Informing current and future local air quality management in Ealing: The case of NO_x emissions from road transport

Dr Glyn Rhys-Tyler

APRIL Transport sub-group, October 12th 2015

Background

- Objective: To develop future year policy scenarios to inform local air quality management in Ealing;
- Based on the extensive NO₂ and NO data sets collected using remote sensing instrumentation in the summer of 2012;
- Data provides detailed insights into the NO₂ and NO emission characteristics of vehicle types, 'Euro' classes, and fuel technologies at 2012;
- Data allows us to describe to some extent the more detailed dynamic relationships between NO₂ and NO emissions and engine load (function of vehicle speed, acceleration, vehicle mass, highway gradient.....);

Overview (1)

- Define the relationship between light vehicle highway traffic and primary NO₂ and NO exhaust emissions on representative samples of the road network in Ealing (case study areas);
- Quantify the emissions contribution of light vehicle traffic on these road types, taking into account local traffic volume, variation in local fleet composition, and variation in local traffic operating conditions during representative weekdays.

Overview (2)

- A simplified approach is adopted for heavy goods vehicles and buses, utilising mean emission rates (where available) by technology type / Euro standard, combined with estimates of fuel consumption rates and distance travelled in the case study areas;
- Develop illustrative future year scenario definitions and assumptions for light and heavy vehicles;
- Estimate impact of changes in future fleet composition, emission rates, and scenario interventions on future air quality in the case study areas.

Project partners

Department for Environment Food & Rural Affairs

Conceptual principles

- Emission rate Originally measured as molar ratios of pollutant to carbon dioxide i.e. NO₂/CO₂ and NO/CO₂. Converted into ratios of grams of pollutant per kilogram of fuel burned (g/kg) by carbon balance;
- Fuel consumption rate grams per second derived from published type approval (NEDC) data;
- Elapsed time on network For light vehicles, derived from multiple probe vehicle survey data;
- **Traffic volume** by each sub-group for which observed emission rates are available e.g. passenger cars by fuel type, engine capacity (COPERT classifications), and Euro standard. Diesel vans by Euro standard.

Case study areas

Annual mean NO₂ concentration (2012 diffusion tube data)

Case study areas

Acton High Street

A40 Western Avenue

Horn Lane

Haven Green

Western Road

Significance of gradient

A40 Western Avenue - Vertical alignment

Acton High Street - Vertical alignment

Probe vehicle surveys

Collecting data on the dynamics of light vehicle operation (speed, acceleration, deceleration, stops) within the case study areas (using a GPS equipped probe vehicle at 10Hz). Two main objectives;

- Quantifying spatial variation in vehicle dynamics, and;
- Variability in vehicle speeds and delays across multiple journeys. Aimed to obtain 30+ runs by direction.

Generally between 0900 and 1800 weekdays.

Probe vehicle survey summary statistics

Location	Distance (km)	Mean iourney time	Mean speed	Mean %	% Journey	Percentage
	(KIII)	(seconds)	((()))	spont	stationary	time where
		(seconds)		stationary	>10 seconds	snood
				stationary	×10 3000103	>20mnh
Acton High	0.712	164.6	15	19%	10%	5%
Street (F/B)	0.712	104.0	15	1570	10/0	570
Acton High	0 712	289 1	9	35%	22%	1%
Street (W/B)	01112	20012	2	0070	22/0	270
Horn Lane	1.448	316.1	16	29%	25%	20%
(N/B)						
Horn Lane	1.283	185.5	24	13%	10%	34%
(S/B)						
A40 (E/B) ^b	3.100	387.8	29	30%	27%	36% ª
A40 (W/B)	3.100	296.9	37	8%	6%	40% ª
The Mall	0.297	90.2	12	35%	27%	11%
(W/B)						
Haven Green	0.931	230.3	14	32%	24%	7%
Loop						
(clockwise)						
The Mall	0.297	49.7	21	8%	1%	19%
(E/B)						
Western	1.042	361.9	10	40%	33%	7%
Road (E/B) °						
Western	1.042	219.5	17	25%	18%	14%
Road (W/B) ^c						

^a For A40 Western Avenue (speed limit 40mph), % greater than 30mph

^b Note that results include right turning traffic at Savoy Circus. Delays will be greater than the straight ahead movement due to relatively less green time at the traffic signals.

^c Results influenced by presence of temporary traffic signals in the vicinity of the junctions with Albert Road / Leonard Road (gas main repairs).

