
IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2291 | P a g e

Performance Analysis of proposed OpenFlow network

using pox controller vs. traditional network

Jyoti Kumari1, Samir Srivastava2
1Computer Science and Engineering Department, Kamla Nehru Institute of Technology, Sultanpur
2Computer Science and Engineering Department, Kamla Nehru Institute of Technology, Sultanpur

Email: 1jyotiit4@gmail.com, 2samir@knit.ac.in

Abstract - Management of the networking system is more

complex because of the dynamic nature of current networking

system in which control plane is fully distributed in the

network. Programmable networking system SDN makes it easy

to manage and configure the network by removing the

controlling function of the networking elements and placing it

at logically centralized control plane. The aim of this research

paper is to analyze the performance of SDN for a small network

using POX controller and compare it with the conventional

network. mininet tool is used to create and analyze the

performance of the conventional and programmable network.

Our performance analysis is based on latency, throughput,

delay, and jitter.

Keyword- SDN; OpenFlow; mininet; POX; Throughput;

latency.

I. INTRODUCTION

In traditional networking system, control-plane is fully

distributed. Networking device (e.g. router, switch) has its own

control-plane and data-plane as shown in fig. 1. Control-plane

have the forwarding policies based on which data-plane

forward the packets. When packets arrive at a networking

device the embedded firmware tells the hardware, where to

forward the packet. Any adjustment in the forwarding policy

required to reconfigure the nodes that have their specific

interface and network administrator has to manually perform

low-level configuration on these vendor-specific networking

devices. There is lack of open standard interface which also

limits the researchers to easily develop and test their

applications. Horizontal scaling of the network is also a very

difficult task in conventional networking paradigm. Hence,

management of such dynamic and state changing network is a

very complex task.

SDN provides a better way to configure and manage

the network by decoupling the control-plane from data-plane.

It removes the control logic from the networking devices to

make it simple data forwarding element (e.g. OpenFlow

switch). Control logic of the network is placed at the logically

centralized controller (Network Operating System), which

provide the abstract view of the network. SDN concept is based

on separation between the definition of network policies,

implementation of these policies in the hardware devices and

traffic forwarding [1]. Fig. 2 explains the simplified

architecture of software-defined networking system. SDN has

three open API: (1) southbound interface, (2) northbound

interface and (3) east-westbound interface (e.g., Flow visor) to

handle the communication protocol between logically

centralized controllers. Objectives of these interfaces are

explained in [2].

OpenFlow protocol is one of the most popular

standard protocol and the most commonly deployed SDN

technology. It was originally proposed by Stanford University.

OpenFlow is defined as the first standard communication

protocol between data-plane and control-plane in SDN

architecture by open network foundation (ONF) [3].

This paper is organized by discussing the OpenFlow

based SDN architecture in section II. Environment setup using

the simulation tool and also a brief introduction of the tool is

discussed in section III. Section IV describes the proposed

OpenFlow network model and traditional network model and

their comparative performance analysis is discussed in section

V. finally, a conclusion of the topic based on the result obtained

and suggestions for the future work is discussed in section VI.

Data plane

Control

plane

Data plane

Control

plane

Data plane

Control

plane

Data plane

Control

plane

App App App

Fig. 1. Simplified Architecture of Traditional Network

mailto:jyotiit4@gmail.com

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2292 | P a g e

II. OPENFLOW BASED SOFTWARE DEFINED

NETWORK ARCHITECTURE

OpenFlow is a flow-based protocol that supports to

implement SDN concept in hardware and software [4]. Fig. 3

illustrates the OpenFlow-based network architecture.

OpenFlow network typically includes three important

components: (a) OpenFlow switches, (b) OpenFlow Controller,

and (c) OpenFlow protocol.

A. OpenFlow Switch

Switches use the flow table to handle the incoming

packets. Flow table contains flow entries that are stored in

decreasing order of priority. Each flow entry contains (a)

header field, to match against incoming packets, (b) Action (set

of zero or more actions), to apply on the packet when header

field matched, (c) counter, to keep statistics of the packet.

Header file of the incoming packet is compared with header

field of each flow entry of the flow table starting from the first.

If no match found, the packet is sent to the controller using

Packet-in message. Local traffic (traffic to and from the secure

channel) is not checked against flow table. OpenvSwitch [5] is

most widely used software based OpenFlow switch.

B. Controller

Control plane consists of a central controller or multiple

physically distributed but logically centralized controllers.

