fasteners are placed at third points (points one-
third of the way in from either end) along the long sides of a module, as shown in 
Figure 5. This figure shows that fasteners in interior regions of the array are used to 
secure adjacent modules, so that modules are sharing fasteners. The result of this 
configuration is that fasteners along the perimeter of the array, such as Fastener 1 
in the figure, are supporting an effective wind area equivalent to one-quarter of the 
module area (Area 1 in the figure). Fasteners in interior regions, such as Fastener 2, 
are supporting an effective wind area equivalent to one-half of the module area (Area 
2 in the Figure). In most cases, the same fasteners and clips are used in all locations, 
so we chose the worst-case configuration. Pressure coefficients become more 
extreme as the effective wind area becomes smaller. 

To select the worst-case pressure coefficients for fastener design in this example, the 
designer should use the smallest effective wind area per fastener, equal to one-quarter 
of the module area of 10 square feet. In this case, the pressure coefficients are the 
same for an effective wind area between 1 and 10 square feet, so the same pressure 
coefficients would be used for all fasteners and PV modules. Note that this may not 
always be the case, depending on the PV module size as well as the roof geometry, 
which may require that the designer use a figure other than Figure 6-11C. From Figure 
6-11C (left-hand of the figure for a gable roof), we obtained following coefficients:

Table 4: Exterior Pressure Coefficients for Sample Calculation 2

Roof Zone +GCp -GCp

1 0.5 -0.9

2 0.5 -1.7

3 0.5 -2.6
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Figure 5. Array layout showing fastener locations and areas tributary to 
perimeter fasteners versus interior fasteners.

9.  Calculate velocity pressure as described in Section 6.5.10: 

	 q = 0.00256*Kz*Kzt*Kd*V2*I (in psf)

	 q = 0.00256*0.92*1*1*902*1 = 19 psf

10.  Determine the design wind pressure as described in Section 6.5.12.2.1: 
	 p = q*GCp – Gcpi

Table 5 summarizes the resulting design uplift and downward wind pressures for 
each of the three wind zones:

Table 5. Design Wind Uplift and Downward Pressures for Sample Calculation 2

Note that in ASCE Figure 6-11 C, a dimension ‘a’ defines the boundaries of the various 
roof zones, exactly as it was in Sample Calculation 1, in which we used Figure 6-10. The 
definition of ‘a’ in both figures is the same, so the prior result of a = 3 is valid for this 
calculation. Note that the edge zones in Figure 6-10 were defined by a dimension of 2*a, 
but in ASCE Figure 6-11 C, a dimension of 1*a defines the edge and corner zones. Zone 
2 occupies the parts of the roof between the edges and three feet to the interior, with 
the exception of the corners. Zone 3 is the corner region, defined as three feet from two 
adjacent edges of the building. Figure 1 A-D and Figure 2 A-D show that the array is located 
four feet from the building edge, so Zone 1 is the only loading case that need be considered 
when calculating wind loads on PV modules or mounting fasteners. This is fortunate, 
because some modules are not approved for Zone 3’s expected wind uplift pressure of 55 
psf. This serves as an important reminder to designers to place PV systems as far from the 
building edge as possible. For the design of the modules and fasteners in this sample PV 
system, the designer should use an uplift pressure of about 23 psf and downward pressure 
of about 15 psf.

Roof 
Zone

Positive Interior 
Pressure Coefficient,  

+GCpi (to calculate 
uplift pressure)

Negative Interior 
Pressure Coefficient,  

-GCpi (to calculate 
downward pressure)

+GC p  -GC pi Design Wind
Uplift Pressure, p=

q*(GCpf -GCpi)

Design Wind
Downward Pressure, p= 

q*(GCpf -GCpi)

2 0.3 -0.3 0.5 -0.9 -22.8 15.2

3 0.3 -0.3 0.5 -1.7 -38 15.2

2E 0.3 -0.3 0.5 -2.6 -55.1 15.2
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Conclusions

Although permitting agencies require assessments of the structural attachment of 
solar equipment to rooftops, the safety and sufficiency of these attachments are not 
adequately addressed in any codes or standards. It is important to evaluate equipment 
and attachment methods to ensure that PV equipment will remain attached to structures 
during windstorm events, and that additional loads or load concentrations do not exceed 
the structural capacity of the building. ASCE Standard-7.05 is the standard for wind forces 
on structures, but it does not provide adequate guidance to the design professionals and 
code officials tasked with assessing PV installations. 

