
IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2213 | P a g e

Design of a Novel BCD Adder using Parallel Prefix

Technique
Hima Bindu Challa1*, Srujana Gollapalli2, Dr.M.Varaprasada Rao3

1Scholar, 2Asst. Professor, 3Professor & Dean,

 GIET, Rajahmundry, Andhra Pradesh 533296 India.

*Corresponding Author

Abstract - Recently, many advances are being made for

designing nano-scale electronic circuits for satisfying

commercial needs and at the same time meeting the low

power and delay requirements. One such circuit that is mostly

used for decimal operations is decimal adder. Design of multi-

bit adders using QCA(Quantum-dot Cellular Automata)

technique has been the ongoing trend. BCD adders that are

designed based on QCA technique are being smartly exploited

for further improvements.Various clocking schemes have
been practiced to observe the performance of the adder

circuits.This paper discusses about Parallel Prefix technique

applied for the designing of efficient adders by performing

more than one operation at a time. This aids in reducing the

total area occupied and overall delay without compromising

issues like performance and power consumption.

Keywords - BCD adders, Nanoscale electronics, Parallel

prefix adders, Quantum-dot cellular automata.

I. INTRODUCTION
Among the numerous digital circuits, decimal adders hold

great importance considered their applications in

microprocessors, signal processing etc. "The system

performance is greatly influenced by the performance of the

adder"[1]. The most important characteristic that determines

the pace of a adder is carry propagation. The carry at one

stage depends on the inputs given at that stage and the carry

out from previous stage that propagates as carry in to the

present stage. As the number of stages increases, the carry

propagation through the stages also gets delayed. Therefore,

such adders are being designed using different architectures
displaying various performance characteristics. BCD addition

is one type of binary addition. Known to all is that in BCD

format the decimal numbers from 0 to 10 are represented

using a four bit code. In BCD addition, "first the two 4-bit

BCD numbers are added in binary format and then it is

converted in to BCD format by adding either a binary 6(if the

sum is greater than 9) or a binary 0(if the sum is less than or

equal to 9)"[1]. For this purpose, the basic binary adder circuit

is followed by a correction logic circuit to convert the

obtained binary sum into BCD sum. Binary adders are

generally classified into two types namely Serial adders &

Parallel adders. Serial adders perform addition in a bit by bit

fashion and due to this, computation time increases. While on

the other hand parallel adders perform addition in a parallel

way by taking all the available inputs at a time. By the

implementation of parallel adders, the speed of the circuit has

greatly increased. Many architectures supporting parallel

processing such as ripple carry adder, carry look ahead and

carry save adder etc., have been proposed in the past. The base

for our work is "QCA based BCD adder"[2] which produces
an average delay of 43.142ns. In this brief, we propose a new

adder, implemented by using the parallel prefixing of the carry

technique in the place of conventional adders and yields

output within 32.981nswhich is less than the prior one.

II. BACKGROUND &RELATED WORK

The delay factor in binary adders is banked up on how quickly

the carry moves from one bit to another bit. So the carry

propagation is a hindrance in the design of binary adders. If

the number of input bits increases then the carry propagation

through all the bits also increases which corresponds to the
delay. The binary adders and BCD adders have undergone

many transformations owing to the development in the VLSI

technology. A number of methods have been proposed for

reducing the carry path throughout the adder. One such

method proposed is "Parallel Prefix adder"[3]. A number of

algorithms have been proposed for promoting PPA adders by

amending one or the other parameter such as quickness,

power, space etc."Sklansky (1960) came up with tree prefix

algorithm"[4], where computation of intermediate signals is

done by tree type structure. In the year 1973, "Kogge and

Stone proposed a scheme which uses recursive doubling
property and the properties of the prefix tree were determined

by the minimum logic depth, structure and unity fan-out"[5].

