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A B S T R A C T

This paper studies resilient distributed consensus in networks lacking the structural robustness necessary for
achieving consensus in the presence of misbehaving agents. Existing resilient consensus solutions, including
widely adapted weighted mean subsequence reduced (WMSR) resilient consensus algorithm, present robustness
conditions guaranteeing consensus among normal agents. However, when the graph is less robust than
required, they only inform that agents fail to achieve consensus and do not evaluate the network performance
comprehensively in such non-ideal scenarios. To address this limitation, we analyze the performance of resilient
consensus in non-ideal situations by introducing the concept of non-convergent nodes. These nodes/agents
cannot achieve consensus with any arbitrary agent due to the presence of misbehaving agents in the network.
This notion enables ordering graphs that lack required robustness and facilitates the assessment of partial
performance. Additionally, we demonstrate that among graphs with the same level of robustness (measured
by their (𝑟, 𝑠)-robustness), the number of non-convergent nodes varies significantly, indicating differing degrees
of non-resilience. We also present numerical evaluation of results. Our approach quantifies the network
performance under sub-optimal robustness conditions and offers a comprehensive resilience perspective.
1. Introduction

In a networked multiagent system, the presence of a few adversarial
or misbehaving agents can severely disrupt the system’s behavior. Intel-
ligent attacks targeting a subset of agents can impede the system from
achieving its desired performance objectives. Consider the distributed
consensus in multiagent systems, a canonical problem with several
applications across various domains, including networked control sys-
tems, multi-robot systems, and sensor networks. The primary goal here
is to ensure that all agents update their local states in a way that
eventually converges to a common state. A simple Linear Consensus
Protocol (LCP), where each agent updates its state by averaging its
neighbors’ states, solves the problem (e.g., Jadbabaie, Lin, & Morse,
2003; Olfati-Saber, Fax, & Murray, 2007; Ren, Beard, & Atkins, 2007).
However, a single misbehaving agent – agent that does not adhere to
the LCP – can prevent agents from achieving consensus (e.g., LeBlanc,
Zhang, Koutsoukos, & Sundaram, 2013). The primary objective of
resilient network systems is to withstand such disruptive scenarios,
guaranteeing the system’s performance objectives despite misbehaving
agents.

In a multiagent system, agents collect and incorporate data from
neighbors while updating their states and making decisions. To achieve
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resilience against misbehaving agents, designing strategies that discard
information from ‘bad’ neighbors during data aggregation and prioritize
data from ‘good’ neighbors is crucial. Additionally, ensuring that each
agent has a sufficient number of ‘good’ neighbors enhances resilience.
Based on these principles, various resilient distributed strategies and
algorithms have been proposed to tackle distributed optimization prob-
lems like consensus (Abbas, Shabbir, Li, & Koutsoukos, 2022; Ballotta,
Como, Shamma, & Schenato, 2024; Dibaji & Ishii, 2015; Ishii, Wang, &
Feng, 2022; LeBlanc et al., 2013; Ramos, Silvestre, & Silvestre, 2022;
Senejohnny, Sundaram, De Persis, & Tesi, 2019; Usevitch & Panagou,
2020b; Wang, Ishii, Bonnet, & Défago, 2022; Yan, Li, Mo, & Wen,
2022), diffusion (Li, Abbas, & Koutsoukos, 2019; Safi, Dibaji, & Pirani,
2022; Yu, de Lamare, & Yu, 2022), estimation (An & Yang, 2021; Chen,
Kar, & Moura, 2018; Mitra, Richards, Bagchi, & Sundaram, 2019; Mitra
& Sundaram, 2019), learning and optimization (Li, Abbas, & Kout-
soukos, 2020; Mitra, Richards, & Sundaram, 2020; Su & Vaidya, 2020;
Sundaram & Gharesifard, 2018; Yang & Bajwa, 2019; Yang, Gang, &
Bajwa, 2020; Zhao, He, & Wang, 2019). In particular, the Weighted-
Mean-Subsequence-Reduced (WMSR) algorithm, presented in LeBlanc
et al. (2013), stands out as a widely used resilient distributed consen-
sus approach. By ‘trimming’ (ignoring) extreme values collected from
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neighbors during aggregation and leveraging structural conditions on
the network graph, agents implementing the WMSR algorithm achieve
consensus in the face of misbehaving agents. Considering the wide
success of the trimming approach offered by the WMSR algorithm,
several variants of WMSR have been proposed in the literature, for
example, Abbas, Laszka, and Koutsoukos (2018), Chen et al. (2018),
Dibaji and Ishii (2017), Ishii et al. (2022), LeBlanc et al. (2013), Lu and
Jia (2023), Pirani, Mitra, and Sundaram (2023), Renganathan, Fathian,
Safaoui, and Summers (2021), Rezaee, Parisini, and Polycarpou (2021),
Saldana, Prorok, Sundaram, Campos, and Kumar (2017), Saulnier,
Saldana, Prorok, Pappas, and Kumar (2017), Shang (2018), Sundaram
and Gharesifard (2018), Usevitch and Panagou (2020b), Wen, Lv,
Zheng, Zhou, and Fu (2023) and Wu, Zhu, Zheng, and Wang (2021).
Additionally, other approaches have been proposed that assign a ‘score’
to neighbor values and weight them accordingly when updating agent
states. (e.g., Ballotta et al., 2024; Li et al., 2019; Pirani et al., 2023;
Ramos, Silvestre, & Silvestre, 2023).

In general, to study resilience in a distributed framework, we must
consider three aspects: the algorithm, the structure of the network, and
the adversarial attack. The algorithm refers to the state update protocol
of the normal ‘good’ nodes in the network. The structure of the network
refers to the interconnections among agents and describe information
sharing among agents. Finally, the adversarial model describes the
abilities of the misbehaving nodes and tries to approximate the scale
of the attack on the network. Current resilient strategies for multia-
gent networks effectively address adversarial scenarios. In particular,
the WMSR algorithm guarantees consensus among normal (i.e., non-
adversarial) agents if the number of misbehaving agents is bounded
by 𝐹 and the network graph meets the required robustness condition,
which depends on 𝐹 .

However, the WMSR algorithm (and its variants) adopts an all or
nothing approach to resilience, wherein meeting specific conditions en-
sures overall performance (consensus). Nevertheless, even the slightest
deviation from these conditions can lead to significant performance
degradation. For example, if there is one more adversary than permitted
in the network, or if the graph slightly lacks the required robustness,
agents may move arbitrarily far from their initial positions, leading to
a deterioration in the performance of the resilient consensus algorithm.
Consequently, analyzing the algorithm’s performance under non-ideal
situations becomes challenging, making it difficult to determine how
many agents can achieve consensus. This challenge is exacerbated
when the actual number of misbehaving agents exceeds the predefined
threshold (𝐹 ), necessitating the identification of agents that can or
cannot achieve consensus. In more realistic scenarios, it is crucial to
assess the partial performance of the network in non-ideal situations
— that is, determining how many agents can still achieve consensus.
Therefore, evaluating network performance in a continuous manner,
rather than a binary ‘objective achieved or not achieved’ approach,
becomes crucial. This requires exploring methods to rank networks
based on their robustness, particularly when they fall short of desired
resilience.

In this paper, we raise and study the following issue: How can
we evaluate the performance of the WMSR resilient consensus algorithm
in a network that fails to meet the structural robustness threshold for
guaranteeing consensus when facing 𝐹 misbehaving agents? To quantify
the ‘non-resilience’ of such graphs, we introduce the concept of non-
convergent nodes, which refers to agents in the network that fail to
achieve consensus with any arbitrary agent in the network due to the
presence of misbehaving agents (Section 3). This novel concept allows
us to order graphs that lack the robustness criteria for resilience against
𝐹 misbehaving agents, as Fig. 1 illustrates. The graph 𝐺 (green) in
the figure guarantees consensus despite a single misbehaving agent
(i.e., 𝐹 = 1) due to its (2, 2)-robustness, as explained later in Section 2.1.
In contrast, graphs 𝐺1, 𝐺2, 𝐺3, and 𝐺4 are all (2, 1)-robust and fail to
meet the required robustness for resilience against a single misbehaving
2 
Fig. 1. 𝐺 is robust enough against a single misbehaving agent, whereas 𝐺1 , 𝐺2 , 𝐺3 , 𝐺4
are not. By measuring the number of non-convergent nodes (red), we characterize the
non-resilience in graphs whose robustness is below the required threshold.

agent. Current resilience frameworks lack the ability to determine
which of these four graphs is relatively better/worse than the others.

Using the concept of non-convergent nodes, we can rank graphs
based on their ‘non-resilience,’ allowing us to evaluate partial perfor-
mance by quantifying the number of non-convergent nodes. Subse-
quently, in the paper (Sections 3.1, 3.2, and 3.3), we show that there
is significant variation in the number of non-convergent nodes among
graphs with the same robustness. In particular, we examine various
graph families categorized by their robustness and identify the graphs
with the maximum and minimum number of non-convergent nodes
within each family. Our results show that, within a single family of
graphs, there can be graphs with no non-convergent nodes, as well as
graphs where nearly all nodes are non-convergent. This underscores
a substantial disparity in non-resilience even among graphs with the
same robustness. The main contributions of the paper are summarized
below:

• We introduce the idea of non-convergent nodes in graphs to
characterize the degree of non-resilience against misbehaving
agents. A non-convergent node refers to a normal node for which
attacks exist, preventing it from converging to any arbitrary node
in the graph. By applying this notion, we compare graphs that
fail to meet the required graph robustness conditions for the
WMSR resilient consensus algorithm with 𝐹 misbehaving agents,
enabling the evaluation of partial performance in such networks.

• To assess the potential number of non-convergent nodes in net-
works under non-ideal robustness conditions, we systematically
construct graphs designed to maximize the presence of such
nodes. This analysis provides insight into the degree of non-
resilience exhibited by networks failing to meet the required
robustness criteria, as measured by the (𝑟, 𝑠)-robustness metric.
Specifically, we generate extremal cases for various (non-ideal)
robustness conditions, including (𝐹 + 1, 1), (𝐹 , 𝐹 ), and (𝐹 + 1, 𝐹 )
scenarios, employing circulant graphs, complete graphs, and their
combinations. By doing so, we quantify the worst-case deterio-
ration in network performance when facing more misbehaving
agents than initially anticipated during the network design phase.

• We provide a detailed numerical evaluation of our proposed
approach, illustrating our results and highlighting potential re-
search directions. Through illustrative examples and numerical
simulations, we showcase the practical relevance of our findings
and highlight the importance of considering non-ideal conditions
in resilience analysis.

