
Calculus 3 - Volumes

In Calculus 1 we considered the area problem. Find the area under the

curve y = f (x) on the interval [a, b]. To do this, we broke the interval

up into smaller segments, approximated the area on each segment with a

rectangle, added the rectangles up, and then took the limit as the number

of rectangle went to infinity and the thickness of each rectangle went to

zero.

Figure 1: y = f (x)

Mathematically: We subdivide the interval

a = x0 < x1 < x2 < · · · < xi−1 < xi < · · · < xn = b. (1)

Let

∆xi = xi−1− xi. (2)

Pick x∗i so that

x∗i ∈ [xi−1, xi]. (3)

Height of the ith rectangle

hi = f (x∗i ). (4)
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Area of this rectangle

Ai = f (x∗i )∆xi. (5)

Add up the rectangles
n

∑
i=1

Ai =
n

∑
i=1

f (x∗i )∆i. (6)

Then take the limit so

A = lim
n→∞

∆xi→0

n

∑
i=1

f (x∗i )∆xi (7)

and we gave this Riemann sum a name - a definite integral

A =
∫ b

a
f (x) dx = lim

n→∞
∆xi→0

n

∑
i=1

f (x∗i )∆xi. (8)

So now we consider the volume problem. Find the volume under the

surface z = f (x, y) on the interval [a, b] × [c, d]. The process is the same

thing as in the area problem. We approximate the volume with small rect-

angular boxes.

Mathematically: Subdivide the interval

a = x0 < x1 < x2 < · · · < xi−1 < xi < · · · < xm = b

c = y0 < y1 < y2 < · · · < yj−1 < yj < · · · < yn = d.
(9)

Let

∆xi = xi−1− xi, ∆yj = yj−1− yj, (10)
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Figure 2: Grid

Pick (x∗i , y∗j ) so that

(x∗i , y∗j ) ∈ [xi−1, xi]× [yj−1, yj]. (11)

Height of the the rectangle box

hij = f (x∗i , y∗j ). (12)

The volume of this rectangle box is

Vij = f (x∗i , y∗j )∆xi∆yj. (13)

Add up the boxes
m

∑
i=1

n

∑
j=1

f (x∗i , y∗j )∆xi∆yj. (14)
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Then take the limit so

lim
m,n→∞

∆xi,∆yj→0

m

∑
i=1

n

∑
j=1

f (x∗i , y∗j )∆xi∆yj (15)

and we give this Riemann sum a name - a double integral

∫ d

c

∫ b

a
f (x, y) dxdy = lim

m,n→∞
∆xi,∆yj→0

m

∑
i=1

n

∑
j=1

f (x∗i , y∗j )∆xi∆yj (16)

Example 1.

Find the volume under z = 1 for [0, 2]× [0, 3]. Well, we see right away that

the volume is 6. Let us use the double integral. So here

V =
∫ 3

0

∫ 2

0
1dxdy. (17)

As with partial derivatives, when integrating one variable, we hold the
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other constant, we do the same with double integral.

V =
∫ 3

0

(∫ 2

0
1dx

)
dy

=
∫ 3

0

(
x
∣∣∣2
0

)
dy

=
∫ 3

0
2 dy

= 2y
∣∣∣3
0

= 6.

(18)

Switching the Order of Limits

We could also have done

V =
∫ 2

0

(∫ 3

0
1dy
)

dx

=
∫ 2

0

(
y
∣∣∣3
0

)
dx

=
∫ 2

0
3 dx

= 3x
∣∣∣2
0

= 6.

(19)
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Integrating when f is not constant

Consider

V =
∫ 3

0

∫ 1

−1
12x2y dxdy

=
∫ 3

0
4x3y

∣∣∣x=1

x=−1
dy

=
∫ 3

0
8y dy

= 4y2
∣∣∣y=3

y=0

= 36.

(20)

Switching limits

V =
∫ 1

−1

∫ 3

0
12x2y dydx

=
∫ 1

−1
6x2y2

∣∣∣3
0

dy

=
∫ 1

−1
54x2 dy

= 18x3
∣∣∣1
−1

= 36.

(21)

In fact, if f is continuous on [a, b]× [c, d] then

∫ b

a

∫ d

c
f (x, y) dydx =

∫ d

c

∫ b

a
f (x, y) dxdy (22)
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Integration over non constant regions

Suppose we wish to set up the double integral

∫∫
R

f (x, y) dydx (23)

where R is the region below (the lines y = 0, y = x and x = 1)

To get an idea on how to do this let us first consider the problem when the

region is a rectangular box.
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So we have

∫ b

a

∫ d

c
f (x, y) dydx =

∫ b

a

(∫ d

c
f (x, y) dy

)
dx (24)

In the round bracket x is fixed and y moves from y = c to y = d. Now in

the triangular region when x is fixed, then y moves from y = 0 to y = x

and so the limits of integration are

∫ b

a

(∫ x

0
f (x, y) dy

)
dx (25)

Now as the rectangle moves, it moves from x = 0 to x = 1 and these are

the outside limits and so

∫ 1

0

(∫ x

0
f (x, y) dy

)
dx (26)

or simply ∫ 1

0

∫ x

0
f (x, y) dydx (27)
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Example 2. Evaluate

∫ 1

0

∫ x

0
6y2− x3y dydx (28)

Soln. We first integrate wrt y holding x fixed. So

∫ 1

0
2y3− x3y2

2

∣∣∣y=x

y=0
dx (29)

Then substitute in the limits

∫ 1

0

(
2x3− x3x2

2

)
−
(

203− x302

2

)
dx (30)

Then integrate one more time

x4

2
− x6

12

∣∣∣x=1

x=0
=

1
2
− 1

12
=

5
12

. (31)

In general

In general we have ∫ b

a

∫ h(x)

g(x)
f (x, y)dydx (32)
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and ∫ d

c

∫ H(y)

G(y)
f (x, y)dxdy (33)

Example 1. Find the volume under the plane 2x + y + z = 2 for x, y, z ≥ 0.

The volume is shown in fig. 1 in the first octant.

so the volume is

V =
∫ 1

0

∫ 2−2x

0
(2− 2x− y)dydx (34)

or

V =
∫ 2

0

∫ 2−y
2

0
(2− 2x− y)dxdy (35)
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Figure 3: Surface and region of integration

and we integrate so

V =
∫ 1

0

∫ 2−2x

0
(2− 2x− y)dydx

=
∫ 1

0

(
2y− 2xy− 1

2
y2
) ∣∣∣2−2x

0
dx

=
∫ 1

0
2(2− 2x)− 2x(2− 2x)− 1

2
(2− 2x)2 dx

=
∫ 1

0
2− 4x− 2x2dx

= 2x− 2x2− 2
3
x3
∣∣∣1
0
=

2
3
.

(36)
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Example 2. pg 987, #26 Find the volume under the parabolic cylinder z =

4− y2 on the region bound by y = x, x = 0 and y = 2

Figure 4: Volume and region of integration

V =
∫ 2

0

∫ 2

x
(4− y2)dydx (37)

or

V =
∫ 2

0

∫ y

0
(4− y2)dxdy (38)

Volume

V =
∫ 2

0

∫ y

0
(4− y2)dxdy

=
∫ 2

0
4x− xy2

∣∣∣y
0
dy

=
∫ 2

0
4y− y3

∣∣∣y
0
dy

= 2y2− 1
4
y4
∣∣∣2
0
= 8− 4 = 4

(39)
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