But the problem here is more number of wires are required

between the consecutive stages and the number of gates also

increases which causes high power dissipation. In 1980,

"Ladner and Fischer introduced minimum depth prefix

graph"[6] with higher fan-out for driving larger capacitive

loads. Due to this, additional buffers have to be added to the

circuit which increases the cost and delay in the circuit. Ling

(1981) introduced a set of new carry generation equations

where one propagate term is used to simplify the group

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2214 | P a g e

generate function and thus reducing the burden on the first

level prefix tree."Brent and Kung (1982) presented a prefix

computation graph"[7] which is similar to Kogge and Stone

but has less number of internal wirings. However, having

appealing structure did not help it as the logical depth had

increased. In 1987, "Han and Carlson came up with a new
structure which is a blend of both Brent-Kung and Kogge-

Stone adders"[8]. It has got comparatively less number of

nodes with a minute increase of depth in logic.

"Dimitrakopoulos and Nikolos (2005) presented an innovative

approach where one logic level of implementation can be

avoided when compared to the traditional binary adders"[9].

III. PRELIMINARIES

If we consider a full adder with inputs ai,bi and ci, then the

outputs obtained are sum and carry out. the sum and carry

expressions for a binary adder when expressed in terms of

Boolean laws can be given by

Si = ai (xor) bi (xor) ci (1)

Ci+1 = (ai . bi) +(ai . ci) + (bi . ci) (2)

This ci+1 acts as the carry input to the next bit and the process

goes on until all the bits present in the input sequence are

added and the final output is obtained. If suppose there are n

input bits in both a and b, then the final sum and carry can

only be obtained only after the nth bit position receives its

input carry from the n-1th bit position. Every stage should wait

for the carry input from it's prior stage. This causes more and
more delay as the width of the input bits increases. To fix this

issue in the binary adders, two terms called the "generate and

the propagate"[10] are introduced by which the higher order

carry's are calculated much before itself. This reduces the

propagation time as the higher order bit positions need not

wait for the carry input. Another literal called the temporary

sum is also computed. The following are the terms:

Gi = ai . bi (3)

Pi = ai + bi (4)

ti = ai (xor) bi (5)

Thus with the help of the above mentioned literals,

computation of sum and carry at each bit position has become

much easy as shown below

Ci+1 = Gi + (Pi .Ci) (6)

Si = ti (xor) Ci (7)

In this way, the higher order sum and carry are calculated

based on the generate and propagate terms which can be

obtained by using the lower order carry and sum. This is the

same mechanism implemented in "Carry Look ahead

adder"[11]. The name itself says, that the aftermath carry's are

predicted far before itself by using the lower order carry(s).

A. Parallel Prefix Technique - Coming to our concept of

Parallel Prefix Adders, it's operation is similar to Carry Look-

ahead adder but it differs in the way the carry is generated and
propagated. Parallel prefix adders are one unique class of

adders that effectively exploit the generate and propagate

signals so that the adder circuit operates with less delay. The

following figure shows the stages involved in the PPA adder.

Figure1: Structure of Parallel prefix adder

This depicts that the "entire operation depends up on how the

group generate and group propagate terms are calculated"[12].
There are certain other aspects such as radix, fan-out logical

depth and wire tracks that effect the overall performance of

the adder.

B. Topologies - Various topologies were proposed in the past

which employ different logic methods for the effective

utilization of PPA adders. The most popular which are also

considered the best are mentioned below-

1. Kogge Stone adder

2. Brent Kung adder

3. Han Carlson adder
The above mentioned techniques just differ by the factor of

logical depth. The stages of operation are same in all the three.

Kogge Stone Adder: It is one of the prefix type of carry look

ahead adder, proposed by "M.Kogge and Harold.S.Stone"[5].

It offers better performance than the traditional carry look

ahead adders. The total time taken by a Kogge and Stone

adder to generate the output is O(log2N). It is considered as

one of the fastest adder design with a large area and minimum

fan out. It's simpler architecture helps in designing it easily

and quickly. If the basics are strictly followed the architecture

can be easily extended to higher orders. "The only

disadvantage here is KSA adder it occupies a lot of
space"[13]. The below figure shows a 16-bit Kogge-Stone

adder..