Spatial aggregation of results

For reporting purposes, probe vehicle data was spatially aggregated to 100 metre sections by direction (200 metre sections on the A40 Western Avenue);

N.B. For the calculation of light vehicle emissions, 'instantaneous' (10Hz) data were utilised (speed, acceleration, local gradient, calculated engine load in kW etc.). Results were then spatially aggregated for reporting purposes.

Spatial disaggregation of case study areas

Example: Acton High Street

100 metre sections from west to east

Probe vehicle survey summary data

Acton High Street (eastbound)

Average speed (kph)

Section

Run	Α	В	с	D	E	F	G	н	Combine
1	14	25	11	28	11	27	27	27	1
2	19	7	20	21	11	23	22	16	1
3	17	9	18	14	11	16	19	33	1
4	25	8	29	14	30	26	30	33	1
5	7	15	24	17	12	20	30	32	1
6	12	10	17	6	20	11	24	31	1
7	13	13	20	27	23	16	8	22	1
8	25	10	33	16	29	16	11	26	1
9	13	23	19	18	14	26	21	24	1
10	7	26	31	10	14	19	31	36	1
11	32	32	27	26	30	31	34	34	3
12	6	16	24	24	10	21	34	35	1
13	5	16	20	31	9	18	21	19	1
14	31	12	17	16	14	12	25	27	1
15	12	21	9	11	14	24	26	28	1
16	17	20	9	26	9	22	24	33	1
17	26	9	26	27	10	16	28	33	1
18	19	8	30	34	10	25	23	23	1
19	16	10	23	18	10	29	32	39	1
20	12	10	22	21	11	21	29	34	1
21	17	12	12	33	33	24	22	20	1
22	4	10	11	17	10	20	30	31	1
23	34	30	10	17	13	20	27	34	1
24	7	9	20	34	32	25	29	32	1
25	9	20	16	27	9	21	30	35	1
26	6	27	9	31	17	29	30	35	1
27	33	31	22	5	10	26	28	34	1
28	6	24	13	30	10	28	19	22	1
29	5	12	21	12	13	18	31	34	1
30	11	17	26	33	17	22	29	36	2
Combined	10	13	17	17	13	20	24	29	1

Example: Acton High Street (eastbound).

Average speed (kph).

30 runs. Results

summarised by 100

metre section.

Illustrates spatial variation (A, B, C...H), and variation by run.

Probe vehicle survey summary data

Acton High Street (eastbound)

Percentage (%) time spent stationary

	Section								
Run	Α	В	С	D	E	F	G	н	Combined
1	15%	0%	48%	0%	34%	0%	0%	0%	21%
2	0%	31%	0%	0%	31%	0%	0%	0%	15%
3	0%	36%	0%	10%	31%	0%	0%	0%	15%
4	0%	52%	0%	9%	0%	0%	0%	0%	19%
5	35%	0%	0%	0%	13%	0%	0%	0%	12%
6	27%	27%	0%	28%	0%	16%	0%	0%	19%
7	17%	30%	0%	0%	0%	0%	36%	0%	17%
8	0%	53%	0%	7%	0%	0%	17%	0%	18%
9	9%	0%	0%	0%	0%	0%	0%	0%	2%
10	28%	0%	0%	16%	9%	0%	0%	0%	13%
11	0%	0%	0%	0%	0%	0%	0%	0%	0%
12	30%	8%	0%	0%	52%	0%	0%	0%	22%
13	42%	9%	0%	0%	50%	2%	0%	0%	26%
14	0%	42%	0%	17%	8%	19%	0%	0%	15%
15	37%	0%	29%	34%	1%	0%	0%	0%	19 %
16	15%	0%	48%	0%	46%	0%	0%	0%	25%
17	0%	49%	0%	0%	14%	0%	0%	0%	16%
18	0%	51%	0%	0%	52%	0%	0%	0%	27%
19	0%	24%	0%	0%	28%	0%	0%	0%	12%
20	5%	45%	0%	0%	41%	0%	0%	0%	19 %
21	0%	34%	26%	0%	0%	0%	0%	0%	13%
22	46%	0%	9%	0%	46%	0%	0%	0%	24%
23	0%	0%	46%	0%	16%	0%	0%	0%	15%
24	15%	55%	0%	0%	0%	0%	0%	0%	19%
25	12%	0%	0%	0%	31%	0%	0%	0%	10%
26	38%	0%	49%	0%	13%	0%	0%	0%	26%
27	0%	0%	0%	49%	37%	0%	0%	0%	28%
28	55%	0%	23%	0%	53%	0%	0%	0%	31%
29	47%	27%	0%	35%	20%	0%	0%	0%	27%
30	36%	0%	0%	0%	19%	0%	0%	0%	12%
Combined	26%	27%	16%	14%	27%	2%	5%	0%	19%

Example: Acton High Street (eastbound).