East-West bound interface defines the communication protocol

between these logically centralized controllers.

It gives the abstract view of the application layer. NOX [6]

was the first OpenFlow controller, written in C++ and python.

POX [7], typically termed as NOX’s younger sibling, Ryu [8],

floodlight [9], OpenDaylight [10] are some examples of

OpenFlow controllers.

C. OpenFlow Protocol

OpenFlow protocol uses the secure channel (TLS/TCP) to

establish the connection between the controller and switches.

Controller manages, configure and communicate with the

switches through this secure channel. OpenFlow protocol

support: (1) Controller-to-switch messages, are initiated by the

controller to configure, manage or to get the state of switches,

(2) Asynchronous messages, are initiated by the switches and

sent to the controller when switch state change, error or no flow

entry for incoming packet, (3) Symmetric message, are initiated

by either controller or switch and sent without any solicitation.

III. SIMULATION TOOL AND EXPERIMENT

SETUP

In this section, we discuss a brief introduction to a

simulation tool required for designing the layer 2 OpenFlow

network and traditional network. Experiment with the physical

testbeds is very expansive for researchers. To create a physical

testbed for the research of OpenFlow applications, there are

many required components (e.g., OpenFlow switches,

controller machine, physical infrastructure). Mininet is an open

source network emulator which helps to create and run realistic

software-based networks, on a single computer system. Mininet

uses lightweight virtualization to run multiple switches and

hosts on a single operating system (LINUX) kernel. The code

we develop and test on mininet, is easily movable to the real

network with minimal changes, for deployment, testing, and

performance analysis.

Fig. 2. Simplified Architecture of SDN

Northbound interface

Forwarding

device

Forwarding

device

Forwarding

device

Forwarding

device

controller controller

Control plane

East-west interface

Southbound interface

Management

plane
Traffic monitoring firewall

Data plane

Secure channel

App

Flow table

Secure channel

Flow table

Secure channel

 Flow table

App App

controller

OpenFlow

switch 2

OpenFlow

switch 1

OpenFlow

switch 3

OpenFlow Protocol

Fig. 3. OpenFlow based network architecture

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2293 | P a g e

The easiest way of mininet installation on the non-

Linux operating system, is installing mininet virtual machine in

a virtualization software. We experimented with mininet vm of

mininet version 2.2.2 on Ubuntu 14.04 LTS, running in Oracle

vm VirtualBox, on Windows operating system. Installation

steps and setup notes are available in [12]. Putty is used along

with the Xming server to make an X11 forwarding enabled ssh

connection with mininet vm. Xming server is running on

Windows operating system which enables to use X11

applications (e.g., gedit, xterm, Wireshark). To make ssh

connection with mininet vm, it is required to get the IP address

of mininet vm using the command-

$ sudo dhclient eth1

$ sudo ifconfig eth1

IV. PROPOSED NETWORK MODEL

In this section, we create an OpenFlow network and a

traditional network using python language. To write python

code for network designing, it is required to use one editor. In

this paper, gedit (a graphical text editor) is installed in mininet

using command-

$ sudo apt-get install gedit

A. OpenFlow Network:

We create an OpenFlow network using 10 OpenvSwitch

(s1 to s10), 28 virtual hosts (h1 to h28) and an OpenFlow

controller pox as shown in figure 4. Each host has a unique IP

address. Hosts and switches are connected with virtual ethernet

cable of 1000Mbps bandwidth. In OpenFlow network initially

flow table of each OpenvSwitch is empty. Remote OpenFlow

controller POX (carp branch) controls all 10 switches. It is

required to create a component class for the controller that

allows the hosts to communicate with each other by

implementing learning switch logic.

According to learning switch logic, if a switch receives a

packet and switch have no flow rule for the packet then the

packet will be sent to the controller. The Controller will store

the MAC address of the sender and switch port at which

received the packet is received. The packet will be flooded by

the controller to get the MAC address and port of the recipient.

After that controller will install the flow rule for the sender and

the receiver in the flow table of the switch. Component for layer

2 learning switch named learning_sw.py is saved in /pox/ext

folder that makes OpenvSwitches act as a type of layer 2

learning switch. To run pox controller, it is required to run the

following in new xterm window.

