
IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 36 | P a g e

Impact of Dependency Graph in Software Testing

Pardeep Kaur1, Er. Rupinder Singh2

1Computer Science Department, Chandigarh University, Gharuan, Punjab
2Assistant Professor, Computer Science Department, Chandigarh University, Gharuan, Punjab

Abstract - A Software development environment is

conceived an interactive system which support program

development. The internal program representation selection is

vital role for software development environment according to

their nature. For this purpose, we have an intermediate graph,

a dependency graph that represent the data and control flow

dependencies between nodes, statements. It must also play a

role in software testing. Testability in software is important

quality characteristics for checking the maintenance effort and

provides help for finding the post release failures. We also

find the exact feature location by using Dependency graph,

where the user wants actual changes in software. It must also

helpful for regression testing that based on code or software

design. We also have a system dependence graph that supports

object oriented features like class, objects, inheritance etc.

Keywords - Software testing1, dependency graph, software

complexity metrics, program slice, regression testing, program

dependency graph, control flow dependency graph, data flow

dependency graph, Feature location, system dependence

graph.

I. INTRODUCTION

The software engineering terminology is basically

“architecture” as the organizational structure of a System or

component. The scope of software Testing includes

examination of code as well as execution of that code [4] in

the scenario of software development; a testing organization is

different from the development team. In the context of

software testing process, is a long process, which can be done

by manually or automatically by following such a long
process. So here we define an intermediate solution for testing

process is dependency graph. A dependency graph is basically

a collection of nodes and edges. A node represents the

statements, procedures and edges represent the control and

1 Software testing mainly provides the information about the

quality of product. It also provides an objective, independent

view of software and check that particular software meets the

user requirements or not. It is also helpful for ensuring the

verification and validation of software development phases.

data flow between those statements. Here we represent the

need of dependence graph in s/w testing. It represents the

scenario when one component of our software is dependent on

other, called dependent component [3]. In the software

development environment, dependency graph may used in

software testing for debugging by making slices of program,

test case generation, test automation, maintenance, code

optimization, software re-engineering and for depicting

various software complexity metrics. In this paper, we also

present a new approach to define metrics for software

dependencies.

Fig.1: Dependency graph2

 A directed graph is a pair G =(V,E)of:

 A set V of elements called vertices or nodes

 A set E of ordered pair vertices, called edges (arrows) and

in figure1 we have 4 nodes (A,B,C,D) and 4 edges

(AB,BD,AC,CD)

A. Important Terms

 Dependency: Dependency of component an on

component B exists if component A requires component

B to compile or function correctly. Dependencies define a
relation between components, i.e. between two

components there is at most one direct dependency in

each direction.

 Data Dependencies: when statements compute data

that are used by other statements.

 Control Dependencies: are those which arise from the

ordered flow of control in a program.

2 . A dependency graph is a directed graph representing

dependencies of several objects towards each other.

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 37 | P a g e

 Component is a static building block of a system which

can be a module, a class or interface, a package, or a

subsystem.

 Strength: The strength of a dependency increases with the

number of relationships that cause the dependency.

 Structure of dependency graph: The structure of a system
is defined by its components and the dependencies

between the components and can be represented as a

directed dependency graph.

 Feature location: Concept location is a process that maps

domain concepts to the software components, Feature or

concepts Location is relatively easy in small systems,

which the Programmer fully understands the task. For

large and complex systems, it can be a risky task.

 Data Dependency graph: A data dependence graph

contains nodes represent program statements and edges

represent data dependencies between statements. A data
dependency graph G= (I, E) consists of set of Instructions

I and a Set of transitive relation R= I x I, with (a, b) in

R if the instruction a must be evaluated before b. In

other words, there is an edge from a to b: If a must be

evaluated before b.

Fig.2: Data dependency between a & b

 Control flow graph (CFG): CFG is language-independent

and machine independent representation of control flow

in programs used in high-level and low-level code

optimizers. It represents the control information between

nodes of edges.

Fig.3. Control flow graphs

In these CFG’s, control information must pass from one node

to another.