Percentage of journey time spent stationary.

Probe vehicle survey summary data

Example: Acton High Street (eastbound). Overall 923.8 seconds stationary over all runs, 413.3 seconds for ≤10 secs (45%), 510.5 seconds for >10 secs (55%).

Light vehicle emission rates at 2012

Primary NO₂ and NO emission data collected in 2012 were processed to conform to the following 28 light vehicle type categories:

- Passenger cars (M1) by fuel type, 'Euro' standard, and COPERT engine capacity class (15 categories);
- Diesel vans (N1) by 'Euro' standard (**3 categories**);
- Diesel taxis (black cabs) by model and 'Euro' standard (10 categories).

Emission observations with valid speed and acceleration measurements were utilised to define the dynamic relationship between emission rates, and the corresponding levels of engine load.

Diesel car – NO_x vs VSP

Diesel car – NO₂ vs VSP

Calculation of engine load power (W)

Engine load power (W) =

 $(C_f \times m \times g) \times v$

+ $(0.5 \times \rho \times C_d \times A \times v^2) \times v$

+ ((m × g × sin(α)) × v

+ (a × m × v × k_m)

Rolling resistance power (W)

Aerodynamic drag power (W)

Gradient power (W)

Acceleration power (W)

where:

Quantity	Description	Units	
W	Power	Watts	
m	Vehicle mass	kg	
v	Vehicle speed	m/s	
а	Vehicle acceleration	m/s ²	
α	Highway gradient	Degrees °	
C _d	Drag coefficient	Constant	
A	Vehicle frontal area	m ²	
ρ	Air density	kg/m³	
C _f	Coefficient of rolling resistance		
k _m	Rotational inertia coefficient		
g	Gravity	m/s ²	

Calculating case study area light vehicle emissions at 2012

- The basic approach entails integrating the 2012 remote sensing emissions data with the probe vehicle survey results collected in the case study areas.
- Essentially, emissions results are generated for each light vehicle class in each case study area, as if each of the different light vehicle classes were being driven through the case study routes in a manner (speed, acceleration, stops, delays) characterised by the data collected in the probe vehicle surveys.
- 28 different light vehicle classes

Calculating case study area light vehicle emissions at 2012

Simplifying a little:

- Calculate kW values from probe vehicle data at 10Hz for each of the 28 vehicle categories (e.g. Acton High Street eastbound = 1,382,528 calculated values);
- Assign NO and NO₂ emission rate values (g/kg) to each data value;
- Calculate NO and NO₂ (g/kg) summary statistics (mean, percentiles etc.) for each case study area, by direction, geographic section, and vehicle category;
- Calculate absolute NO and NO₂ emissions in grams (emissions rate g/kg x journey time secs x fuel consumption rate kg/sec x traffic flow by vehicle category and time period).

Heavy vehicle emission rates at 2012

- Simplified approach adopted (see report for details).
- Mean HGV emission rates derived from 2012 RSD surveys (N2 Euro II, III, IV, & V; N3 Euro II, IV, V). Be careful of small sample size and potential sampling bias.
- Simple distance based approach adopted, using published DfT fuel consumption data, and traffic volumes by class.
- Similar simplifications adopted for buses, using fuel consumption data supplied by TfL. Variation in bus type by case study location / route (10 types).

NO_x source apportionment 2012 by case study area (road transport)

Intra case study area spatial variation

🛾 2012 🛛 🗖 2017 🛸 2017 Scenario 4

Intra case study area spatial variation

A40 Western Avenue

Intra case study area variability by run

Passenger car fleet mix at 2012

Future year fleet mix assumptions

Need to be defined

- Age profile
- Market share by fuel type
- Market share by engine capacity
- Market share by Euro emissions standard

Passenger car fleet mix at 2017

Passenger car fleet mix at 2020

Example tabular abstract at 2017

Table 35: Mean NO (grams) in 2017: Light vehicles, average weekday (12 hour period)