/home/mininet/pox/pox.py log.level –DEBUG

learning_sw

B. Traditional Network:

Fig. 5 illustrate the traditional network model in which

Linux Bridge (a layer 2 virtual device) is used to create the layer

network. To work with Linux Bridge, it is required to install

bridge-utils in mininet. Linux Bridge consist of the set of

network ports, a control plane, a forwarding plane, MAC

learning database. To run the traditional network or the

OpenFlow network following command is used-

$ sudo python <file name>

V. RESULT AND ANALYSIS

The main objective of this research paper is to analyze and

compare the performance of OpenFlow network using pox

controller and traditional network. To accomplish this, we

perform network connectivity test and measure throughput of

the network.

H27

H26

H25

H17

H21

H19

H20

H18

H14
H13

H12

H11

H10 H9

H2

H3

H4

Remote controller (POX)

S1 S2 S3

S4

S5

S6

S7

S8

S9

S10

H1

H5

H6

H7

H8

H15
H16

H22
H23

H24

H28

Fig. 4. Proposed OpenFlow based network model

H27

H26

H25

H17

H21

H19

H20

H18

H14
H13

H12

H11

H10 H9

H2

H3

H4

S1 S2 S3

S4

S5

S6

S7

S8

S9

S10

H1

H5

H6

H7

H8

H15
H16

H22
H23

H24

H28

Fig. 5. traditional layer 2 network model

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2294 | P a g e

 PING is used to test the network connectivity and to

measure the latency. Ipref tool is used to generate the traffic and

to measure the throughput over a TCP connection and a UDP

connection.

 A ping test between source node h1 and destination node

h28 is performed. In OpenFlow network average rtt (round trip

time) for first ping test is 161ms and in traditional network

6.03ms as shown in fig. 6 and fig. 7 respectively. Latency for

the first ping test is high in OpenFlow network because flow

table is empty and switch send the packet-in message to the

controller.

Pingall command is executed to test the network

connectivity between nodes. In pingall, each OpenvSwitch

sends ICMP (internet control message protocol) echo request

messages to all other OpenvSwitches and wait for responses

from them. As shown in fig. 8 and 9, average latency of the

OpenFlow network (when flows are installed in switches) is

equal to or better than the traditional network.

Network minimum average maximum

Traditional

network

.137ms .244ms .510ms

OpenFlow

Network

.081ms .215ms 1.722ms

Iperf tool is used to analyze the utilization of

bandwidth between source node h1 and the destination node

h28 in the networks. We start TCP server at destination host 28

and TCP client at host h1. Commands that are used at the source

node and destination node is shown in the screenshot of the

result. To analyze the bandwidth utilization data is transferred

over TCP connection and for 10 seconds.

Fig. 7. first ping test in traditional network

Table 1. round trip time comparison between OpenFlow and

traditional network
Fig. 6. first ping test in OpenFlow network

Fig. 8. ping test in OpenFlow network

Fig. 9. ping test in traditional network

Fig. 10. Throughput over TCP connection in OpenFlow network

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2295 | P a g e

Comparison between the bandwidth of OpenFlow

network and traditional network over TCP connection is shown

in table 2. Commands that are used at the source and destination

nodes are shown in fig. 10 and 11.

Network Data transferred bandwidth

Traditional

network

945MByte 792Mbps

OpenFlow

Network

963MByte 808Mbps

In UDP connection, out order delivery of packets,

jitter, packet loss are some parameters that affect the throughput

of the network. For UDP testing, UDP client is started at source

node h1 and UDP server is started at destination node h28. Data

is transferred for 10 seconds over UDP connection. The result

of UDP tests is shown in fig. 12 and 13 and comparison

between networks based on server report is shown in table 3.

Network Data

transferred

(MB)

Bandwidth

(Mbps)

Jitter (ms) Loss (%)

Traditional

network

1.25 1.05 .091 0%

OpenFlow

Network

1.25 1.12 .067 6%

Fig. 11. Throughput over TCP connection in Traditional network

Table 2. Bandwidth comparison between OpenFlow and traditional

network for TCP connection

Fig. 12. Throughput over UDP connection in Traditional network

Fig. 13. Throughput over UDP connection in OpenFlow network

Table 3. Comparison between OpenFlow and traditional network for

UDP connection

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2296 | P a g e

We have measured the performance of both the network

using ping and iperf. Ping command send the ICMP () echo

request message to the specified destination IP address. If the

destination is reachable, it replies with ICMP echo reply

message. We get the rtt from ping testing. ping command sends

one ICMP request message in every second. Initially, we

perform our ping test by sending 1 echo request message from

the source node h1 to the destination h28 in both networking

environment. We have used the reactive approach, so is

required to install flow entry for the first packet in the switch.

