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Abstract- A commonly appearing problem in most of the 

econometric data research is the correlated input variables or 
problem of multicollinearity. This problem arises due to the 
choice of several input variables which are having high 
correlation among themselves and it leads to the less précised 
estimates and huge forecasting errors. This problem can be 
identified by several approaches like variance inflation factor, 
correlation matrix etc and it can be removed efficiently by 
removing or changing the set of input variables in the data. In 
the current publication, a stepwise procedure is adopted to 
remove the variables without compromising on model 
efficiency. The efficiency of the model can be measured or 
compared by using error diagnostics like RMSE, AIC, BIC 
etc. For empirical investigation, we used agriculture 
production of Rice for the past 15 years in the country. 
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I. INTRODUCTION 
The major problem in any econometric model building is 

the selection of appropriate variables as input variables and 
mis-selection can cause several problems like reduction in 
efficiency factor, huge forecast error. The ability of any 
econometrician involves mostly in finding the set of 
assumptions that are both sufficiently specific to the current 
study and sufficiently realistic to allow him to take the best 
possible advantage of the data available to the researcher. One 
of the most commonly applied econometric model is the 
General Linear Model and the efficiency of the General Linear 
Model always depends on its valid assumptions about the 
error terms as well as independent variables. The violation of 
each of these assumptions may lead to different consequences 
in the data and one should be very careful about the violations 
and consequences of General Linear Model. 

II. WHAT IS MULTICOLLINEARITY 
Multicollinearity is a statistical scenario where there exists a 
perfect or exact relationship between the explanatory variables 
and they are moving very closely with each other. In this 
scenario, it is difficult to come up with reliable estimates of 
their individual coefficients and also we can see huge errors in 

the predictions. In other words, it will result in incorrect 
conclusions about the relationship between response variable 
and input variables.  

Multicollinearity increases the variances of the parameter 
estimates and hence this may lead to lack of statistical 
significance of individual explanatory variables even though 
the fitted model is a significant model. The presence of 
multicollinearity can cause major problems with the 
estimation of β by using ordinary least squares method and the 
interpretation of those estimates also may goes invalid. 

III. CONSEQUENCES OF MULTICOLLINEARITY 
Multicollinearity commonly occurs when a large number 

of independent variables are used in a multiple regression 
model. It is because some of them may measure the same 
concepts or phenomena repeatedly. A perfect multicollinearity 
problem in the data violates the assumption that X matrix is 
full ranked, making OLS estimates unfeasible. When a model 
is not full ranked, that is, the inverse of X cannot be defined, 
there can be an infinite number of least squares solutions. 
Some of the main consequences of Multicollinearity are listed 
below. 

 Un-precised estimates from OLS method 

The main consequence of Multicollinearity issue is the 
reduction in precision of the estimates and more variance of 
the estimates.We can measure the precision of estimates with 
some error diagnostic measures like Root Mean Squared 
Error( RMSE), AIC, BIC etc and high values of these 
measures indicates less précised estimates of the parameter. 

 Correlated error terms 

In any OLS process, the errors should be independent 
should not display any pattern of relationship among 
themselves. But with the problem of multicollinearity, we can 
see that error terms of having correlation among themselves 
and it results in huge forecast error.  

 Huge sampling variances of the estimates 
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One of the key concepts in deciding the model efficiency is 
the variance of the estimates and it should be always as small 
as possible. The problem of multicollinearity always produces 
the estimates of the parameters as large quantities and they 
causes the errors in prediction. 

 Testing process with low power 

While testing the significance of coefficients of the 
parameter estimates, we can see that the power of the test is 
very low. In other words, the probability of not committing 
type II error is very less in the testing process. This indicates 
that the false acceptance of the null hypothesis. 

 
IV. IDENTIFYING MULTICOLLINEARITY 

 
The efficiency of the prediction results are always depends 

on the effective identification of multicollinearity in the data 
before actual prediction. There are several methods to detect 
the problem of multicollinearity and few of them are 
discussed in the current paper. 

A. Correlation matrix of input variables 

Correlation matrix is the representation of relationship 
between variables in one single table of diagram. For 
example, the following correlation matrix shows 
diagrammatically the correlation values between three input 
variables. By using correlation matrix, we can identify the 
close relationships between the input variables and further 
investigate them to decide about including them in the final 
model. Generally, a correlation of more than 0.6 can be treated 
as variable that cause the multicollinearity problem. If there is 
high multicollinearity between any two predictor variables, 
then the correlation coefficient between these two variables 
will be near to unity. 