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2215 | P a g e

Figure 2: Kogge-Stone Adder[14]

Brent Kung Adder: "Brent kung adder"[7] is put forward by

two persons Brent and Kung in the year 1982. BK Adder is

mainly used when the input is bigger/have more number of

bits, something which is not possible in Kogge Stone Adder as

it's space occupancy increases. Brent Kung adder has got a

very low fan-out from each of its prefix tree. But the critical

path of Brent Kung adder is very long and the circuit structure

doesn't support a fast operation. "The number
of cells in Brent and Kung adder are calculated by using 2(n-

1)-Log2n"[15] and as mentioned earlier it's maximum fan-out

is 2. In spite of low speed operation, Brent Kung adder is one

efficient parallel prefix adder as it can accommodate more

number of input bits in much less space and occupies very less

space. Also it is well known for its high logical depth

implementation along with minimum area attributes. The

delay and area of the Brent Kung adder are given by the

following expressions.

Delay= (2*log2n)-2 (8)
Area= (2*n)-2-log2-n (9)

If there are N number of input bits, then the total number of

logic levels in a Brent Kung Adder is given by 2(log2 N-1).

The 16-bit Brent Kung adder is shown below.

Figure3: Brent Kung Adder[14]

Han Carlson Adder: "Han Carlson adder combines both

Kogge Stone and Brent Kung carry merge operations"[16]. It

implements less number of cells and wiring tracks than the

Kogge Stone adder. Han Carlson prefix tree can be easily

yielded by performing some modifications to the pseudo code

of Kogge Stone adder. Han Carlson adder differs from the
Kogge Stone adder in the sense that it performs two different

operations on even and odd bits. Here the even bits undergo

carry merge operation and the odd bits undergo carry

propagate/generate operation. The generate and propagate bits

travel through the prefix tree and finally unite with carry

merge bits to give the final accurate carry. It's fan-out is same

as that of the Kogge Stone adder.But the fan out of Han

Carlson adder may increase if an error detection and

correction stage is attached to the adder. The structure of a 16-

bit Han Carlson adder is given below-

Figure 4: Han Carlson Adder[14]

The above are the commonly used topologies for the parallel

prefix adders. Also there are many other ways by which the

binary sum is computed. One such way is the QCA technique

which is also the base for our current work.

C. Existing Technology - The existing technology deals with

the computation of binary sum using a network of Full adders.
They put forth a novel adder which computes sum of two

BCD numbers. It employs the technique of "Quantum dot

Cellular Automata"[17], where majority gates were used

instead of normal logic gates. Majority gates perform the

operation of AND and OR on the given bits such as M= a.b +

b.c + c.a. "The generate and propagate terms are computed by

using these Majority gates"[18]. By employing the concept of

the majority gates in the Carry look ahead adders and other

Ripple carry adder topologies the binary sum is computed

here. Along with QCA technique, an innovative approach of

"2D clocking technique"[19] is also implemented here. Here

the total clock cycle is divided in to four parts namely Switch,
Hold, Release and Relax. Accordingly, the operations are

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2216 | P a g e

carried out simultaneously so that the delay can be avoided.

The n digit binary adder is given below:

Figure 5: N digit BCD Adder

For obtaining N digit adder, N number of one digit adders are

attached one after the other as shown the figure, where N

represents the number of stages. Each one digit adder module
receives two bit inputs in the form of dAi

(3:0)and dBi
(3:0) and

third input in the form of carry in and here i=0,1,2,....n-1.

These inputs are furnished and two outputs dS and dCout are

computed. The dCout1 from the first adder has to travel

through n-2 stages to be received by the final stage adder and

thereby yield the final sum. In this case, the worst case delay

Tw can be calculated as follows

Tw= Tg + (n-2)Tp + Ta (10)

where, Tw- Worst case delay for an N digit adder, Tg and Tp

are the time required for the generation and propagation of
dCout from one stage to another stage and Ta is the delay with

which the most significant bit receives the carry in. If this N is

taken as 32 (0-31), i.e., for 32-bit adder the delay obtained is

approximately 43.142ns which is obtained after it's simulation

in Xilinx. The total space consumption/memory usage for this

32-bit adder is about 248252 kilobytes. The simulation results

of this adder are given below:

Figure 6: Simulation results for the Existing QCA based adder

This worst case delay can never be completely eliminated. But

it can be reduced if changes are made at the logic level by

implementing the parallel prefix technique where all the

intermediate carry's are calculated simultaneously instead of

waiting for the prior carrys to visit the stages. Here we

propose a Novel BCD adder which is built using the PPA

technique by implementing black and gray cells for reducing

the delay to some extent.