 Program Dependence Graph: A PDG is a mapping of

dependencies, useful in optimizing transformations for

utilizing multiple cores and parallelism.

 Program Dependence Graph (PDG) consists of

1. Set of nodes, as in the CFG

2. Control dependence edges

3. Data dependence edges

II. DEPENDENCIES AND TESTABILITY

 For testing scenario, we check Direct and indirect

dependencies of a component.

 Find the dependee components3 and dependent

components of a graph.

 The multiple effects based on the time and effort need to

test a graph, are the following ones:

 The dependee components have to be considered during

test design.

 More components have to be compiled before test

execution which increases the time to rebuild the system

after component changes.

 The dependee components have to be instantiated during
test setup.

 The components involved in the cycle have to be tested at

once.

A. Software dependencies

The dependencies4 between the components must be

represented in the hierarchy of a graph. Edges represent the

dependencies between nodes; the leaves of the tree provide

lower level services that higher components depend on.

Number of dependencies between components represents

degree of coupling. A software dependency is a relationship
between two pieces of code, such as a data dependency or call

dependency. A relation (A, B) between binaries A and B

signifies that A makes a call on B. Here two Entities A and B,

A call to B from many different Call sites. The count of a

dependence (A, B) is either 0 or 1, based on whether A

contains a call to B (1) or not (0). The frequency of

dependence (A, B) is the (total) number of calls from A to

B.[4] All information is analyzed and based on this

information we collect a set of eight dependency measures

described below for each binary.

 Same Component Count

 Same Component Frequency

 Different Component Count

 Different Component Frequency

3 A component that depends on another component is called a

dependent component; a component that is required by some

other component is called a depended component.
4 A software dependency is a relationship between two pieces

of code, such as a data dependency (component A uses a

variable defined by component B) or call dependency

(component A calls a function defined by component B).4

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 38 | P a g e

 Same Area Count

 Same Area Frequency

 Different Area Count

 Different area Frequency

Fig.4: Metric description

Fig.5: Software dependency measurement description

In these both figures we Consider the dependence

frequencies/counts for the binary (D) in Internet Explorer area.

The binary (D) has three outgoing dependencies. Two of these
are within the component (HTML rendering engine), directed

from binary D to binary C. So the same component

dependence frequency is two and the same component

dependence count is one (i.e. DC). There exists one

dependence between the binary D and binary A in different

component. The different Component frequency and the

different component count is thus one (DA) There is no

dependence from binary D (in the Internet Explorer area) to

the Control Panel area. This is the cross area dependency. The

different area count and frequency are hence zero.

B. Software churn

Code churn is a measure of the amount of code Change

with respect to time5. This measure is used to compute the

overall change in Lines of code by added, deleted, and

modified [4]. Suppose component A has many dependencies

on component B. If the code of component B changes,

component A will need to change the amount of churn to keep
synch with component B.

III. DEFINING METRICS FOR DEPENDENCIES

Metrics is the unit of measurement; define local

characteristics and global characteristics of an entire system.

First is, reduction metrics check the impact of a particular

Dependency [3] a reduction metric rm describes the degree in

which quality metric m is reduced if a dependency d is

removed.

A. Program Complexity Metrics

In the process of software development, measurements
provide important information to programmer.[1]

Measurements such as McCabe’s cyclomatic complexity

metric and Hoffman’s reach ability metric for control flow

graph, Halstead metric are based on count for operators and

operands. Other complexity metric is information flow metric

defined by Henry, describe data values flow in program.

B. Testability metric

For each activity and sub-activity we identify design

attributes that have an impact on testability [3] each attribute

is then decomposed into lower-level attributes. Testability for
unit testing is concerned with low-level design artifacts,

whereas testability

For integration testing is concerned with high-level design

artifacts.

Fig.6: Testability attributes classification

We first provide an overview of the structure of our

framework and establishing their relationship to testability.

5 Software fault-proneness is defined as the Probability of

the presence of faults in the software.

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 39 | P a g e

 Unit testing: A unit represents a class, a cluster of classes

or a subsystem.

 Integration testing: A set of units is being integrated,

preferably in a stepwise manner, and testing focuses on

making interfaces between units.