We note that resilience against misbehaving agents hinges on the
choice of the distributed algorithm (state update rule). In our paper,
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we focus on the WMSR algorithm, a cornerstone in resilient distributed
consensus. However, our approach is not restricted to the WMSR al-
gorithm. Instead, it provides a framework that can readily be adapted
to examine the performance of other resilient distributed algorithms
in non-ideal scenarios. The rest of the paper is organized as follows:
Section 2 introduces the preliminaries, provides an overview of the
WMSR resilient consensus algorithm, and explains our problem. Sec-
tion 3 is the main section introducing the notion of non-convergent
nodes. It also presents graphs that, for given robustness specification,
maximize the number of non-convergent nodes. Section 4 illustrates
and experimentally evaluates the results. Finally, Section 5 concludes
the paper.

2. Preliminaries and resilient distributed consensus

We model a network of agents by an undirected graph 𝐺 = (𝑉 ,𝐸),
here the vertex set 𝑉 represents agents and the edge set 𝐸 represents

nteractions and information exchange between agents. We use the
erms vertex, node, and agent interchangeably. An (undirected) edge
etween nodes 𝑢 and 𝑣 is denoted by (𝑢, 𝑣). The neighborhood of node
, denoted by 𝑢, is {𝑣 ∈ 𝑉 ∶ (𝑢, 𝑣) ∈ 𝐸}. The degree of node 𝑢 is the
umber of nodes in 𝑢. The cardinality of a subset of vertices 𝑆 ⊆ 𝑉
s the number of nodes in 𝑆, and denoted by |𝑆|.

Each agent 𝑢 ∈ 𝑉 has a state 𝑥𝑢(𝑘) ∈ R at time 𝑘 that it updates ac-
cording to a predefined state update rule while incorporating the state
values of its neighbors in the update step. For the distributed consensus
of agents, the goal is to design the state update rule guaranteeing the
safety and agreement conditions stated below.

Definition 2.1 (Distributed Consensus). A network of agents 𝐺 = (𝑉 ,𝐸)
achieves consensus if the following conditions are satisfied:

1. (Safety) Let 𝑥min(0) and 𝑥max(0) denote the minimum and the
maximum of the initial states of nodes in 𝐺, respectively. Then,
𝑥min(0) ≤ 𝑥𝑢(𝑘) ≤ 𝑥max(0), ∀𝑢 ∈ 𝑉 , and for all times 𝑘.

2. (Agreement) As 𝑘 → ∞, 𝑥𝑢(𝑘) = 𝑥𝑣(𝑘) = 𝑥 for all pairs of nodes
𝑢, 𝑣 ∈ 𝑉 .

A simple state update rule, Linear Consensus Protocol (LCP), solves
the distributed consensus problem under conditions such as the net-
work is connected. The LCP, defined below, has been extensively
studied in the literature and widely applied.

𝑥𝑢(𝑘 + 1) =
∑

𝑣∈(𝑢∪{𝑢})
𝑤𝑢𝑣 𝑥𝑣(𝑘), (1)

where 𝑤𝑢𝑣 is some (positive) weight assigned by node 𝑢 to the state
value of 𝑣. Since 𝐺 is undirected in our case, 𝑤𝑢𝑣 = 𝑤𝑣𝑢. We consider
that agents exchange state values with each other in a synchronous
manner.

2.1. Resilient distributed consensus

It is well-known that (1) is not resilient to misbehaving nodes that
deviate from the LCP update rule. In fact, a single misbehaving node
can prevent the network from achieving consensus. Thus, distributed
algorithms are designed to guarantee consensus despite misbehaving
nodes. Misbehaving nodes in a network can manifest in different mod-
els, notably the malicious and Byzantine models. A malicious node
disregards the LCP to update its state; however, it consistently sends
the same state value to all of its neighbors at each time step 𝑘. On the
other hand, a Byzantine node is one that not only disregards the LCP
but can also send a different state value to each of its neighbors at
each time step. Similarly, the influence of misbehaving nodes on the
network is also determined by their numbers, leading to the formula-
tion of models like the 𝐹 -total and the 𝐹 -local. In the 𝐹 -total model,

the maximum number of misbehaving nodes in the entire network is

3 
bounded by 𝐹 . Conversely, in the 𝐹 -localmodel, the maximum number
of misbehaving nodes in the neighborhood of each node is at most 𝐹 .

The Weighted Mean Subsequence Reduced (WMSR) algorithm in
LeBlanc et al. (2013) offers a simple and efficient solution to the
resilient distributed consensus problem. WMSR is a type of a ‘trimming’
algorithm, which essentially trims or ignores some of the extreme
(largest and smallest) state values collected from its neighbors during
the state update. The rationale is to prevent potentially malicious or
Byzantine-influenced values from impacting the node’s state. The main
steps of the WMSR algorithm are as follows:

1. Each normal node 𝑢 collects state values of neighbors at each
time step 𝑘 and sorts them.

2. It then removes the 𝐹 largest (smallest) values strictly greater
(smaller) than 𝑥𝑢(𝑘). If the number of values strictly greater
(smaller) than 𝑥𝑢(𝑘) are less than 𝐹 , then 𝑢 removes all the values
strictly greater (smaller) than its own value. Let the set of nodes
in 𝑢 whose state values are removed by 𝑢 at the time step 𝑘
are denoted by 𝑢(𝑘).

3. The node 𝑢 then updates its state according to the following:

𝑥𝑢(𝑘 + 1) =
∑

𝑣∈(𝑢∪{𝑢})⧵𝑢(𝑘)
𝑤𝑢𝑣 𝑥𝑣(𝑘). (2)

The WMSR algorithm guarantees that normal nodes achieve dis-
tributed consensus despite misbehaving nodes, given that the under-
lying network graph fulfills certain robustness conditions. These con-
ditions are defined using a graph robustness metric referred to as
(𝑟, 𝑠)-robustness. We define the (𝑟, 𝑠)-robustness and related notions
below, and then state relevant conditions on the graph (from LeBlanc
et al., 2013) guaranteeing resilient consensus despite misbehaving
nodes.

Definition 2.2 (𝑟-reachable Set of 𝑆,  𝑟
𝑆 ). Given a graph 𝐺 = (𝑉 ,𝐸), a

subset 𝑆 ⊂ 𝑉 , and a positive integer 𝑟. A node 𝑥 ∈ 𝑆 is 𝑟-reachable in 𝑆
if it has at least 𝑟 neighbors outside of 𝑆. The set of 𝑟-reachable nodes
in 𝑆 is

 𝑟
𝑆 = {𝑥 ∈ 𝑆 ∶ |𝑥 ⧵ 𝑆| ≥ 𝑟}. (3)

We now define the notion of (𝑟, 𝑠)-robustness in graphs.

Definition 2.3 ((𝑟, 𝑠)-Robust Graph (LeBlanc et al., 2013)). For positive
integers 𝑟 and 𝑠, a graph 𝐺 = (𝑉 ,𝐸) is (𝑟, 𝑠)-robust if for every pair
of non-empty disjoint subsets of nodes 𝑆1, 𝑆2 ⊂ 𝑉 , at least one of the
following conditions is satisfied.

(i) | 𝑟
𝑆1
| = |𝑆1| (i.e., each node in 𝑆1 has at least 𝑟 neighbors outside

of 𝑆1),
(ii) | 𝑟

𝑆2
| = |𝑆2| (i.e., each node in 𝑆2 has at least 𝑟 neighbors outside

of 𝑆2),
(iii) | 𝑟

𝑆1
|+ | 𝑟

𝑆2
| ≥ 𝑠 (i.e. the number of nodes in 𝑆1 and 𝑆2 having at

least 𝑟 neighbors outside of their respective sets is at least 𝑠).

We illustrate these conditions in Fig. 2.
LeBlanc et al. in LeBlanc et al. (2013) provide robustness conditions

on the network graph to achieve resilient consensus under 𝐹 -total/local
and malicious/Byzantine models. For example, to guarantee consensus
under the 𝐹 -total malicious model, a necessary and sufficient condition
is stated below.

Theorem 2.1 (LeBlanc et al., 2013). Consider a network 𝐺 = (𝑉 ,𝐸) with
|𝑉 | = 𝑁 nodes, of which at most 𝐹 nodes are malicious (i.e., 𝐹 -total ma-
licious model). If each normal node implements the WMSR algorithm with
parameter 𝐹 , then the distributed consensus of normal nodes is achieved if

and only if 𝐺 is (𝐹 + 1, 𝐹 + 1)-robust.
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Fig. 2. Three conditions for (𝑟, 𝑠)-robustness. Blue nodes have at least 𝑟 neighbors outside of their subset. (a) | 𝑟
𝑆1
| = |𝑆1|, (b) | 𝑟

𝑆2
| = |𝑆2|, (c) | 𝑟

𝑆1
| + | 𝑟

𝑆2
| ≥ 𝑠.
It means that any graph that is not (𝐹 +1, 𝐹 +1)-robust is not ‘good
enough’ to achieve resilient consensus in a network with 𝐹 malicious
nodes, that is, we cannot guarantee that all normal nodes converge to
a common state.

2.2. Main question

In existing research, results for resilient distributed consensus gener-
ally offer a binary view: a network graph under a specific misbehavior
model either satisfies the robustness criterion to guarantee all normal
agents’ convergence to a common point, or falls short. However, this
dichotomous approach limits the possibility of a comparative analysis
between network graphs that fail to meet the robustness criteria, thus
leaving a gap in our understanding of the relative suitability of different
graphs for consensus. Consider two distinct graphs, 𝐺1 = (𝑉 ,𝐸1) and
𝐺2 = (𝑉 ,𝐸2), both of which are (𝐹 + 1, 𝐹 )-robust. Under an 𝐹 -total
malicious model, both graphs fall short of the robustness necessary to
confirm resilient consensus per the WMSR algorithm (Theorem 2.1).
However, it is plausible that one graph demonstrates a relative advan-
tage over the other in terms of achieving resilient distributed consensus.
This raises an important question:

How can we evaluate the performance of a network that fails to meet the
robustness threshold for guaranteeing consensus when facing 𝐹 misbehaving
agents under different attack scenarios?

To address this issue, the paper introduces the concept of non-
convergent nodes within a network to measure a network’s degree of
non-resilience. As a result, we can assess the network’s inadequacy
for resilient consensus in scenarios where the network robustness falls
short. This new methodology enables us to extend the analysis of net-
work resilience beyond existing frameworks, allowing for comparative
evaluation of networks that fall short of the required robustness. We
demonstrate that networks of the same size and with the same (𝑟, 𝑠)-
robustness may exhibit varying quantities of non-convergent nodes.
We focus on the constructions that lead to the maximum number of
non-convergent nodes under a given (𝑟, 𝑠)-robustness condition.