IV. PROPOSED TECHNOLOGY
In the proposed technology, Parallel prefix technique is

implemented in the QCA technique instead of a network of

full adders and majority gates. It can be considered as

modified version of a Brent Kung Adder. It lessens the

complexity, the silicon area, delay and power consumption.

As discussed prior, "a parallel prefix structure has three stages

namely Pre-processing, Prefix network and Post-Processing

stages"[20]. Another stage of error detection and correction

can be added to this network for detecting and correcting the

errors that may occur during the process of pre-computation

of the carry(s). Thus the structure of the adder is as follows:

Figure.7: Block Diagram of Proposed PPA Adder

Being mentioned about the factor that Brent Kung adder

operates effectively with less number of stages than the basic

Kogge Stone adder and with much more logical depth, Brent

Kung Adder is taken here and clear modifications are done to

it to overcome the drawbacks of the traditional adder. The

Brent Kung adder primarily computes prefixes for 2-bit

groups. These 2-bit groups then generate the 4-bit prefixes,
which in turn help in computing 8-bit prefixes and the process

goes on. "These generated prefixes are then applied along with

the group generate and group propagate terms to obtain the

final sum and carry"[3]. The below figure shows the prefix

tree structure and the internal logic:

Figure 8: Anatomy of the Prefix adder[21]

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2217 | P a g e

Here is a representation of the proposed adder for 16-bit

addition about how the carry bits are propagated through the

stages and how an efficient path is brought out.

Figure 9: Proposed Brent Kung Adder

Pre-Computation Stage: In the first stage called as the Pre-

computation stage/pre-processing stage, the individual

generate and propagate signals of all the available input bits
are calculated using the equations:

Pi = Ai XoR Bi (11)

Gi = Ai AND Bi (12)

where 0≤i≤m-1, here m represents the number of input bits.

Prefix Network Stage: In the second stage, the most crucial

operation of carry merging is performed.As mentioned prior,

the terms Propagate and Generate play a key role in the

computation of the sum. As a part of this, group generate and

group propagate signals are computed for general ith bit and jth

bit using the following equations:
Gi:j = Gi:k + (Gk-1:j Pi:k) (13)

Pi:j = Pi:k Pk-1:j (14)

where, i > k > j

The group generate and propagate terms are furnished by

using two operators called as "Black cell and the Gray

cell"[22].

Figure10: Black and Gray Cell logics with in prefix

network[23]

As mentioned prior, the majority gates and full adder tree

structures of the existing adder structure are replaced the PG

blocks that furnish the generate and propagate bits. The

number of PG blocks depend up on the number of input bits.

The figure above depicts the structure of Black and Gray cells.

Black cell does complex logic operation and gives two outputs
namely Group Propagate and Group Generate signals. On the

other hand the Gray cells give only the Group Generate

output. The outputs of pre-processing stage, i.e., the individual

generate and propagate bits, are given as inputs to these

blocks for the generation of group generate and group

propagate terms. These two signals are then passed on to the

post computing stage.

Post Computing Stage: In the last stage, i.e. Post

processing/post computing stage, the final sum and carry are

calculated with the aid of Ex-OR gates, AND gates and OR

gates. The method of computation of sum and carry is given
below:

SUM = Pi XOR Ci-1 (15)

Ci-1 = (Pi and Cin) or Gi (16)

In the final stage, error detection and correction are done. As

many circuits are operated simultaneously, errors may occur

which may lead to inefficiency of the adder circuit. The main

reasons for the occurrence of errors are the "delay and the

clock cycle differences"[24] that arise when a particular

operation is taking place. These errors are to be detected and

corrected; otherwise the circuit will be declared inefficient. To
serve this purpose, the network of "Razor Flip-flops"[25] are

used."Razor flip-flop is used to determine the exact time

period within which a specific operation can be

accomplished"[26]. Also it checks whether the final sum

obtained is in BCD format or not. The number of razor flip-

flops required is judged by the number of input bits. A 1-bit

razor flip-flop is shown below:

Figure11: 1 Bit Razor Flip-flop[25]

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2218 | P a g e

The razor flip-flop is built with a main flip-flop, a shadow

latch, Ex-OR gate and a Multiplexer. The main flip-flop

which works with the main clock cycle receives the output

sum bits. On the other hand, the shadow latch works with

delayed clock and it also receives the same output bits. The

error presence can be observed when the outputs of the flip-
flop and the latch differ. This drives us to a conclusion that the

sum and carry generation process is still intact and it needs

more clock cycles for it's completion. The shadow latch sets

the error bit to 1 indicating that an error has popped up and it

needs to be corrected. Even though it's a tedious job to correct

the error, as the circuit performance cannot be compromised.