This lack of guidance creates obstacles for the PV industry. The resulting problems include 
frustrated installers, unhappy customers, and wind-related structural failures. In addition, 
uncertainty about what constitutes a safe and secure installation for a given wind load 
can slow or even stop the approval process for PV installations and complicates the 
training of code officials.

PV modules and arrays present a unique design challenge in high wind regions. 
Eventually, codes and standards will specifically address the mounting of PV arrays to 
rooftops to eliminate potential barriers to market development in high wind regions. 

In the meantime, this report provides design guidance, including sample calculations for 
determining the wind loads on PV arrays based on the recognized ASCE Standard 7-05. 
Although this does not specifically address the problem, it is the best option available at 
this time. The basic guidance for applying the existing codes and standards provided in 
this report is for the typical residential application of PV arrays mounted parallel to the 
roof slope and relatively close (3 to 6 inches) to the roof surface. We do not address other 
array configurations. 

It will require much more work to gather information and develop standards specific to 
wind loading on rooftop PV installations. Although the information in this report does 
not completely solve the problem, it does provide initial guidance to designers and code 
officials.

It is important that design professionals read and understand the appropriate codes and 
standards when designing rooftop PV systems. The guidance presented here is not meant 
to be a substitute for following the codes and standards. It is also important to for design 
professionals to stay current with these publications, because we expect the body of 
information about designing PV systems to withstand local wind loading to grow rapidly 
in the near future
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Recommendations

1.	 At present, we recommend basing the structural design of roof-mounted PV systems 
on the ASCE Standard 7-05 as follows:
a.	 Section 6.5.12.2, MWFRS, is the recommended starting point for designing the 

PV mounting structure, with the PV module oriented above and parallel to the 
roof surface. 

b.	 Section 6.5.12.4.1 addresses wind loads on components and cladding. We 
recommend the use of Section 6.5.12.4.1 and supporting figures only for the 
design of the PV module attachment clips and hardware to the structure, and for 
calculating loads on individual PV modules.

c.	 We do not recommend Section 6.5.15, 6.5.15.1, and Figure 6-21 for the design 
of PV systems.

d.	 This report provides basic guidance for applying ASCE Standard 7-05 to existing 
codes and standards for the typical residential application of PV arrays mounted 
parallel to the roof slope and relatively close (3 to 6 inches) to the roof surface.

2.	 Wind tunnel testing for the most common rooftop PV installations should be 
conducted to verify methods and calculations. The installation types include stand-
off mounting parallel to the roof, stand-off mounting at an incline relative to the roof, 
and ballasted installations on flat roofs. Wind tunnel testing is an important and 
critical tool that is required to gain a true understanding of pressure equalization, 
dynamic loads on the modules, interactions with airflow around the building, and 
transmission of loads to the structure. As we discussed in this report, wind tunnel 
testing would likely demonstrate significantly lower wind loads for stand-off mounted 
PV systems parallel to the roof than those predicted by the ASCE standard. When 
we have a fundamental understanding of the wind forces for basic configurations, 
we can develop more sophisticated numeric models to evaluate other geometries. 
These models can simplify and add confidence to the design process. When we have 
a more complete understanding of the fluid mechanics involved, we can accurately 
determine the forces on the equipment and structural attachments. With more 
confidence in the actual wind forces on roof-mounted PV arrays, the codes and 
standards can be updated to provide accurate design guidelines. 

3.	 We recommend that codes and standards be modified to specifically address 
the mounting of PV arrays to rooftops to eliminate potential barriers to market 
development in high wind regions. Recommended changes should be based on the 
wind tunnel testing in Recommendation 2.

4.	 We recommend that local jurisdictions and design professionals use the 
recommendations in this report to ensure continuity in interpreting existing codes 
and standards.
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Acronyms

	 AHJ	 authority having jurisdiction 

	 ASCE	 American Society of Civil Engineers

	 IBC	 International Building Code

	 MWFRS	 main wind-force resisting system

	 PV 	 photovoltaics

Glossary

Components and cladding— element of the building that does not qualify as the MWFRS. 
(ASCE definition)

MWFRS—an assemblage of structural elements assigned to provide support and stability 
for the overall structure. The system generally receives wind loading from more than one 
surface. (ASCE definition)