Remark 2.2. This paper primarily focuses on the 𝐹 -total malicious
nodes model; however, the results can be readily adapted to other
models, including the 𝐹 -local and Byzantine models. Furthermore,
although we consider the resilient consensus problem here, the ap-
proach remains applicable in other resilient distributed optimization
setups (e.g., Sundaram & Gharesifard, 2018; Zhao et al., 2019; Zhu,
Lin, Velasquez, & Liu, 2023), where the network must meet some
connectivity or robustness conditions for resilience against misbehaving
nodes.

3. Quantifying non-resilience of WMSR resilient consensus

In this section, we first define the concept of non-convergent nodes
to quantify the degree of ‘non-resilience’ in networks failing to meet
the required robustness condition. Then, we construct networks with
the maximal number of non-convergent nodes. The goal is to demon-
strate the significant variation in the number of non-convergent nodes
4 
across graphs with the same robustness. We recall that an (𝑟, 𝑠)-robust
network, where either 𝑟 or 𝑠 is smaller than 𝐹 + 1, does not guarantee
resilient consensus in the face of 𝐹 malicious nodes. Therefore, to
highlight the extent of non-resilience in networks under the 𝐹 -total
malicious model, we design (𝑟, 𝑠)-robust graphs for different values of 𝑟
and 𝑠 while maximizing the number of non-convergent nodes. Finally,
we demonstrate that graphs with the same (𝑟, 𝑠)-robustness may have
varying numbers of non-convergent nodes.

At the network level, the adversary aims to disrupt the convergence
of all normal nodes at a common point by utilizing 𝐹 malicious nodes.
At the node level, the adversary’s influence can be determined by
its ability to prevent a normal node 𝑢 from converging with another
arbitrary normal node. For example, consider a normal node 𝑢 in
a network 𝐺 = (𝑉 ,𝐸). An attack consisting of 𝐹 malicious nodes
may exist, preventing 𝑢 and some other normal node, say 𝑣, from
converging; however, no such attack might be possible that hinders
the convergence of 𝑢 and a different normal node, say 𝑤. Hence, we
evaluate the adversary’s impact at the node level by measuring its
ability to prevent a normal node 𝑢 from converging with any other
arbitrary normal node. This concept is formally defined as follows:

Definition 3.1 (Non-convergent Node). A normal node 𝑢 is non-conver-
gent (under the 𝐹 -total model) if for every 𝑣 ∈ 𝑉 ⧵ {𝑢} there is a
set of at most 𝐹 malicious nodes from 𝑉 ⧵ {𝑢, 𝑣} preventing 𝑢 and
𝑣 from converging at a common point. We denote the number of
non-convergent nodes in 𝐺 by 𝛼𝐹 (𝐺).

If a graph is (𝐹 +1, 𝐹 +1)-robust, there are no non-convergent nodes
under the 𝐹 -total malicious nodes model (by Theorem 2.1). However,
when the graph’s robustness is lower, that is, 𝐺 is (𝑟, 𝑠)-robust for
𝑟, 𝑠 < 𝐹 + 1, then the network may have multiple non-convergent
nodes depending on the structure of 𝐺. A detailed illustration of a
non-convergent node is presented in Section 4. Non-convergent nodes
signify lack of guaranteed convergence to any other node, directly
reflecting the network’s vulnerability and non-resilience to 𝐹 malicious
nodes. As the robustness of the graph increases, the number of non-
convergent nodes generally decreases. Fig. 3 illustrates this, where none
of the three graphs is (4, 4)-robust.

However, it is important to note that graphs with the same (𝑟, 𝑠)-
robustness can still have different numbers of non-convergent nodes,
as discussed in Section 4 (Fig. 10). Thus, graphs with the same (𝑟, 𝑠)-
robustness can exhibit varying levels of ability (or inability) to handle
adversarial attacks, as indicated by the number of non-convergent
nodes. To systematically study this, we consider various graph families
in which all graphs within a given family have the same (𝑟, 𝑠)-robustness
for some 𝑟 and 𝑠. We then examine the maximum and minimum values
of 𝛼(𝐺) within each family. This approach will reveal the extent of
variation in the number of non-convergent nodes among graphs with
identical (𝑟, 𝑠)-robustness. To formalize this, we define the following:

Definition 3.2. Let G(𝑁, 𝑟, 𝑠) represent the family of all graphs
consisting of 𝑁 nodes that are (𝑟, 𝑠)-robust. For a positive integer 𝐹 ,
we define

𝛼𝐹 (G(𝑁, 𝑟, 𝑠)) = max 𝛼𝐹 (𝐺), (4)

𝐺∈G(𝑁,𝑟,𝑠)
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Fig. 3. The number of non-convergent nodes (highlighted red) in (a), (b), and (c) are 6, 3, and 1, respectively.
𝛼𝐹 (G(𝑁, 𝑟, 𝑠)) = min
𝐺∈G(𝑁,𝑟,𝑠)

𝛼𝐹 (𝐺), (5)

where 𝛼𝐹 (𝐺) is the number of non-convergent nodes in 𝐺 under the
𝐹 -total model.

Since 𝛼𝐹 in (4) represents the maximum number of non-convergent
nodes a graph can have within a given family, it characterizes the
worst-case scenario from a non-resilience perspective. Conversely, 𝛼𝐹
represents the best-case scenario. Here, we consider three distinct graph
families: G(𝑁,𝐹 + 1, 1), G(𝑁,𝐹 , 𝐹 ), and G(𝑁,𝐹 + 1, 𝐹 ). Note that all
these families contain graphs lacking the necessary robustness to be
resilient against 𝐹 malicious nodes. We explain the choice of these cases
below.

• G(𝑁,𝐹 , 𝐹 ): This family contains (𝐹 , 𝐹 )-robust graphs that demon-
strate resilience up to 𝐹 −1 malicious agents. This case, therefore,
assesses the existence of non-convergent nodes when the network
faces one additional malicious node beyond its design capacity.

• G(𝑁,𝐹+1, 𝐹 ): This family contains (𝐹+1, 𝐹 )-robust graphs, which
are positioned closely to the ideal (𝐹 + 1, 𝐹 + 1)-robust graphs;
however, they fail to ensure resilience against 𝐹 malicious nodes.
Our examination here revolves around understanding the poten-
tial number of non-convergent nodes in graphs that narrowly miss
meeting the desired robustness criteria.

• G(𝑁,𝐹 +1, 1): This group contains (𝐹 +1, 1)-robust graphs, which
are considered because the parameter 𝑟 in (𝑟, 𝑠)-robustness gener-
ally takes precedence in the partial order that determines relative
robustness. So, we consider the case where 𝑟 condition is satisfied
(i.e., 𝑟 = 𝐹 + 1); however, the 𝑠 condition is completely relaxed.

These diverse cases offer valuable insights into the trade-offs and
implications of varying levels of graph robustness, shedding light on
the nuanced relationship between structural properties and resilience in
distributed consensus scenarios. Note that if a graph 𝐺 is (�̂�, �̂�)-robust for
some �̂� and �̂�, then it must also be (𝑟, 𝑠)-robust for 𝑟 ≤ �̂� and 𝑠 ≤ �̂�. Thus,
G(𝑁, �̂�, �̂�) ⊆ G(𝑁, 𝑟, 𝑠) for �̂� ≥ 𝑟 and �̂� ≥ 𝑠. For instance, consider a family
G(𝑁,𝐹 , 𝐹 ), and a graph 𝐺, where 𝐺 is an (𝐹 + 1, 𝐹 + 1)-robust graph
with 𝑁 nodes. Since 𝐺 must also be (𝐹 , 𝐹 )-robust, 𝐺 ∈ G(𝑁,𝐹 , 𝐹 ). More
generally, G(𝑁,𝐹+1, 𝐹+1) ⊆ G(𝑁,𝐹 , 𝐹 ). Furthermore, an (𝐹+1, 𝐹+1)-
robust graph 𝐺 will not have any non-convergent node, and therefore,
𝛼𝐹 (𝐺) = 0, which means 𝛼𝐹 (G(𝑁,𝐹 + 1, 𝐹 + 1)) = 0. This directly
implies that 𝛼𝐹 (G(𝑁,𝐹 , 𝐹 )) = 0. By a similar argument and observing
that G(𝑁,𝐹+1, 𝐹+1) ⊆ G(𝑁,𝐹+1, 𝐹 ), and G(𝑁,𝐹+1, 𝐹+1) ⊆ G(𝑁,𝐹+
1, 1), we deduce, 𝛼𝐹 (G(𝑁,𝐹 + 1, 𝐹 )) = 0 and 𝛼𝐹 (G(𝑁,𝐹 + 1, 1)) = 0.

Next, we focus on finding the maximum number of non-convergent
nodes a graph can have within a graph family, i.e., 𝛼𝐹 (G(𝑁,𝐹 + 1, 1)),
𝛼𝐹 (G(𝑁,𝐹 , 𝐹 )), and 𝛼𝐹 (G(𝑁,𝐹 + 1, 𝐹 )). For this, we construct (𝐹 +
1, 1), (𝐹 , 𝐹 ), and (𝐹 + 1, 𝐹 )-robust graphs with the maximal number of
non-convergent nodes under the 𝐹 -total malicious nodes model. Our
constructions leverage the circulant graph, empty graph, and graph join
operations, which we define below.

Definition 3.3 (Circulant Graph). A circulant graph 1,2,…,𝑀
𝑁𝑐

is an
undirected graph with 𝑁𝑐 nodes, denoted by {𝑢0, 𝑢1,… , 𝑢𝑁𝑐−1}, where
each 𝑢 is adjacent to 𝑢 for all 𝑗 ∈ {1,… ,𝑀}.
𝑖 𝑖±𝑗 (mod 𝑁𝑐 )

5 
We note that the degree of each node in 1,2,…,𝑀
𝑁𝑐

is 2𝑀 .

Definition 3.4 (Empty Graph). An empty graph, denoted by 𝑁 , is a
graph with 𝑁 nodes and an empty edge set.

Definition 3.5 (Graph Join). Given two graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 =
(𝑉2, 𝐸2), the join graph, denoted by 𝐺1⊕𝐺2 = (𝑉1∪𝑉2, 𝐸1∪𝐸2∪{(𝑎, 𝑏) ∶
𝑎 ∈ 𝑉1, 𝑏 ∈ 𝑉2}). In other words, each node 𝑢 in 𝐺1 is adjacent to all
the nodes in 𝐺2.

Fig. 4 illustrates the circulant graph 1,2
7 (blue), empty graph 2

(gray) and their join  = 2 ⊕ 1,2
7 .

3.1. (𝐹 + 1, 1)-robust graphs

In this sub-section, we consider the graph family G(𝑁,𝐹 + 1, 1) and
examine the (𝐹 + 1, 1)-robustness condition that is considerably less
restrictive compared to the (𝐹 +1, 𝐹 +1)-robustness (which guarantees
the absence of non-convergent nodes as well as resilient consensus
despite 𝐹 malicious nodes). We show that there are (𝐹 + 1, 1)-robust
graphs, wherein almost all the nodes are non-convergent, thus, showing
that 𝛼𝐹 (G(𝑁,𝐹 + 1, 1)) is close to 𝑁 .