	1	AHEB	AHWB	HGEB	HGLP	HGWB	HLNB	HLSB	WAEB	WAWB	WREB	WRWB	Total
Car Diesel													
< 2.0	Euro 0	0	0	0	0	0	0	0	1	1	0	0	4
	Euro 1	0	1	0	1	0	1	0	4	4	1	1	13
	Euro 2	3	6	2	8	3	12	5	43	49	11	8	149
	Euro 3	47	81	23	112	34	159	66	605	720	154	107	2109
	Euro 4	161	282	80	389	118	558	232	2112	2498	538	371	7340
	Euro 5	202	344	102	483	145	683	295	3069	3657	654	464	10097
	Euro 6	39	66	20	93	28	132	57	593	707	127	90	1953
> 2.0	Euro 0	0	0	0	0	0	0	0	1	1	0	0	5
	Euro 1	0	1	0	1	0	1	0	4	4	1	1	13
	Euro 2	2	3	1	4	1	6	3	24	27	6	4	82
	Euro 3	23	41	11	55	17	80	32	281	336	77	52	1004
	Euro 4	69	118	35	166	50	236	101	903	1114	225	160	3177
	Euro 5	54	93	27	130	39	185	78	721	883	178	124	2511
	Euro 6	8	14	4	20	6	29	12	111	136	27	19	387
	Sub total											2	28843
Car Petrol													
< 1.4	Euro 0	1	2	1	2	1	4	1	13	15	3	2	45
	Euro 1	2	3	1	4	1	6	2	21	24	6	4	73
	Euro 2	6	9	3	13	4	19	8	76	92	18	13	261
	Euro 3	10	17	5	23	7	33	14	131	155	32	23	449
	Euro 4	30	53	16	74	22	106	45	416	531	100	71	1466
	Euro 5	17	25	9	39	11	53	26	235	277	49	38	780
	Euro 6	8	12	4	19	5	26	13	115	135	24	19	381
1.4 - 2.0	Euro 0	2	4	1	5	2	8	3	27	31	8	5	96
	Euro 1	3	5	1	7	2	10	4	37	42	10	7	129
	Euro 2	17	29	9	40	12	57	24	211	249	55	39	742
	Euro 3	24	42	12	56	17	80	32	287	344	79	54	1027
	Euro 4	60	104	30	145	44	208	86	766	920	199	140	2702
	Euro 5	9	14	5	22	6	29	15	129	164	27	21	440
	Euro 6	3	5	2	7	2	10	5	45	57	9	7	152
>2.01	Euro 0	1	1	0	2	1	3	1	10	11	3	2	34

Emissions 'hot spot' due to queuing

🛾 2012 🛛 2017 🛸 2017 Scenario 4

Example scenarios

NO _x Index	Acton High Street	Haven Green	Horn Lane	A40	Western Road
2012 (Index=100)	100	100	100	100	100
2017 Business as usual	92.2	90.5	91.4	90.8	89.1
2017 Scrappage 10%	91.6	89.9	90.4	90.0	88.4
2017 Scrappage 20%	91.0	89.2	89.5	89.2	87.7
2017 Reduce diesel	92.1	90.4	91.3	90.7	89.0
2017 Switch off engines	91.3	89.2	87.5	90.1	87.1
2017 ULEZ	85.8	84.1	81.8	83.1	82.2

Acton High Street	Location				
NO ₂ µg/m ³ annual mean	88 High Street	182 High Street			
2012 Observed	54.7	48.9			
2017 Business as usual	47.9	43.2			
2020 Business as usual	41.1	37.4			
2017 Scrappage 10%	47.4	42.7			
2017 Scrappage 20%	46.8	42.3			
2017 Reduce diesel	47.9	43.1			
2017 Switch off engines	47.1	42.5			
2017 ULEZ	42.4	38.5			

Example scenarios

Horn Lane	Location			
NO ₂ µg/m ³ annual mean	156 Horn Lane	Horn Lane AQMS		
2012 Observed	40.7	54.7		
2017 Business as usual	36.0	47.2		
2020 Business as usual	31.4	39.9		
2017 Scrappage 10%	35.5	46.4		
2017 Scrappage 20%	35.0	45.6		
2017 Reduce diesel	35.9	47.1		
2017 Switch off engines	33.9	43.8		
2017 ULEZ	30.8	38.9		

A40 Western Avenue	Location							
$NO_2 \ \mu g/m^3$ annual mean	Wendover Court	Western Ave AQMS	98 Western Avenue	6 Western Avenue				
2012 Observed	56.0	75.1	51.8	70.8				
2017 Business as usual	47.7	62.8	44.4	59.4				
2020 Business as usual	39.3	50.1	36.9	47.7				
2017 Scrappage 10%	47.0	61.7	43.8	58.4				
2017 Scrappage 20%	46.3	60.7	43.2	57.4				
2017 Reduce diesel	47.6	62.6	44.3	59.2				
2017 Switch off engines	47.1	61.8	43.9	58.5				
2017 ULEZ	40.8	52.5	38.2	49.8				

Volkswagen revelations VW scandal: 1.2m UK vehicles affected

C 1 hour ago Business

Volkswagen has announced that nearly 1.2 million of its vehicles sold in the UK are fitted with the software behind the emissions scandal.