 System testing: The system is tested as a whole. Though
drivers are needed, stubs are only required for external

devices and systems.

For testing sub-activities:

 Specifying test cases: this activity consists of all tasks that

aim at defining the specification of test cases based on

software artifacts such as specifications, design, or code.

 Developing drivers: this activity consists of writing the

required code to execute Test cases.

 Developing stubs: This activity consists of developing

stubs emulating the behavior of components.

Our important observation is that an attribute can impact

the testability of several testing activities. Moreover, attributes

(e.g., size) can be decomposed in different ways according to

the (sub-) activities they impact. It results that the measure of

a given testability attribute may vary according to the activity

being considered. For instance, “Unit coupling” is a testability

attribute that has an impact on both “Unit Testing” and

“Integration Testing”.

1. Goal-Question-Metric
Other meaningful metrics to measure testability, we apply

the goal question-metric approach. This means that we

1)define goals related to testability improvement, 2) describe

questions that help to evaluate the degree to which goals have

been achieved, and 3) define metrics that allow to

Answer the questions.

Fig.7: Goal-Question-Metric

IV. PROGRAM SLICING IN TESTING

Programmer use slicing, while debugging of program. In

the software testing6 environment some program may be small

or some may be complex. It based on the LOC (Lines of

code). For large or complex programs, program has to be

sliced for easily understandable the code. Slicing must be
based on some value or variable that must be relevant for all

variables in a code [1] and call automatically for further

development of code.

V. TEST SCENARIO DEPENDENCIES AND TRACEABILITY

IN REGRESSION TESTING

Regression testing is important quality Assurance

technique, it based on code or software design. Regression

testing check the system working, after changes being made

there, changes like requirement change or any technology

change, etc. It mainly verifies integrality and correctness of

the modified System. Two strategies for selecting Regression
test cases: retest-all and Selective-retest[5] Most of the

existing regression test selection techniques are code-based

using program slicing, program dependence graphs, data flow

and control flow analysis. Dependence analysis provides the

basis for regression testing and ripple effect analysis. The

following lists the kinds of dependence:

 Functional Dependence: A functional Requirement test

the system on basis of normal input, and exception

handling. Thus functional dependence identifies how a set

of test scenarios is related to each other.

 Input Dependence: Input dependence identifies the

common inputs shared by a set of test Scenarios,

including input data, actions and triggering events.

 Output Dependence: Similar to input Dependence, test

scenarios may also share Common output, either data or

messages.

 Input/output Dependence: An output of a test Scenario

may be an input of another test scenario, and any change

to one of the test scenarios may affect the other one.

 Execution Dependence: Execution dependence Captures

component and interaction relationships between
individual execution paths of test Scenarios.

 Ripple Effect Analysis (REA) is used to analyze and

eliminate negative effects due to changes and to ensure

consistency and integrity after changes are made to

software.

 Traceability analysis in Regression testing: By using

traceability information, we can find affected components

6 Unit testing works on smaller or individual components

whereas integration testing integrate those components and

test them and system testing test whole or single system that

is collection of those smaller components.

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 40 | P a g e

and their associated test scenarios and test cases for

regression testing.

VI. FEATURE LOCATION FOR TESTING USING

DEPENDENCY GRAPH

In the software development and maintenance process,
change request arises by customer to add or modify some

concept or feature in particular area. Before any changes can

be made to the system, software programmers must locate the

concept location.[2] Here input is a change request send by

customer, expressed in natural language and output is set of

those components, where we implement the concept or

feature.

Fig.8 concept location process

In this Figure, in the first level user send domain request
for make changes in particular area in software and in the next

level with help of dependency graph find the concept location

area and last changes made by development team in exact

component. Feature or concept location7 is easy in small

systems, where the programmer fully understands it. For large

and complex systems, it can be a considerable task. Because

in this process, here is translation from input level to

implementation level, for this task extensive knowledge is

required, including domain knowledge, Programming

knowledge, knowledge of algorithms and data structures,

knowledge of the software components and their interactions,
etc., the programmer who has this knowledge must participate

in the location process. So, in each step of the search, one

component is chosen for visit. All visited components and

their neighbors constitute a search graph. At the starting, the

search graph contains only the one component. Each visit to a

component expands the search graph, by explores the source

code, dependence graph, and documentation, and the process

continues until all the components implementing the feature or

concept are located.