Lemma 3.1. For given integers 𝐹 ≥ 2 and 𝑁𝑐 ≥ 2𝐹 + 1, the graph
 = 2 ⊕ 1,…,𝐹−1

𝑁𝑐
is (𝐹 + 1, 1)-robust.

Proof. Let 𝑈 and 𝑉 denote the set of nodes in 1,…,𝐹−1
𝑁𝑐

and 2,
respectively. Let 𝑆1 and 𝑆2 be two disjoint non-empty sets of nodes
in . We show that at least one of these subsets is (𝐹 + 1)-reachable.
There are three cases.

(a) At least one of the subsets contains nodes from 𝑉 only. Without
the loss of generality (w.lo.g.), assume 𝑆1 ⊆ 𝑉 . Since |𝑈 | = 𝑁𝑐 ≥
2𝐹 + 1 and each 𝑣 ∈ 𝑆1 is adjacent to all nodes in 𝑈 , we get
𝐹+1
𝑆1

= 𝑆1 (recall Definition 2.3).
(b) At least one of the subsets, say 𝑆1, contains nodes from 𝑈 only,

i.e., 𝑆1 ⊆ 𝑈 . There are two choices for 𝑆2.

(b-1) 𝑆2 ∩ 𝑉 = ∅: In this case, at least one of the subsets 𝑆1
and 𝑆2 have at most 𝐹 nodes as |𝑈 | ≥ 2𝐹 + 1. W.l.o.g.,
assume |𝑆1| ≤ 𝐹 . Each node in 𝑈 , and hence in 𝑆1, has
at 2𝐹 − 2 neighbors in 𝑈 . Thus, each 𝑢 ∈ 𝑆1 has at least
(2𝐹 − 2) − (𝐹 − 1) = 𝐹 − 1 neighbors in 𝑈 ⧵ 𝑆1. Also, each
𝑢 ∈ 𝑆1 is adjacent to both nodes in 𝑉 . Thus, 𝑢 ∈ 𝑆1 has at
least 𝐹 − 1 + 2 = 𝐹 + 1 neighbors outside of 𝑆1, thus, the
subset 𝑆1 is (𝐹 + 1)-reachable.

(b-2) 𝑆2 ∩ 𝑉 ≠ ∅: If |𝑆1| ≤ 𝐹 , then 𝑆1 is (𝐹 + 1)-reachable by the
above case (b-1). So, assume |𝑆1| ≥ 𝐹 +1. Since 𝑉 ∩𝑆2 ≠ ∅,
let 𝑣 ∈ (𝑆2 ∩ 𝑉 ). Note that 𝑣 is adjacent to all nodes in 𝑆1,
which means the subset 𝑆2 is (𝐹 + 1)-reachable.

(c) 𝑆1 and 𝑆2 contain nodes from both 𝑈 and 𝑉 . Let 𝑣1 ∈ (𝑆1∩𝑉 ) and
𝑣2 ∈ (𝑆2∩𝑉 ). Since |𝑈 | ≥ 2𝐹 +1, at least one of the subsets 𝑆1∩𝑈
and 𝑆2∩𝑈 has at most 𝐹 nodes. Assume w.l.o.g. that |𝑆1 ∩ 𝑈 | ≤ 𝐹 .
Then, 𝑣1 has at least 𝐹+1 neighbors outside of 𝑆1 (as 𝑣1 is adjacent
to all the nodes in 𝑈). As a result, 𝑆1 is (𝐹 + 1)-reachable. This
completes the proof. ■
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Fig. 4.  = 2 ⊕ 1,2
7 is (4, 1)-robust.

Fig. 4 illustrates an example of such a graph for 𝐹 = 3 and 𝑁𝑐 = 7.
ext, we show that all except two nodes in the graph considered in
emma 3.1 are non-convergent, thereby showing that 𝛼𝐹 (G(𝑁,𝐹 +

1, 1)) ≥ 𝑁 − 2.

Theorem 3.2. For given integers 𝐹 ≥ 2 and 𝑁 ≥ 2𝐹 +3, let G(𝑁,𝐹 +1, 1)
be a family of all (𝐹 + 1, 1)-robust graphs with 𝑁 nodes, then

𝛼𝐹 (G(𝑁,𝐹 + 1, 1)) ≥ 𝑁 − 2.

roof. We prove the statement by showing that there exists a graph
n G(𝑁,𝐹 + 1, 1) that has 𝑁 − 2 non-convergent nodes. For this, let
𝑐 = 𝑁 − 2, and consider the graph  = 2 ⊕ 1,…,𝐹−1

𝑁𝑐
, which is

(𝐹 + 1, 1)-robust by Lemma 3.1. Let 𝑈 = {𝑢0 ⋯ , 𝑢𝑁𝑐−1} denote the set
of nodes in 1,…,𝐹−1

𝑁𝑐
and 𝑉 = {𝑣1, 𝑣2} denote the two nodes in 2.

Note that |𝑈 | + |𝑉 | = 𝑁 . We will show that each 𝑢𝑖 ∈ 𝑈 is a non-
convergent node under the 𝐹 -total attack model. First, we show that 
is not (𝐹 + 1, 𝐹 + 1)-robust.

Consider two disjoint subsets 𝑆1 and 𝑆2, where 𝑆1 = {𝑢0,… , 𝑢𝐹−1}∪
𝑣1}, and 𝑆2 = (𝑈 ⧵ 𝑆1) ∪ {𝑣2}. Note that each 𝑢𝑗 ∈ 𝑈 has 2(𝐹 − 1)

neighbors in 𝑈 . Also, each 𝑢𝑖 ∈ 𝑆1 ∩ 𝑈 has at most 𝐹 − 1 neighbors in
𝑈 ⧵ 𝑆1 and only one neighbor in 𝑉 ⧵ 𝑆1. Thus, each node in 𝑆1 ∩ 𝑈
has at most 𝐹 neighbors outside of 𝑆1. Since 𝑣1 is adjacent to all nodes
in 𝑈 ⧵ 𝑆1 and |𝑈 ⧵ 𝑆1| ≥ 𝐹 + 1, we have 𝐹+1

𝑆1
= {𝑣1}. Similarly, each

𝑢𝑗 ∈ 𝑆2 ∩𝑈 has at most 𝐹 neighbors outside of 𝑆2. Also, 𝑣2 has at most
𝐹 neighbors outside of 𝑆2 (as |𝑆1| = 𝐹 + 1 and 𝑣2 is not adjacent to
1 ∈ 𝑆1). Thus, 𝐹+1

𝑆2
= ∅, which means |𝐹+1

𝑆1
∪ 𝐹+1

𝑆2
| = 1 < 𝐹 +1, and

is not (𝐹 + 1, 𝐹 + 1)-robust.
Next, we proceed to show that the number of non-convergent nodes

n  is 𝑁 − 2, i.e., 𝛼𝐹 () = 𝑁 − 2. For this, assign some value 𝑎 ∈ R to
ll the nodes in 𝑆1, and some value 𝑏 > 𝑎 to all the nodes in 𝑆2. Let
1 ∈ 𝑆1, which is the only node having 𝐹 + 1 neighbors outside of
1, be the malicious node, and all the remaining nodes in 𝑆1 and 𝑆2
re normal. Then, each normal node has at most 𝐹 neighbors outside
f its respective subset (i.e., 𝑆1 and 𝑆2). It means each normal node
n 𝑆1 has at most 𝐹 neighbors with values strictly greater than the
ode’s value. Similarly, each normal node in 𝑆2 has at most 𝐹 neighbors
ith values strictly smaller than the node’s value. By implementing the
MSR algorithm, each normal node in 𝑆1 ∪ 𝑆2 removes values from

ll of its neighbors that are outside of its respective subset, and hence,
ever updates its value. This means normal nodes in 𝑆1 and 𝑆2 maintain
he values 𝑎 and 𝑏, respectively, and do not converge at a common
alue.

In particular, consider 𝑢0 ∈ 𝑆1, and observe that it does not converge
o any of the nodes in 𝑆2 = {𝑢𝐹 ,… , 𝑢𝑁𝑐−1, 𝑣2}. Now, we select again two
isjoint nonempty subsets, 𝑆′

1 and 𝑆′
2, as following:

Let 𝑆′
1 = {𝑢0, 𝑢𝑁𝑐−𝐹+1,… , 𝑢𝑁𝑐−1}∪{𝑣2} (i.e., in 𝑆′

1, include the nodes
in 𝑈 that are on the ‘left’ of 𝑢0 compared to the previous case of 𝑆1,

here nodes to the ‘right’ of 𝑢0 were included). Note that |𝑆′
1| = 𝐹 + 1.

oreover, let 𝑆′
2 = (𝑈 ⧵ 𝑆′

1) ∪ {𝑣1}, and assume 𝑣2 ∈ 𝑆′
1 to be the

alicious node. Then, by the same argument used above (i.e., in the
ase of 𝑆1 and 𝑆2), we can ensure that 𝑢0 does not converge to any of
he nodes in 𝑆′

2. Since 𝑆2 ∪𝑆′
2 = (𝑈 ∪𝑉 )⧵{𝑢0}, we ensure that for every
node pair (𝑢0, 𝑥), where 𝑥 ∈ (𝑈 ∪𝑉 ) ⧵ {𝑢0}, there is an attack of at most

6 
Fig. 5. (a) A set 𝑆 of four nodes contains two nodes (red), each of which has two
neighbors outside of 𝑆. (b) A set 𝑆 contains five nodes, of which four nodes (red) have
at least one neighbor outside of 𝑆.

𝐹 nodes such that 𝑢0 and 𝑥 do not converge. It means that 𝑢0 is a non-
convergent node. By the symmetry of the graph and applying the same
arguments as above to other nodes in 𝑈 implies that all the nodes in
𝑈 , where |𝑈 | = 𝑁−2, are non-convergent, which means 𝛼𝐹 () = 𝑁−2.
This directly implies that 𝛼𝐹 (G(𝑁,𝐹 + 1, 1)) ≥ 𝑁 − 2, which completes
the proof. ■

Thus, in the family G(𝑁,𝐹 + 1, 1), there exist (𝐹 + 1, 1)-robust
raphs with a total of 𝑁 nodes, where, as 𝑁 → ∞, the ratio of
on-convergent nodes to 𝑁 approaches 1. Conversely, there are also
aximally (𝐹 +1, 1)-robust graphs that do not have any non-convergent
odes. This highlights a significant disparity in the number of non-
onvergent nodes among (𝐹 +1, 1)-robust graphs. Therefore, while (𝐹 +
, 1)-robustness is a useful measure of a graph’s resilience, it does not
ully capture the extent of non-resilience, as quantified by the number
f non-convergent nodes.