VW crisis

©BBC website 30/9/2015

Fuel security...

Diesel pumps could run dry, says RAC Foundation

By Richard Westcott BBC Transport Correspondent

O 7 hours ago Business ⊨ 685

©BBC website 16/9/2015

Issues for consideration (1)

- Some aspects of local air quality management would benefit from closer attention, e,g, the management and monitoring of local air quality 'hot spots'. Quantify the impact on emissions of idling at traffic signals; quantify the impact on air quality and receptors; assess the penetration and potential efficacy of 'stop/start' systems; explore the potential for 'infrastructure to driver', or 'infrastructure to vehicle' communication;
- Important not to underestimate the challenge of dealing with the 'legacy' effect of vehicles already on the network (which will remain for many years unless interventions are made). 'Cleaner' new vehicles will take many years to penetrate the fleet;
- The UK would benefit from a systematic and effective system for monitoring 'real world' vehicle emissions performance and time trends (as new technologies enter the fleet, and as vehicles age), and the impact these emissions have on local air quality and health;

Issues for consideration (2)

- Review of UK 'MoT' test procedures?? Include NOx??
- Champion a more 'joined up' approach between Defra, DfT, Health, and Treasury;
- It would be highly desirable to explore the potential for integrating emissions data sources (remote sensing, PEMS, laboratory vehicle measurements). Capitalise on strengths, and mitigate weaknesses (e.g. variability in driver behaviour, instantaneous fuel consumption, idling characteristics etc.);
- The medium and long term consequences of the recent Volkswagen revelations, in terms of market responses, fiscal measures, and impact on the EU and UK regulatory framework, are yet to be determined (uncertainty);
- Try to avoid 'unintended consequences' of interventions (again).
 Role for a 'devils advocate' to challenge received wisdom.

Acknowledgements

- Defra and London Borough of Ealing for funding
- Dr John Freeman, Rizwan Yunus, and Russell Roberts (London Borough of Ealing)
- Finn Coyle (TfL) for bus information
- David Pryke (DfT)
- Martin Taylor (SMMT)
- Aerial photographs © Google Earth Pro.

Thank you

Glyn Rhys-Tyler BSc PhD FCIHT FCILT

Independent Consultant & Researcher Transport & Environment

Web: www.glynrhys-tyler.com

Email: admin@glynrhys-tyler.com

References

- Rhys-Tyler G.A. (2014). Scenario development to inform air quality action planning in Ealing. Report on behalf of the London Borough of Ealing. <u>https://www.glynrhys-</u> tyler.com/publications.html
- Rhys-Tyler G.A. and Bell M.C. (2012). Toward reconciling instantaneous roadside measurements of light duty vehicle exhaust emissions with type approval driving cycles. Environmental Science & Technology, 46(19), 10532-10538. <u>http://pubs.acs.org/doi/abs/10.1021/es3006817</u>.
- Carslaw D. and Rhys-Tyler G. (2013). Remote sensing of NO₂ exhaust emissions from road vehicles. Department for Environment Food and Rural Affairs (DEFRA). <u>http://uk-air.defra.gov.uk/library/reports?report_id=754</u>
- Carslaw, D.C., Rhys-Tyler, G. (2013). New insights from comprehensive on road measurements of NO_x, NO₂ and NH₃ from vehicle emission remote sensing in London, UK, Atmospheric Environment, Volume 81, Pages 339–347, <u>http://dx.doi.org/10.1016/j.atmosenv.2013.09.026</u> (open access)
- Presentation to APRIL (Transport sub-group), November 2013. <u>http://www.april-network.org/transport_and_noise/documents/Rhys-Tyler_APRIL_7th_Nov_13.pdf</u>
- Presentation to APRIL (Transport sub-group), July 2011. <u>http://www.april-network.org/transport_and_noise/documents/050711_Rhys_Tyler_Presentation.pdf</u>