7 Concept location is a process that maps domain

Concepts to the software components.

Fig.9 Feature Location using Search graph

In this figure, it represents the feature location concept
with help of search graph; the programmer has to do the

following:

 Locate starting component: At the beginning, little is

known about the system. The starting point is often the

top component, i.e. function main (), because the top

component summarizes all the requirements of the entire

system.

 Choose a component for visit: In every step, one

Component is selected for a visit and expansion of the

search graph. The programmer explores the source code,

dependence graph, and documentation.

 Check if goal is reached: The programmer checks

whether all components dealing with the feature have

been found.

 Extract dependence graph of the system: Dependence

graph is extracted from the source code by the program

analyzer.

 Update the search graph: After the programmer: Visited

a component, the tool will add it to the search Graph.

Based on the search graph, the programmer can

backtrack, undo, or redo some of his/her previous

Operations. If a step is not a backtracking one, the
selected component will be investigated and the search

graph will expand.

There are several strategies of search graph expansion:

 Top-down strategy expands search graph by called

functions. The scenario starts with a function main () that

summarizes the requirements for the whole program.

 Bottom-up strategy is the opposite of top-down Strategy

and expands the search graph by calling Functions.

 Backward data flow strategy is employed when

functionality of the system depends on specific values in
specific variables.

 Forward data flow strategy is the opposite and the

Programmer is searching for the destination of the

Values.

So, feature location is a sequence of Search graphs S1, S2,

Sn, starts with a single component search graph and ends with

the feature located. At the beginning of the search, S1 =

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 41 | P a g e

{s<t>}. Formally S is a search graph if and only if there exists

d Î comp(S)

Such that s<d> Î S (d is selected component) or d is starting

component.

VII. PREDICTING DEFECTS WITH PROGRAM

DEPENDENCIES

A program dependency is a direct relationship between

two Pieces of code (variables, expressions, methods). There

exist dependencies are: a data dependency between the

definition and use of Values and call dependencies between

the declarations of functions and function call [7] Software

development is a complex and error-prone task. An important

factor in the development of complex systems is the

understanding of the dependencies that exist between two

pieces of the code. Dependencies must be helpful for predict

post-release defects8 in software program. Dependencies are

decided during design or early in the implementation phase,
and prediction models can be used to estimate the risk of

failure. Code churn and dependencies can be used as efficient

indicators of post-release defects. We can also make

predictions about the presence of defects in system software.

We address two problems:

1. Classification. Can we predict which binaries (executable

files (COM, EXE, etc.) and dynamic-link files (DLL) will

have defects?

2. Ranking. Can we predict which binaries will have the most

defects?

A. Detection of code clone by using Program

dependence graph

In the software development for enhancing the code

quality, we have a technique of code clone or code reuse.

PDG-based detection is suitable to Detect non-contiguous

code clones whereas other detection techniques are string-

based or token-based are not suited to detect them.[6] The

advantage of PDG based detection is that it is suitable to

detect non-contiguous code clones. Non-contiguous code

clones are ones whose elements are not consecutively located

on the source code. Major categories should be line-based,

token-based, metrics-based, AST based, and PDG-based. We
introduce special dependency, execution dependency to

Program Dependency Graphs. ED is the same as control flow

of control flow Graphs, there is an ED between two nodes if

the program element represented by one node may be

executed just after the program element represented by the

other node.

8 Defect-proneness is the probability that a particular software

element has a defect that will lead to a failure. Post release

defects leading to failures that occurred in the field within six

months after release of software.

B. Identifying Similar Code with Program Dependence

Graphs

In the testing process, Duplicity code is common problem

in all kind of software systems. If we perform code reusability

in our software system, in coding phase then problem can

occur if code was not in correct format, there should be logical
errors and computation error and they must pass into another

level of coding, if we use code reuse. So, we have to find

duplicate code at exact time. Similar code based on finding

similar sub graphs of directed graph. Program dependence

graph (PDG) is a directed graph whose vertices represent the

statements and control predicates that occur in a program [8].