.2. (𝐹 , 𝐹 )-robust graphs

Next, we consider (𝐹 , 𝐹 )-robust graphs, which ensure resilience to
− 1 malicious nodes. Our objective is to examine the maximum

umber of non-convergent nodes in a graph when it faces an addi-
ional malicious node beyond its resilience threshold. In particular, we
nvestigate the scenario where the graph is subjected to 𝐹 malicious
odes, surpassing its initial resilience threshold of 𝐹 − 1. Our goal
s to construct (𝐹 , 𝐹 )-robust graphs with the maximum number of
on-convergent nodes, enabling us to explore 𝛼𝐹 (G(𝑁,𝐹 , 𝐹 )). Before
resenting the graph construction, we state the following observation
elated to circulant graphs.

bservation 3.3. Consider a circulant graph 
1,2,…,

⌈

𝐹
2

⌉

−2

𝑁𝑐
, where 𝐹 ≥ 5

nd 𝑁𝑐 ≥ 𝐹 + 1. Let 𝑖 be some positive integer, where 3 ≤ 𝑖 ≤ 𝐹+2
2 . If 𝑆 is

a subset of nodes in the circulant graph, where 𝐹 − 𝑖 ≤ |𝑆| ≤ 𝑁𝑐 − (1 + 𝑖),
then, at least one of the following is true.

(i) The number of nodes in 𝑆 that are adjacent to at least (𝑖 − 2) nodes
outside of 𝑆 is at least 𝐹 + 2 − 2𝑖, i.e., | 𝑖−2

𝑆 | ≥ 𝐹 + 2 − 2𝑖.
(ii) All nodes in 𝑆 are adjacent to at least 𝑖 − 2 nodes outside of 𝑆,

i.e., | 𝑖−2
𝑆 | = |𝑆|.

Fig. 5 illustrates the observation through examples. Consider a
irculant graph 1,2

10 with 𝐹 = 8 and 𝑁𝑐 = 10. For 𝑖 = 4, Fig. 5(a) shows
set 𝑆 of size 4. There are two (𝐹 + 2 − 2𝑖 = 2) nodes in 𝑆, shown in

red, such that each of them has two (𝑖− 2 = 2) neighbors outside of 𝑆.
imilarly, in Fig. 5(b), we consider 𝑖 = 3 and a set of nodes 𝑆 of size
. By Observation 3.3, there exist four (𝐹 + 2 − 2𝑖 = 4) nodes in 𝑆 (red
olored), each of which has at least 𝑖 − 2 = 1 neighbor outside of 𝑆.

Next, we present our construction of (𝐹 , 𝐹 )-robust graphs.
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Lemma 3.4. For integers 𝐹 > 4 and 𝑁 ≥ 2𝐹 + 3, the graph  =

𝐹+2⊕
1,…,⌈ 𝐹

2 ⌉−2
𝑁−(𝐹+2) , which is the join of complete graph 𝐹+2 and circulant

raph 
1,…,⌈ 𝐹

2 ⌉−2
𝑁−(𝐹+2) , is (𝐹 , 𝐹 )-robust.

Proof. Let 𝑈 and 𝑉 denote the set of nodes in 
1,…,⌈ 𝐹

2 ⌉−2
𝑁−(𝐹+2) and 𝐹+2,

respectively. Let 𝑆1 and 𝑆2 be two disjoint non-empty sets of nodes in
the given . There are three cases:

(a) One of the subsets contains nodes from 𝑉 only. W.l.o.g, assume
𝑆1 ⊆ 𝑉 . Since |𝑈 | ≥ 𝐹 +1 and each 𝑣 ∈ 𝑆1 is adjacent to all nodes
in 𝑈 , we get 𝐹

𝑆1
= 𝑆1.

(b) One of the subsets contains nodes from 𝑈 only. W.l.o.g, assume
𝑆1 ⊆ 𝑈 : Since |𝑉 | ≥ 𝐹 +2 and each 𝑢 ∈ 𝑆1 is adjacent to all nodes
in 𝑉 , we get 𝐹

𝑆1
= 𝑆1.

(c) Both 𝑆1 and 𝑆2 contain nodes from 𝑈 and 𝑉 . We have further
two cases.

c-1) One of the subsets, say 𝑆1 has at most (𝐹 −1) nodes: In this case,
consider |𝑆1 ∩ 𝑉 | = 𝜈1, then |𝑆1 ∩ 𝑈 | ≤ 𝐹 − 1 − 𝜈1. Let 𝑣 ∈ 𝑆1 ∩ 𝑉 .
The number of neighbors of 𝑣 outside of 𝑆1 are:

= ((𝐹 + 2) − 𝜈1) + (|𝑈 | − |𝑆1 ∩ 𝑈 |)

≥ (𝐹 + 2 − 𝜈1) + ((𝐹 + 1) − (𝐹 − 1 − 𝜈1))

= 𝐹 + 4.

Similarly, let 𝑢 ∈ 𝑆1 ∩ 𝑈 . Note that 𝑢 has 2
(

⌈

𝐹
2 ⌉ − 2

)

neighbors
in 𝑈 . Then, the number of neighbors of 𝑢 outside of 𝑆1 are:

≥ ((𝐹 + 2) − 𝜈1) +
(

2 (⌈𝐹∕2⌉ − 2) − ((𝑆1 ∩ 𝑈 ) − 1)
)

≥ (𝐹 + 2 − 𝜈1) + (𝐹 − 4 − (𝐹 − 1 − 𝜈1 − 1))

= 𝐹 .

Thus, each node in 𝑆1 has at least 𝐹 neighbors outside of 𝑆1,
i.e., 𝐹

𝑆1
= 𝑆1.

c-2) Both subsets 𝑆1 and 𝑆2 have at least 𝐹 nodes:
In this case, if at least one of the subsets, say 𝑆1, has at most two
nodes from 𝑉 . Then, since |𝑉 ⧵ 𝑆1| ≥ 𝐹 and each node in 𝑆1 is
adjacent to all nodes in 𝑉 , we have 𝐹

𝑆1
= 𝑆1. So, we consider

that both 𝑆1 and 𝑆2 contain at least three nodes from 𝑉 . We will
next compute |𝐹

𝑆1
| and |𝐹

𝑆2
|, and show that |𝐹

𝑆1
| + |𝐹

𝑆2
| ≥ 𝐹 .

For this, let |𝑆1 ∩ 𝑉 | = 𝜈1 and |𝑆2 ∩ 𝑉 | = 𝜈2.
Since each node in 𝑆1∩𝑉 (resp. 𝑆2∩𝑉 ) is adjacent to all the nodes
in 𝑆2 (resp. 𝑆1), where |𝑆2| ≥ 𝐹 , we have |𝐹

𝑆1
| ≥ 𝜈1. Similarly,

|𝐹
𝑆2
| ≥ 𝜈2. So, if 𝜈1 + 𝜈2 ≥ 𝐹 , we have |𝐹

𝑆1
| + |𝐹

𝑆2
| ≥ 𝐹 , and we

are done. Thus, we assume,

𝜈1 + 𝜈2 ≤ 𝐹 − 1. (6)

Also, note that since |𝑉 | = 𝐹 +2, one of the subsets, say 𝑆1, must
contain at most 𝐹+2

2 nodes from 𝑉 , i.e., |𝑆1 ∩ 𝑉 | ≤ 𝐹+2
2 . So, we

get

3 ≤ 𝜈1 ≤
𝐹 + 2
2

. (7)

Using the above details and (6), we also get

3 ≤ 𝜈2 ≤ 𝐹 − 1 − 𝜈1. (8)

Next, we consider |𝑆1 ∩ 𝑈 | = 𝜇1, and |𝑆2 ∩ 𝑈 | = 𝜇2.
Observe that 𝐹 − 𝜈1 ≤ 𝜇1 (as |𝑆1| ≥ 𝐹 ). Similarly, 𝐹 − 𝜈2 ≤ 𝜇2.
Consequently, we get an upper bound on 𝜇1, i.e., 𝜇1 ≤ |𝑈 |− (𝐹 −
𝜈2). Using (6),

|𝑈 | − (𝐹 − 𝜈2) ≤ |𝑈 | − (1 + 𝜈1),

thus, 𝜇1 ≤ |𝑈 |−(1+ 𝜈1). We write the upper and lower bounds on
𝜇1 again,
𝐹 − 𝜈1 ≤ 𝜇1 ≤ |𝑈 | − (1 + 𝜈1). (9)

7 
Fig. 6.  = 7 ⊕ 1
7 is (𝐹 , 𝐹 )-robust graph for 𝐹 = 5.

Similarly, the bounds on 𝜇2 are,

𝐹 − 𝜈2 ≤ 𝜇2 ≤ |𝑈 | − (𝐹 − 𝜈1). (10)

Next, we compute 𝐹
𝑆1

and 𝐹
𝑆2

.
Since (𝑆1 ∩ 𝑉 ) ⊆ 𝐹

𝑆1
, we have |𝐹

𝑆1
| ≥ |𝐹

𝑆1
∩ 𝑉 | = 𝜈1. Note that

each 𝑢 ∈ (𝑆1 ∩ 𝑈 ) is adjacent to at least (𝐹 + 2) − 𝜈1 nodes in
𝑉 ⧵ (𝑆1 ∩ 𝑉 ). So, if 𝑢 ∈ (𝑆1 ∩𝑈 ) is adjacent to at least 𝜈1 −2 nodes
in 𝑈 ⧵𝑆1, then 𝑢 ∈ 𝐹

𝑆1
(as 𝑢 will have at least 𝐹 neighbors outside

of 𝑆1). Now consider (7), (9), and use Observation 3.3 (plugging
𝑖 = 𝜈1), we deduce that the number of nodes in 𝑆1 ∩ 𝑈 , each of
which is adjacent to at least 𝜈1 − 2 nodes in 𝑈 ⧵ 𝑆1 is at least
𝐹 − 2(𝜈1 − 1). This gives

|𝐹
𝑆1
| = |𝐹

𝑆1
∩ 𝑉 | + |𝐹

𝑆1
∩ 𝑈 |

≥ 𝜈1 + (𝐹 − 2(𝜈1 − 1))

= 𝐹 + 2 − 𝜈1.