Hence for the very first ping test rtt time in the OpenFlow

environment is much more (161.274ms) than rtt in the

traditional networking environment that is (6.038ms). we have

analyzed the average latency of the network by continuously

sending the 100 ICMP packets in both the networking

environment. The latency of the OpenFlow network is similar

to the traditional networking environment as shown in

comparison table 1.

To analyze the maximum bandwidth for TCP connection,

and bandwidth, jitter, and packet loss for UDP connection we

have used the iperf tool. Iperf creates UDP and TCP data stream

to measure the throughput of the network. to measure the

bandwidth utilization in both networks between source node h1

and destination node h28, it is required to run h1 in TCP client

mode and h28 in server mode. TCP data stream is sent from the

client to the server for 10 seconds. Bandwidth comparison

between the OpenFlow and conventional network for TCP

connection is shown in table 2. We have performed several

tested and analyzed that throughput of OpenFlow is similar to

the conventional network. we have performed all the analysis

using the virtualization software so the networks performances

are ultimately depending on the CPU load that may vary.

Similarly, for testing the performance for UDP connection,

UDP data stream is sent from source to the destination for 10

seconds. Comparison between the performance of UDP

connection is shown in table 3. Packet loss, jitter are some

factors that affect the performance of the network for UDP (a

connectionless protocol). UDP does not use the bandwidth

specified in the TCLink. By default, the bandwidth for UDP

connection is 1Mbps. We can also set the bandwidth using -b

option. Data loss in OpenFlow network for UDP connection in

more as compared to the conventional network.

VI. CONCLUSION AND FUTURE SCOPE

In traditional networking approach, control and data planes

are integrated with the networking devices that are difficult to

manage and configure. Software-defined networking removes

the controlling mechanism from the networking equipment and

makes the networking devices a simple forwarding node. These

nodes are controlled by the logically centralized controller.

In this paper, a comparative performance analysis of

conventional network and OpenFlow enabled software-defined

network is done using the mininet network emulator. we have

performed network connectivity test in which ping command is

used to test the connectivity and to analyze and compare the

latency of the network. Based on the obtained result it is

concluded that for the first echo request ICMP message the

round-trip time of OpenFlow network is much greater than the

traditional network. But when flow rules are installed in the

switches OpenFlow perform similarly to the traditional

network. The Throughput of the OpenFlow network is also

better or similar to the traditional network in TCP and UDP

connection. Deployment of OpenFlow network will make the

networking system programmable, easily manageable, scalable

and fast.

REFERENCES

[1] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteve,

Christian esteve Rothenberg, Siamak Azodolmolky, Steve

Uhlig “Software-Defined Networking: A Comprehensive

Survey”, proceedings of IEEE | vol. 103, No. 1, January,

2015.

[2] Myung-Ki Shin, Ki-Hyuk Nam, Hyoung-Jun Kim,

“Software-Defined Networking (SDN): A Reference

Architecture and Open APIs”, IEEE, ICTC 2012.

[3] Open Networking Foundation, ONLINE:

https://www.Opennetworking.org

[4] Fei Hu, Qi Hao*, Ke Bao, “A Survey on Software-Defined

Network (SDN) and OpenFlow : From Concept to

Implementation”, IEEE communication survey and

tutorial, 2013.

[5] OpenvSwitch, ONLINE: https://www.openvswitch.org

[6] Natasha Gude, Ben Pfaff, Teemu koponen, Martin Casado,

Scott Shenker, justin Pettit, Nick McKeown, “NOX :

Towards an Operating System for Network”, Unpublished.

[7] Pox Controller, ONLINE: https://

openflow.stanford.edu/display/ONL/POX+Wiki

[8] Ryu Controller, ONLINE: https://osrg.github.io/ryu/

[9] Floodlight Controller ONLINE:

http://www.Projectfloodlight.org.

[10] OpenDaylight controller, ONLINE:

https://www.Opendaylight .org/

[11] “OpenFlow Switch Specification version 1.0.0”, Open

Networking Foundation, December, 2009.

[12] Mininet vm setup steps, ONLINE: http://mininet.org/vm-

setup-notes/

http://www.opennetworking/
https://www.openvswitch.org/
https://osrg.github.io/ryu/