V. RESULTS

The simulation results of the proposed Novel Brent Kung

Adder for the computation of Binary Sum and Carry are given

below:

Figure12: Simulation Results of the Proposed Binary Adder

The overall operation of the proposed 32-bit adder can be
accomplished with in 32.981ns, which is quite less than the

existing adder's delay of 43.142ns. Also when attached by the

error detection and correction, the efficiency gets built up for

the circuit. One more important point here is the effective

utilization of the available cells and LUT's. Even though the

number of available 4-input LUT's available are same for both

the adders, the utilization of these cells and LUTs effectively

is what matters. The utilization of the four input LUTs and

slices has been increased up to 4% and 5% respectively. The

memory usage for this implementation is 248272 kilobytes

which is very slightly more than the existing technology. The
below table displays the comparison of the proposed adder

with other adder structures.

Table.1: Comparison of Delay, utilization of slices and LUTs
Adder/Method Delay in

nano sec

Number of

slices utilized

Number of

LUTs utilized

Conventional

KS Adder

38.487 45 82

Existing Adder 43.142 37 64

Proposed BK

Adder

32.981 49 87

VI. CONCLUSION

The Novel BK adder proposed here operates effectively on

inputs of large width. The decimal adder provides a higher

logical depth which proves about the critical logic operations

that take place inside. The delay of the existing QCA based

BCD adder is 43.142ns which is reduced to 32.981ns in the

suggested novel adder. This is possible because of the

innovative logic of parallel prefixing implemented here. This
shows that having such logical depth didn't prevent it from

possessing less delay. The utilization of the available slices

has increased from 37 to 49, and available LUTs has

improved from 64 to 87 which proves the efficiency and

superiority of the proposed adder over the existing

counterpart. Even though the Kogge Stone adder and Han

Carlson adder are efficient to some extent, they cannot be

employed for inputs with more number of bits, as they are said

to consume more space when the number of input bits

increase. In addition to it, the power consumption also gets

increased. Finally it can be concluded that the suggested adder

has surpassed the precedent adder circuits in many aspects.
This adder design can be further exploited with the help of

upcoming technologies enriched with enhanced logics in such

a way to provide much less area consumption. Improvements

in logic with the help of innovative current day technologies

may aid in providing less delay along with more efficiency.

VII. REFERENCES
[1]. Kenney, R.D. and Schulte, M.J., 2005. High-speed multioperand

decimal adders. IEEE Transactions on Computers, 54(8), pp.953-
963.

[2]. Shah, N.A., Khanday, F.A. and Bangi, Z.A., 2012.Quantum
cellular automata based efficient BCD adder
structure. Communications in Information Science and

Management Engineering, 2(2).
[3]. Beaumont-Smith, A. and Lim, C.C., 2001. Parallel prefix adder

design. In Computer Arithmetic, 2001. Proceedings. 15th IEEE
Symposium on (pp. 218- 225). IEEE.

[4]. Sklansky, J., 1960. Conditional-sum addition logic. IRE
Transactions on Electronic computers, (2), pp.226-231.

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2219 | P a g e

[5]. Kogge, P.M. and Stone, H.S., 1973. A parallel algorithm for the
efficient solution of a general class ofrecurrence equations. IEEE
transactions on computers, 100(8), pp.786-793.

[6]. Ladner, R.E. and Fischer, M.J., 1980. Parallel prefix
computation. Journal of the ACM (JACM), 27(4), pp.831-838.

[7]. Brent, R.P. and Kung, H.T., 1982. A regular layout for parallel
adders. IEEE transactions on Computers, (3), pp.260-264.