(11)

Similarly, considering (8), (10), and applying a similar argument
as for 𝐹

𝑆1
, we obtain

|𝐹
𝑆2
| = |𝐹

𝑆2
∩ 𝑉 | + |𝐹

𝑆2
∩ 𝑈 | ≥ 𝐹 + 2 − 𝜈2. (12)

Now, from (11) and (12), we get

|𝐹
𝑆1
| + |𝐹

𝑆2
| ≥ (𝐹 + 2 − 𝜈1) + (𝐹 + 2 − 𝜈2)

= 2𝐹 + 4 − (𝜈1 + 𝜈2)
(13)

Using (6),

|𝐹
𝑆1
| + |𝐹

𝑆2
| ≥ 2𝐹 + 4 − (𝐹 − 1) = 𝐹 + 3, (14)

which is the desired result. This completes the proof. ■

Fig. 6 illustrates  = 𝐹+2 ⊕ 
1,…,⌈ 𝐹

2 ⌉−2
𝑁−(𝐹+2) for 𝐹 = 5 and 𝑁 = 14.

The following result presents the number of non-convergent nodes
in (𝐹 , 𝐹 )-robust graphs constructed above.

Theorem 3.5. For given integers 𝐹 > 4 and 𝑁 ≥ 2𝐹 + 3, let G(𝑁,𝐹 , 𝐹 )
be a family of all (𝐹 , 𝐹 )-robust graphs with 𝑁 nodes, then

𝛼𝐹 (G(𝑁,𝐹 + 1, 1)) ≥ 𝑁 − (𝐹 + 2).

Proof. We will construct a graph  ∈ G(𝑁,𝐹 , 𝐹 ) with 𝛼𝐹 () = 𝑁 −
𝐹 + 2), thus showing 𝛼𝐹 (G(𝑁,𝐹 + 1, 1)) ≥ 𝑁 − (𝐹 + 2). For this,
onsider  = 𝐹+2 ⊕ 

1,…,⌈ 𝐹
2 ⌉−2

𝑁−(𝐹+2) , which is (𝐹 , 𝐹 )-robust by Lemma 3.4.

Let 𝑉 = {𝑣1,… , 𝑣𝐹+2} denote the set of nodes in 𝐹+2, and 𝑈 =

{𝑢1,… , 𝑢𝑁−(𝐹+2)} be the set of nodes in 
1,2,…,⌈ 𝐹

2 ⌉−2
𝑁−(𝐹+2) . Note that each

𝑢𝑖 ∈ 𝑈 has 2(⌈ 𝐹
2 ⌉ − 2) neighbors in 𝑈 .

For the non-convergent nodes, first, we show that the graph is not

(𝐹 +1, 𝐹 +1)-robust. Let 𝑆1 be a set consisting of a single node from 𝑈 ,
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say 𝑢 ∈ 𝑈 , and 𝐹 −1 nodes from 𝑉 . Also, let 𝑆2 be the set of remaining
nodes, i.e., 𝑆2 = (𝑈 ∪ 𝑉 ) ⧵ 𝑆1. Note that |𝑆1| = 𝐹 , so 𝐹+1

𝑆2
= ∅. Also,

∈ 𝑆1 has 3 + 2(⌈ 𝐹
2 ⌉ − 2) = 2⌈ 𝐹

2 ⌉ − 1 ≤ 𝐹 neighbors outside of 𝑆1. At
he same time, each 𝑣 ∈ (𝑆1 ∩𝑉 ) has at least 𝐹 +1 neighbors outside of
𝑆1. Thus, 𝐹+1

𝑆1
= 𝑆1 ⧵ {𝑢}, and |𝐹+1

𝑆1
| = 𝐹 − 1 < |𝑆1|. As a result, none

of the three conditions for (𝐹 +1, 𝐹 +1)-robustness are satisfied by sets
𝑆1 and 𝑆2, the considered graph is not (𝐹 + 1, 𝐹 + 1)-robust.

Now, assume that the set of malicious nodes contains 𝐹+1
𝑆1

∪𝐹+1
𝑆2

.
Note that |𝐹+1

𝑆1
∪ 𝐹+1

𝑆2
| ≤ 𝐹 . Also, 𝑢 ∈ 𝑆1 is the only normal node

in 𝑆1 as 𝑢 ∉ 𝐹+1
𝑆1

. Now, assign value 𝑎 to all nodes in 𝑆1, and value
𝑏 > 𝑎 to nodes in 𝑆2. Note that all normal nodes in 𝑆1 and 𝑆2 have at

ost 𝐹 neighbors outside of their respective sets, and as per the WMSR
lgorithm, each normal node in 𝑆1 and 𝑆2 removes 𝐹 values outside of
ts respective set. Thus, 𝑢 ∈ 𝑆1, and other normal nodes in 𝑆2 never
pdate their values. Thus, 𝑢 never converges to another normal node
nd is a non-convergent node. This scenario can be replicated for every
ode in 𝑈 while applying the same arguments; thus, the number of
on-convergent nodes in the graph is |𝑈 | = 𝑁 − (𝐹 + 2), i.e. 𝛼𝐹 () =
− (𝐹 + 2). This directly implies that 𝛼𝐹 (G(𝑁,𝐹 , 𝐹 )) ≥ 𝑁 − (𝐹 + 2),

which completes the proof. ■

For the graph  = 7⊕1
7 in Fig. 6, the (blue) nodes corresponding

to the circulant graph, 1
7 , are the non-convergent nodes under the

𝐹 -total model for 𝐹 = 5.

3.3. (F+1,F)-robust graphs

In this sub-section, we consider G(𝑁,𝐹 + 1, 𝐹 ) and examine
(𝐹 + 1, 𝐹 )-robust graphs, which are slightly less robust than the desired
(𝐹 +1, 𝐹 +1)-robust graphs. As before, the goal is to design graphs with
the maximum number of non-convergent nodes and obtain 𝛼𝐹 (G(𝑁,𝐹+
1, 𝐹 )). For this we state the following result.

Lemma 3.6. For given integers 𝐹 ≥ 3 and 𝑁 ≥ 3𝐹 , the graph  =
𝑁−2𝐹 ⊕ 1,…,𝐹−1

2𝐹 is (𝐹 + 1, 𝐹 )-robust.

roof. First, we will show the result for 𝑁 = 3𝐹 , and then extend the
esult to 𝑁 > 3𝐹 .

Assume 𝑁 = 3𝐹 . Let 𝑈 and 𝑉 denote the set of nodes in 1,…,𝐹−1
2𝐹

nd 𝐹 , respectively. Let 𝑆1 and 𝑆2 be two disjoint non-empty sets of
odes in the given . There are following cases for the choices of 𝑆1
nd 𝑆2.

(a) At least one of 𝑆1 and 𝑆2 contains nodes from 𝑉 only: W.l.o.g., let
𝑆1 ∩𝑈 = ∅ (i.e., 𝑆1 ⊆ 𝑉 ). Then, each node in 𝑆1 has 2𝐹 neighbors
outside of 𝑆1, and 𝐹+1

𝑆1
= 𝑆1.

(b) Both 𝑆1 and 𝑆2 contain nodes from 𝑈 :
In this case, 𝑆1 ∩ 𝑈 ≠ ∅ and 𝑆2 ∩ 𝑈 ≠ ∅. Let

|𝑆1 ∩ 𝑈 | = 𝜈.

Since each node in 𝑈 has a degree 2𝐹 − 2, each 𝑢 ∈ (𝑆1 ∩ 𝑈 ) has
(2𝐹 −2) − (𝜈 −1) = 2𝐹 −1− 𝜈 neighbors in 𝑈 ⧵𝑆1. Based on 𝜈, we
have the following sub-cases.

b-1) 𝜈 ≤ 𝐹−2: In this case, for each 𝑢 ∈ 𝑆1∩𝑈 , the number of neighbors
in 𝑈 ⧵ 𝑆1 is:

2𝐹 − 1 − 𝜈 ≥ 2𝐹 − 1 − (𝐹 − 2) = 𝐹 + 1,

which means 𝐹+1
𝑆1

∩𝑈 = 𝑆1 ∩𝑈 . Similarly, since each 𝑣 ∈ 𝑆1 ∩ 𝑉
is adjacent to all nodes in 𝑈 , and |𝑈 ⧵ 𝑆1| ≥ 𝐹 + 1, we have
𝐹+1
𝑆1

∩ 𝑉 = 𝑆1 ∩ 𝑉 . Thus, 𝐹+1
𝑆1

= (𝑆1 ∩ 𝑉 ) ∪ (𝑆1 ∩ 𝑈 ) = 𝑆1.
b-2) 𝜈 ≥ 𝐹 +2: This implies that |𝑆2 ∩ 𝑈 | ≤ 𝐹 −2. As a result, we apply

𝐹+1
the sub-case (b-1) on 𝑆2 and get 𝑆2
= 𝑆2.

8 
Fig. 7.  = 6 ⊕ 1,2
6 is (𝐹 + 1, 𝐹 )-robust graph for 𝐹 = 3.

b-3) 𝜈 = 𝐹 − 1: In this case, note that |𝑈 ⧵ 𝑆1| = 𝐹 + 1. We have two
scenarios: First, if 𝑆1 ∩ 𝑉 = 𝑉 (i.e., 𝑆1 contains all nodes in 𝑉 ),
then each 𝑣 ∈ (𝑆1 ∩ 𝑉 ) is adjacent to 𝐹 + 1 nodes in 𝑈 ⧵𝑆1. Thus,
(𝑆1 ∩ 𝑉 ) ⊆ 𝐹+1

𝑆1
. Since |𝑆1 ∩ 𝑉 | = |𝑉 | = 𝐹 , we have 𝐹+1

𝑆1
≥ 𝐹 .

Second, if (𝑆1 ∩ 𝑉 ) ≠ 𝑉 , then there is at least one node in 𝑉 ⧵𝑆1.
This means that each 𝑢 ∈ 𝑆1 ∩ 𝑈 is adjacent to at least one node
in 𝑉 ⧵𝑆1. Also, note that each 𝑢 ∈ (𝑆1∩𝑈 ) has 2𝐹 −1−(𝐹 −1) = 𝐹
neighbors in 𝑈 ⧵ 𝑆1. Thus, each 𝑢 ∈ (𝑆1 ∩ 𝑈 ) hast at least 𝐹 + 1
neighbors outside 𝑆1, implying (𝑆1 ∩ 𝑈 ) ⊆ 𝐹+1

𝑆1
. Moreover, each

𝑣 ∈ (𝑆1∩𝑉 ) is adjacent to all nodes 𝑈⧵𝑆1 (where |𝑈 ⧵ 𝑆1| = 𝐹+1),
thus (𝑆1 ∩ 𝑉 ) ⊆ 𝐹+1

𝑆1
. As a result, we get 𝐹+1

𝑆1
= 𝑆1.

b-4) 𝜈 = 𝐹 : Since |𝑈 | = 2𝐹 , we have |𝑆2 ∩ 𝑈 | ≤ 𝐹 . If |𝑆2 ∩ 𝑈 | ≤ 𝐹 − 1,
we apply the argument in sub-case (b-3) above on 𝑆2. So, consider
|𝑆2 ∩ 𝑈 | = 𝐹 . Now, since |𝑉 | = 𝐹 , at least one of the following is
true: (i) |𝑉 ⧵ 𝑆1| ≥ ⌈

𝐹
2 ⌉, (ii) |𝑉 ⧵ 𝑆2| ≥ ⌈

𝐹
2 ⌉. W.l.o.g., we assume

(i) is true. It means that each 𝑢 ∈ (𝑆1 ∩ 𝑈 ) has at least ⌈

𝐹
2 ⌉

neighbors in 𝑉 ⧵𝑆1. Also, each 𝑢 ∈ (𝑆1 ∩𝑈 ) has 2𝐹 −1−𝐹 = 𝐹 −1
neighbors in 𝑈 ⧵ 𝑆1. Noting that 𝐹 ≥ 3, we deduce that each
𝑢 ∈ (𝑆1 ∩ 𝑈 ) has at least 𝐹 + 1 neighbors outside 𝑆1. Since
|𝑆1 ∩ 𝑈 | = 𝐹 , we have |𝐹+1

𝑆1
| ≥ 𝐹 .

b-5) 𝑣 = 𝐹+1: In this case |𝑆2 ∩ 𝑈 | ≤ 𝐹−1, thus, we apply the sub-case
(b-3) on 𝑆2.