 
Figure 1: Correlation Coefficient 
 

B. Variance Inflation Factor 

The most widely applicable method of detecting the 
multicollinearity is Variance Inflation Factor and it is very 
accurate in determining the problem of multicollinearity. The 
expression to find the Variance Inflation factor is given by 

       VIF =    ଵ
ଵିୖమ

          

Where R2 is the coefficient of determination derived from 
the model. We can observe that VIF = 1 when R2 = 0, i.e. 
when jth variable is not linearly related to the other predictor 
variables. Similarly, VIF  ∞ when R2 1, i.e. when jth 
variable is linearly related to the other predictor variables. The 
VIF is an index which measures how much variance of an 
estimated regression coefficient is increased because of 
multicollinearity.  

The common thumb rule is if any of the VIF values 
exceeds 5 or 10, it implies that the associated regression 
coefficients are poorly estimated because of multicollinearity 
(Montgomery, 2001). For some practical applications, we can 
consider this limit up to 2 also to get more précised estimates. 
 

C. Approach to resolve Multicollinearity 

The best approach for the multicollinearity problem is 
involves three regular steps as follows. 

 Identification ( Scatteplots). 
 VIF measure 
 Removal and refitting 

For identification, we can initially use scatterplots to 
decide the highly related variables and then use the model 
fitting technique to fix those variables in the first stage, SAS 
has an option of VIF to REG procedure and gives VIF values 
in any model. The common syntax for that is 

 
proc reg data=data ; 
model Response=explanatory variables /vif tol; 
run; 
quit; 

 
From the output of SAS, we can identify and finalize the 

variable that having maximum variance inflation factor value 
and in the second stage we can remove it and analyze it 
further. This procedure is continued till all the existing 
variables are having VIF value less than 2 and we can say that 
the model is out of multicollinearity problem in the model. 
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D. Example from agriculture data 
 

In this paper, we tried to explain the impacts of 
multicollinearity in the model performance with the help of an 
agriculture related data. The current numerical data is an 
extract of rice production in the country for the past 15 years 
and it includes related information like amount of fertilizers 
utilized, previous year price, yield per hectare, amount of 
pesticides used and area cultivated.  

Correlation matrix plot- As described in the earlier 
section, we can use the correlation matrix to study the inter 
relationships among themselves. The matrix plot of 
correlations are given as 
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Figure 2: Matrix Plot 

The above matrix plot clearly shows some of the variables 
are intercorrelated among themselves and causing 
multicollinearity in the data. 

Identification of Multicollinearity in the current data: 

To identify the multicollinearity in the data, we fitted the 
multiple regression model and the sas will produce the 
following output 

 

TABLE I: PARAMETER ESTIMATE TABLE 

Variable Parameter 
Estimate 

t Value Pr > |t| Tolerance Variance 
Inflation 

Intercept -113.63363 -8.86 <.0001 . 0 

Total 
Area 

0.21625 2.15 0.0600 0.67028 1.49192 

fertiliser 0.00244 0.47 0.6468 0.18735 5.33771 

Pesticide -0.01040 -0.25 0.8102 0.75684 1.32128 

Yield per 
Ht 

0.04233 30.79 <.0001 0.17589 5.68535 

Area 
cultivated 

1.96689 20.83 <.0001 0.67227 1.48750 

  
From the above table, we can see that the VIF values for 

Fertiliser and Yield per ht is greater than 2 and we can remove 
them one by one in multiple linar regression model. With this 
procedure the final estimate table after three iterations will 
looks as follows. 

TABLE I: FINAL ESTIMATE TABLE 

Variable PE SE t 
Value 

Pr > 
|t| 

Toleran
-ce 

VI 

Intercept -114.84707 12.06713 -9.52 <.00
01 

. 0 

Total 
Area 

0.22474 0.09506 2.36 0.03
97 

0.69223 1.44461 

Yield per 
Ht 

0.04288 0.00067583 63.46 <.00
01 

0.67131 1.48961 

Pesticide -0.00511 0.03892 -0.13 0.89
82 

0.81426 1.22811 

Area 
cultivated 

1.94682 0.08106 24.02 <.00
01 

0.84160 1.18822 

 
Where PE and SE refers to Parameter Estimate and 

Standard Error respectively. So each of the VIF values in the 
above table are within the limit and the fitted model can be 
writton as  

 
Production = (-114.84) + (1.80939) Total Area + (0.03508) 

yield per hectare +   (-0.20432) Pesticide + (1.9462) Area 
cultivated 

 
V. SUMMARY AND CONCLUSIONS: 

Based on the empirical analysis of the rice data, we can 
draw some vital conclusions as follows. We used some of the 
basic statistics as well as scatter plots to know the 
relationships between the variable and in the rice data, we can 
see that the input independent variables are correlated highly 
among themselves and it gives the initial signal of presence of 
multicollinearity in the current data. We adopted an approach 
based on Variance Inflation Factor (VIF) to decide about the 
variables that are causing the multicollinearity and in the 
current data, the previous year price is considered as vital 
variable with highest inflation factor. In the final model, only 
four independent variables are entered in the model and 
multicollinearity problem is completely resolved. 
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