[8]. Radder, P. and Saptalakar, B.K., 2017. PERFORMANCE AND
ANALYSIS OF SIGNED HAN-CARLSON ADDER USING
VLSI. International Journal of Research in Management & Social
Science, p.73.

[9]. Basha, M.M., Ramanaiah, K.V. and Reddy, P.R., Modified
Reverse Converter Design With intervention of Efficacious

Parallel Prefix Adders
[10]. Zimmermann, R., 1998. Binary adder architectures for cell-based

VLSI and their synthesis. Hartung-Gorre.
[11]. Doran, R.W., 1988. Variants of an improved carry look-ahead

adder. IEEE Transactions on Computers, 37(9), pp.1110-1113.
[12]. Oklobdzija, V.G., 2000. High-speed VLSI arithmetic units:

adders and multipliers. Design of High-Performance
Microprocessor Circuits. IEEE Press, Los Alamitos, 232.

[13]. Han, T. and Carlson, D.A., 1987, May. Fast area-efficient VLSI
adders. In Computer Arithmetic (ARITH), 1987 IEEE 8th
Symposium on (pp. 49-56). IEEE.

[14]. Daphni, S. and Grace, K.V., 2017, December. A review analysis
of parallel prefix adders for better performnce in VLSI
applications. In Circuits and Systems (ICCS), 2017 IEEE
International Conference on (pp. 103-106). IEEE.

[15]. R. P. Brent and H. T. Kung, “A regular layout for parallel

adders”, IEEE trans, computers, Vol.C-31,pp. 260-264,.March
1982.

[16]. Prakash, P. and Saxena, A.K., 2009, October. Design of Low
Power High Speed ALU Using Feedback Switch Logic.
In Advances in Recent Technologies in Communication and
Computing, 2009. ARTCom'09. International Conference on(pp.
899-902). IEEE.

[17]. Snider, G.L., Orlov, A.O., Kummamuru, R.K.,
Ramasubramaniam, R., Amlani, I., Bernstein, G.H. and Lent,

C.S., 2001. Quantum-dot cellular automata. MRS Online
Proceedings Library Archive, 696.

[18]. Pudi, V. and Sridharan, K., 2011. Efficient design of a hybrid
adder in quantum-dot cellular automata. IEEE Trans. VLSI
Syst., 19(9), pp.1535- 1548.

[19]. Vankamamidi, V., Ottavi, M. and Lombardi, F., 2006,
June. Clocking and cell placement for QCA. In Nanotechnology,
2006. IEEE-NANO 2006. Sixth IEEE Conference on (Vol. 1,

pp. 343-346). IEEE.
[20]. Kunz, H. and Zimmermann, R., 1996. High-performance adder

circuit generators in parameterized structural VHDL. ETH.
[21]. Rani, G. and Kumar, S., 2014. Delay analysis of parallel-prefix

adders. International Journal of Science and Research, 3(6),
pp.2339-2342.

[22]. Harris, D. and Sutherland, I., 2003, November. Logical effort of
carry propagate adders. In Signals, Systems and Computers,

2004. Conference Record of the Thirty-Seventh Asilomar
Conference on (Vol. 1, pp. 873-878). IEEE.

[23]. Dave, V., Oruklu, E. and Saniie, J., 2006, May. Performance
evaluation of flagged prefix adders for constant addition. In Proc.
IEEE Int. Conf. Electro/inf. Technol (pp. 415-420).

[24]. Cho, H. and Swartzlander Jr, E.E., 2009. Adder and multiplier
design in quantum-dot cellular automata. IEEE Transactions on
Computers, 58(6), pp.721-727.

[25]. Ernst, D., Kim, N.S., Das, S., Pant, S., Rao, R., Pham, T., Ziesler,
C., Blaauw, D., Austin, T., Flautner, K. and Mudge, T., 2003,

December. Razor: A low-power pipeline based on circuit-level
timing speculation. In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture (p. 7). IEEE
Computer Society.

[26]. Ernst, D., Das, S., Lee, S., Blaauw, D., Austin, T., Mudge, T.,
Kim, N.S. and Flautner, K., 2004. Razor: circuit-level correction
of timing errors for low- power operation. IEEE Micro, 24(6),
pp.10-20.