All the above cases establish that the graph 𝐹⊕1,…,𝐹−1
2𝐹 is (𝐹+1, 𝐹 )-

obust. Now, we add a new node 𝑣 to 𝐹 ⊕ 1,…,𝐹−1
2𝐹 such that 𝑣 is

djacent to all nodes in 𝑈 (i.e., nodes in the circulant graph). This
ives the graph 𝐹+1⊕1,…,𝐹−1

2𝐹 . Since the new node 𝑣 is adjacent to 2𝐹
odes in the existing graph, the (𝐹 + 1, 𝐹 )-robustness of 𝐹 ⊕ 1,…,𝐹−1

2𝐹
mplies that the new graph 𝐹+1 ⊕ 1,…,𝐹−1

2𝐹 is also (𝐹 + 1, 𝐹 )-robust
by LeBlanc et al. (2013, Theorem 5)). By the same argument, we add
− 3𝐹 vertices to 𝐹 ⊕ 1,…,𝐹−1

2𝐹 to get  = 𝑁−2𝐹 ⊕ 1,…,𝐹−1
2𝐹 , which is

𝐹 + 1, 𝐹 )-robust. ■

Fig. 7 illustrates  = 𝑁−2𝐹 ⊕ 1,…,𝐹−1
2𝐹 for 𝐹 = 3 and 𝑁 = 12.

ext, we compute the number of non-convergent nodes in the graphs
n Lemma 3.6, thereby obtaining a lower bound on 𝛼𝐹 (G(𝑁,𝐹 + 1, 𝐹 )).

heorem 3.7. For given integers 𝐹 ≥ 3 and𝑁 ≥ 2𝐹+3, let G(𝑁,𝐹+1, 𝐹 )
e a family of all (𝐹 + 1, 𝐹 )-robust graphs with 𝑁 nodes, then

𝛼𝐹 (G(𝑁,𝐹 + 1, 𝐹 )) ≥ 𝑁 − 2𝐹 .

Proof. We show that there exists  ∈ G(𝑁,𝐹 + 1, 𝐹 ) with 𝑁 − 2𝐹
non-convergent nodes. For this, consider  = 𝑁−2𝐹 ⊕ 1,…,𝐹−1

2𝐹 , which
is (𝐹 + 1, 𝐹 )-robust by Lemma 3.6. Let 𝑉 = {𝑣1,… , 𝑣𝐹+2} be the set of
nodes in 𝑁−2𝐹 , and 𝑈 = {𝑢1,… , 𝑢2𝐹 } be the set of nodes in 1,2,…,𝐹−1

2𝐹 .
We will show that each 𝑣𝑖 ∈ 𝑉 is a non-convergent node.

For this, first, we show that  is not (𝐹+1, 𝐹+1)-robust. Consider two
nonempty disjoint subset of nodes in . Let 𝑆1 = {𝑣1} ∪ {𝑢1, 𝑢2,… , 𝑢𝐹 },
and 𝑆2 be the set of remaining nodes, i.e., 𝑆2 = (𝑉 ∪ 𝑈 ) ⧵ 𝑆1. We now

𝐹+1 𝐹+1
compute 𝑆1
and 𝑆2

. Note that each 𝑢𝑖 ∈ 𝑆1 is adjacent to at least
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2(𝐹 −1)− (𝐹 −1) = 𝐹 −1 nodes in 𝑈 ⧵𝑆1. Also, each 𝑢𝑖 ∈ 𝑆1 is adjacent
to (𝑁 − 2𝐹 ) − 1 ≥ 𝐹 − 1 nodes in 𝑉 ⧵ 𝑆1. Thus, 𝑢𝑖 ∈ 𝑆1 is adjacent to at
east 2(𝐹 − 1) nodes outside 𝑆1. Since 𝐹 ≥ 3, we have 2(𝐹 − 1) ≥ 𝐹 + 1,
nd (𝑆1 ∩ 𝑈 ) ⊆ 𝐹+1

𝑆1
. Moreover, 𝑣1 ∈ (𝑆1 ∩ 𝑉 ) is adjacent to exactly

nodes outside of 𝑆1. Thus, 𝐹+1
𝑆1

= 𝑆1 ∩ 𝑈 , i.e., |𝐹+1
𝑆1

| = 𝐹 . As for
2, each 𝑣𝑖 ∈ (𝑆2 ∩ 𝑉 ) is adjacent to only 𝐹 nodes outside 𝑆2 (which
re the nodes in 𝑆1 ∩ 𝑈 ). Further, each 𝑢𝑗 ∈ (𝑆2 ∩ 𝑈 ) is adjacent to
(𝐹 − 1) nodes in 𝑈 , of which 𝐹 − 1 nodes are in 𝑆2 ∩ 𝑈 . Thus, each
𝑗 ∈ (𝑆2 ∩ 𝑈 ) is adjacent to 𝐹 − 1 nodes in 𝑈 ⧵ 𝑆2. Also, each such 𝑢𝑗
s adjacent to one node in 𝑉 ⧵ 𝑆2. Thus, each 𝑢𝑗 ∈ (𝑆2 ∩ 𝑈 ) is adjacent
o (𝐹 − 1) + 1 = 𝐹 nodes outside 𝑆2, which means 𝐹+1

𝑆2
= ∅. In other

ords, |𝐹+1
𝑆1

| + |𝐹+1
𝑆2

| = 𝐹 , and  is not (𝐹 + 1, 𝐹 + 1)-robust.
Now, assign some real value 𝑎 ∈ R to all nodes in 𝑆1, and some value

> 𝑎 to nodes in 𝑆2. Moreover, assume that nodes in 𝐹+1
𝑆1

= 𝑆1∩𝑈 are
alicious. Since |𝑆1 ∩ 𝑈 | = 𝐹 , the number of malicious nodes is 𝐹 . Note

hat all normal nodes in 𝑆1 and 𝑆2 have at most 𝐹 neighbors outside
f their respective sets. Thus, following the WMSR algorithm, each
ormal node in 𝑆1 and 𝑆2 removes 𝐹 values outside of its respective
et, and hence never updates its value. In particular, 𝑣1 ∈ 𝑆1 does not
onverge to any normal node in 𝑆2 = (𝑉 ⧵ {𝑣1}) ∪ (𝑈 ⧵ {𝑢1,… , 𝑢𝐹 }).
ow, by selecting 𝑆1 = {𝑣1} ∪ {𝑢𝐹+1,… , 𝑢2𝐹 }, and 𝑆2 = (𝑉 ∪ 𝑈 ) ⧵ 𝑆1,
e can ensure, by the same arguments as above, that there is an
ttack of 𝐹 nodes (i.e., {𝑢𝐹+1,… , 𝑢2𝐹 }) preventing 𝑣1 to converge to
ny of the (normal) nodes in {𝑢1,… , 𝑢𝐹 }. As a result, for each node

𝑥 ∈ (𝑉 ∪ 𝑈 ) ⧵ {𝑣1}, there is an attack of 𝐹 nodes guaranteeing that
𝑣1 and 𝑥 do not converge, implying that 𝑣1 is a non-convergent node.
Finally, noting the symmetry of nodes in , we can replicate the same
arguments as above to show that each 𝑣𝑖 ∈ 𝑉 is non-convergent. Since
|𝑉 | = 𝑁 − 2𝐹 , we get the desired result, i.e., 𝛼𝐹 () = 𝑁 − 2𝐹 . This
directly implies that 𝛼𝐹 (G(𝑁,𝐹 + 1, 𝐹 )) ≥ 𝑁 − 2𝐹 . ■

These results demonstrate that even among graphs with the same
obustness, there can be significant variation in the number of non-
onvergent nodes. Consequently, in scenarios where robustness is insuf-
icient, these graphs may exhibit varying levels of partial performance.
ext, based on the previous discussions, we state a sufficient condition

or a node to be a non-convergent node. In proofs of Theorems 3.2,
.5, and 3.7, the main idea to design an 𝐹 -total attack that prevents
normal node 𝑢 from converging with another normal node 𝑣 is as

follows: First, we identify two disjoint empty sets of nodes, 𝑆1 and 𝑆2,
wherein 𝑢 and 𝑣 belong to different sets. Moreover, 𝑆1 and 𝑆2 do not
satisfy any of the three conditions in Definition 2.3. We then construct
an attack involving a maximum of 𝐹 malicious nodes to ensure that the
nodes in 𝑆1 and 𝑆2 do not converge. By leveraging this strategy, we can
effectively state a sufficient condition for a node to be non-convergent.

Proposition 3.8. In a graph 𝐺 = (𝑉 ,𝐸), a node 𝑢 ∈ 𝑉 is non-convergent
(under the 𝐹 -total malicious model) if for every 𝑣 ∈ 𝑉 ⧵ {𝑢}, there exist a
pair of non-empty disjoint subsets 𝑆1, 𝑆2 ⊂ 𝑉 such that

1. |𝐹+1
𝑆1

| < |𝑆1|, and |𝐹+1
𝑆2

| < |𝑆2|, and |𝐹+1
𝑆1

| + |𝐹+1
𝑆2

| < 𝐹 + 1,
(i.e., 𝑆1 and 𝑆2 do not satisfy the (𝐹 + 1, 𝐹 + 1)-robustness criteria
in Definition 2.3.)

2. 𝑢 and 𝑣 belong to distinct subsets, i.e., if 𝑢 ∈ 𝑆1, then 𝑣 ∈ 𝑆2 and
vice versa.