Some of the vertices are entry vertices, which represent the

entry of procedures. The edges represent the dependences

between the components of the program. They have two

attributes: the first is separating the edges into control and data

dependence edges. The approach must follow fine-grained

program dependence graphs (PDGs) which represent the
structure of a program and the data flow within it.

VIII. SYSTEM DEPENDENCE GRAPH CONSTRUCTION FOR

ASPECT-ORIENTED PROGRAMS

We have other dependence based representation, is system

dependence graph used for aspect mining9. It construct

module dependence graph for each introduction, method we

use in aspect and classes [9]. It also support various object

oriented features like classes and objects, inheritance,

polymorphism, encapsulation. It connects various MDG’ to

form SDG and for this purpose it uses various vertices of
graph like call vertex, formal-in, formal-out vertex. These

formal parameter vertices used to passing parameter between

methods. Other we have actual-in vertex used for actual

parameter and actual-out parameter for identifying the

parameters must be modified by called method.

IX. CONCLUSION

In SDLC Software testing is one of the major concern areas

that are time consuming, high effort is needed for performing

the testing manually. To solve this issue after reviewing the

literature of software testing is has been found that there is

need of an intermediate graph. Intermediate or dependency
graph is one of the area in software testing that are using for

debugging by making slices of program, test case generation,

test automation, maintenance, code optimization, software re-

engineering and for depicting various software complexity

metrics. Dependency graph must also helpful for finding the

concept location, where user wants actual changes in existing

software. Dependency graph also helps for finding the post

9 Aspect oriented programming is new language paradigm

proposed for modularizing the cross cutting structure of

concerns like exception handling, synchronization and

resource sharing.

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 42 | P a g e

release failures into existing software. In this study, we have

discuss the impact of dependency graph in software testing

after analyzing various dependency graphs like SDG, PDG,

CDG, DDG etc. The propose of the research to discuss the

issues surrounding the use of dependency graph in software

environment, and to find the single super dependency graph
which will overcome the issues of others graphs as well as can

be implemented in any testing strategy as intermediate graph.

X. REFERENCES

[1] Ottenstein, K. J., & Ottenstein, L. M. (1984, April). The

program dependence graph in a software development

environment. In ACM Sigplan Notices (Vol. 19, No. 5, pp.

177-184). ACM.

[2] Chen, K., & Rajlich, V. (2000, June). Case study of feature

location using dependence graph. In International Conference on

Program Comprehension (pp. 241-241). IEEE Computer

Society.

[3] Jungmayr, S. (2002, October). Testability measurement and

software dependencies. In Proceedings of the 12th

International Workshop of (pp179- 202).

[4] Nagappan, N., & Ball, T. (2007, September). Using software

dependencies and churn metrics to predict field failures: An

empirical case study. In Empirical Software Engineering and

Measurement, 2007. ESEM 2007.First International Symposium

on (pp. 364-373). IEEE.

[5] Tsai, W. T., Bai, X., Paul, R., & Yu, L. (2001). Scenario- based

functional regression testing. In Computer Software and

Applications Conference, 2001. COMPSAC 2001. 25th Annual

International (pp. 496-501). IEEE.

[6] Higo, Y., & Kusumoto, S. (2009, October). Enhancing quality

of code clone detection with program dependency graph.

In Reverse Engineering, 2009. WCRE'09.16th Working

Conference on (pp. 315-316). IEEE

[7] Zimmermann, T., & Nagappan, N. (2009, October).Predicting

defects with program dependencies. In Proceedings of the 2009

3rd International Symposium on Empirical Software

Engineering and Measurement (pp. 435-438). IEEE Computer

Society.

[8] Johnson, R. & Pintail, K. (1993, August).Identifying similar

code with program dependence Graph. In ACM Sig Plan

Notices (Vol. 28, No. 6, pp. 78-89). ACM.

[9] Zhao, J., & Reynard, M. (2003). System dependence graph

construction for aspect-oriented programs.