3. Neither of 𝑢 and 𝑣 have 𝐹 + 1 neighbors outside of their respective
subsets. ■

We demonstrate the above proposition through an example.
Example: Consider the graph in Fig. 8, which is (3, 3)-robust. Under

the 𝐹 -total malicious model, where 𝐹 = 3, nodes in {𝑣2, 𝑣3, 𝑣6, 𝑣7} are
non-convergent as they satisfy the conditions in Proposition 3.8. We
explain the non-convergence of 𝑣6. Consider a pair of subsets, 𝑆1 =
{𝑣4, 𝑣5, 𝑣6} and 𝑆2 = {𝑣1, 𝑣2, 𝑣3, 𝑣7, 𝑣8} in Fig. 8(a). These subsets meet
the first condition in Proposition 3.8. Notably, node 𝑣5 ∈ 𝑆1 is the only
node with four (𝐹+1 = 4) neighbors outside its subset 𝑆1. Consequently,

there exists an attack (involving 𝑣5) that prevents 𝑣6 from converging
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Fig. 8. 𝐺 is (3, 3)-robust and 𝑣6 is non-convergent for 𝐹 = 3.

to any of the nodes in 𝑆2. For the non-convergence of 𝑣6, we further
need to show that there is also an attack that prevents convergence
of 𝑣6 with nodes 𝑣4, 𝑣5 ∈ 𝑆1. For this, consider subsets 𝑆1 and 𝑆2 in
Fig. 8(b), where 𝑆1 = {𝑣1, 𝑣6, 𝑣7, 𝑣8} and 𝑆2 = {𝑣2, 𝑣3, 𝑣4, 𝑣5}. Note that
𝑣6 is in a different subset than 𝑣4 and 𝑣5, and none of these nodes have
four neighbors outside their respective sets, satisfying the conditions in
the proposition. As a result, we can guarantee that node 𝑣6 does not
converge to 𝑣4 and 𝑣5, confirming its non-convergence.

Remark 3.9. We note that the concept of non-convergence for a node
is defined in relation to the attack model. Specifically, a node 𝑢 is
considered non-convergent if, for every other node 𝑣 in the graph, an
‘attack’ can be constructed that prevents nodes 𝑢 and 𝑣 from ‘converging
at a common point’. In this paper, as highlighted in Remark 2.2,
we have focused on the 𝐹 -total malicious attack model, where non-
convergence is defined under this specific scenario. However, this
notion of an ‘attack’ can be adapted to other models, leading to corre-
sponding modifications in the definition of non-convergence. Similarly,
since distributed consensus is the optimization task considered in this
work, non-convergent nodes are defined in terms of convergence at a
common point. This definition can be adjusted to suit other optimization
tasks by replacing ‘converging at a common point’ with the specific goal
of the task.

4. Illustrations and simulations

In this section, we have two main goals: (1) to illustrate the notion
of a non-convergent node. (2) To demonstrate how the number of
non-convergent nodes in a graph changes as we alter the graph’s
robustness.

For an illustration of a non-convergent node, consider 𝐺 = (𝑉 ,𝐸)
in Fig. 9, which is (4, 3)-robust (but not (4, 4)-robust). Assuming 𝐹 =
3 and 𝐹 -total malicious attack, 𝐺 has four non-convergent nodes,
{𝑣7, 𝑣8, 𝑣9, 𝑣10}. For instance, considering 𝑣7, we show that for every
other 𝑣𝑖 ∈ 𝑉 , there is an attack consisting of 𝐹 = 3 malicious nodes
ensuring that 𝑣7 and 𝑣𝑖 do not converge. In Fig. 9(a), we design an
attack involving 𝑣1, 𝑣2 and 𝑣3. Their state trajectories are shown in red
in Fig. 9(c). The state of 𝑣7 is in green, and the states of the remaining
nodes are in blue. As a result of this attack, none of the nodes in
{𝑣4, 𝑣5, 𝑣6, 𝑣8, 𝑣9, 𝑣10} and 𝑣7 converge at the same state. Next, we need
to show that there is an attack that can prevent 𝑣7 from converging to
any of the nodes in {𝑣1, 𝑣2, 𝑣3}. Fig. 9(d) demonstrates such a situation.
Hence, for every node pair (𝑣7, 𝑣𝑖), we have an attack guaranteeing that
𝑣𝑖 and 𝑣7 do not converge, establishing that 𝑣7 is a non-convergent
node.

Fig. 10 presents different graphs, none of which is (4, 4)-robust.
Consequently, these graphs cannot guarantee resilient consensus when
faced with 𝐹 = 3 malicious nodes, rendering them ‘non-resilient’ to
three malicious nodes. Despite this common non-resilience, the impact
varies between graphs, which we measure in terms of the number of
non-convergent nodes in each graph. For instance, Fig. 10(a) shows
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Fig. 9. 𝑣7 (green) is a non-convergent node. For every node 𝑣𝑖 ≠ 𝑣7, there is an attack consisting of 𝐹 = 3 nodes (as in (c) and (d)) preventing 𝑣7 and 𝑣𝑖 from converging to a
common point.
Fig. 10. Non-convergent nodes (colored red) in (3, 3)-robust, (4, 1)-robust, and
(4, 3)-robust graphs.

three (3, 3)-robust graphs, each having a different number of non-
convergent nodes (red) and hence, a varying level of non-resilience.
Similarly, Figs. 10(b) and (c) present examples of (4, 1)- and (4, 3)-robust
graphs, respectively. Each of these graphs contains a distinct number
of non-convergent nodes.

In addition to the specific examples provided, we generated 50
instances each of (3, 3)-robust, (4, 1)-robust, and (4, 3)-robust graphs
10 
Table 1
The fraction of non-convergent nodes in graphs with various robustness considering
𝐹 = 3 malicious nodes.
𝑁 (# of non-convergent nodes)/𝑁

(3, 3)-robust (4, 1)-robust (4, 3)-robust

10 0.65 0.38 0.01
14 0.68 0.43 0.07

using the Erdős-Rényi model for 𝑁 = 10 and 𝑁 = 14.1 For each graph,
we calculated the number of non-convergent nodes under the 𝐹 -total
model with 𝐹 = 3. The expected number of non-convergent nodes was
then determined by averaging the results across the 50 graph instances
with the same 𝑁 and robustness. Table 1 presents these results as the
expected fraction of non-convergent nodes in a graph.

Generally, the parameter 𝑟 in the (𝑟, 𝑠)-robustness takes precedence
in determining the relative robustness of graphs (LeBlanc et al., 2013).
Similarly, for the same value of 𝑟, an (𝑟, 𝑠1)-robust graph is relatively
more robust than an (𝑟, 𝑠2)-robust graph, where 𝑠1 > 𝑠2. We observe
(as in Table 1) that graphs with relatively higher robustness generally
have fewer non-convergent nodes, given the same value of 𝐹 . Finally,
Fig. 11(a) shows a (2, 2)-robust graph consisting of 𝑁 = 12 nodes.
The (2, 2)-robustness of 𝐺 implies that resilient consensus is guaranteed
in the presence of a single malicious node, and hence, none of the
nodes in 𝐺 is non-convergent. However, if we increase 𝐹 (i.e., the
number of malicious nodes), the number of non-convergent nodes
also increases, as Fig. 11(b) illustrates. This example demonstrates an
increasing non-resilience of the graph to the presence of malicious
nodes.

1 Here, the robustness of each graph is maximal. We use maximal to mean
the highest level of robustness that the graph can achieve without moving to
the next level of robustness. For example, a (3, 3)-robust graph considered is
not (4, 1)-robust. Similarly, the (4, 1)-robust graphs considered are maximally
robust in that they are not (4, 2)-robust.
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Fig. 11. (a) (2, 2)-robust graph. (b) Number of non-convergent nodes increases with 𝐹 .

Fig. 12. A (2, 2)-robust graph with non-convergent nodes (red) under the 𝐹 -total model
with 𝐹 = 3.

5. Discussion and conclusion

In traditional designs of resilient algorithms for multiagent systems,
the primary focus has been characterizing conditions, such as network
graph robustness and connectivity, guaranteeing the network objective
despite misbehaving agents. However, in cases where these conditions
are not satisfied, assessing the network’s partial performance becomes
challenging. Our novel concept of non-convergent nodes provides a
quantifiable measure of how worse a network with suboptimal robust-
ness might perform, or in other words, how non-resilient the networks
can be. For the WMSR resilient consensus algorithm, we demonstrated
that graphs with the same (𝑟, 𝑠)-robustness value can exhibit vary-
ing degrees of non-resilience, as evidenced by different numbers of
non-convergent nodes. By departing from the conventional binary per-
spective of network resilience – hinging on either success or failure
(network objective achieved or not achieved, respectively) in the face of
misbehaving agents – our approach offers a more comprehensive view
of network resilience. There are several promising directions for future
research. One area of focus is characterizing non-convergent nodes and
relating them to other graph parameters. For example, our experiments
revealed that nodes with the smallest degrees often tend to be non-
convergent, which aligns with expectations. However, we also observed
instances where higher-degree nodes were non-convergent, even when
smaller-degree nodes were not. For example, consider the graph in
Fig. 12, which is (2, 2)-robust but not (3, 3)-robust. We identified the
non-convergent nodes as 𝑣2, 𝑣5, 𝑣7 (highlighted in red) under the 𝐹 -
total model with 𝐹 = 3. Notably, node 𝑣5 is non-convergent despite
having a degree of 6, while nodes 𝑣1 and 𝑣8, each with a degree of
4, are not non-convergent. This suggests a more complex relationship
between non-convergent nodes and node degrees that warrants further
exploration.

Similarly, there are other notions of node resilience, such as bribing
resistance (Ramos, Silvestre, & Silvestre, 2021), and it will be inter-
esting to explore connections between them. Another limitation of the
current work lies in the computational challenges of identifying non-
convergent nodes. This complexity arises from the inherent connection
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between non-convergent nodes and (𝑟, 𝑠)-robustness, a problem known
to be coNP-complete (Zhang, Fata, & Sundaram, 2015). Efficient meth-
ods and analytical tools for the computation of non-convergent nodes
are currently lacking, and we aim to address these gaps in future work
by leveraging recent advances in computing (𝑟, 𝑠)-robustness in graphs
(e.g., Jiang, Wu, Zhang, Zheng, & Meng, 2024; Usevitch & Panagou,
2020a; Yi, Wang, He, Patterson, & Johansson, 2022). Additionally,
while our approach was specifically applied to the WMSR algorithm,
it has the potential for broader application across other algorithms and
problem settings. In conclusion, this work opens avenues for assessing
the network performance under sub-optimal robustness conditions, en-
abling more thorough evaluations and enhancing the design of resilient
multiagent systems.
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