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Abstract—Graph Neural Networks (GNNs) have shown remark-
able merit in performing various learning-based tasks in complex
networks. The superior performance of GNNs often correlates
with the availability and quality of node-level features in the
input networks. However, for many network applications, such
node-level information may be missing or unreliable, thereby
limiting the applicability and efficacy of GNNs. To address
this limitation, we present a novel approach denoted as Ego-
centric Spectral subGraph Embedding Augmentation (ESGEA),
which aims to enhance and design node features, particularly in
scenarios where information is lacking. Our method leverages
the topological structure of the local subgraph to create topology-
aware node features. The subgraph features are generated using
an efficient spectral graph embedding technique, and they serve
as node features that capture the local topological organization
of the network. The explicit node features, if present, are then
enhanced with the subgraph embeddings in order to improve the
overall performance. ESGEA is compatible with any GNN-based
architecture and is effective even in the absence of node features.
We evaluate the proposed method in a social network graph
classification task where node attributes are unavailable, as well
as in a node classification task where node features are corrupted
or even absent. The evaluation results on seven datasets and eight
baseline models indicate up to a 10% improvement in AUC and
a 7% improvement in accuracy for graph and node classification
tasks, respectively.

Index Terms—Graph Neural Networks, Subgraph Spectral
Embeddings, Graph Descriptors, Abnormal Features

I. INTRODUCTION

Graph representation learning has proved crucial to several real-

world applications, including drug discovery & development

[36], weather and traffic forecasting [11], recommendation in

e-commerce [41], combinatorial optimization [4], etc. In the

past few years, there has been a surge of interest in designing

graph neural networks (GNNs), which are powerful tools for

learning from graph-structured data [6], [15], [20]. GNNs have

attained state-of-the-art performance on a variety of downstream

Machine Learning (ML) tasks, such as node classification,

graph classification, graph regression, and link prediction

[30], [44]. For example, predicting the toxicity or property of
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Figure 1: (a) GCN’s performance on the Facebook dataset [27] using
original features and one-hot-degree encoding. (b) performance with
varying abnormality/noise ratios in the node features.

molecules, item recommendations in an e-commerce website,

and identifying users’ communities in social networks [9], [42].

One key advantage of GNNs over manually engineered

embeddings is the ability to learn a correlation between

information specific to a node and its global position in the

network. Explicit node features often play an integral role in the

performance of GNNs since they encode valuable distinguishing

criteria about the entities. For instance, in molecular network

data, node features provide crucial information about the

chemical nature of the element. Similarly, in citation networks,

node features provide textual information on represented

publications and contribute significantly to the model’s overall

performance. When this node-level information is unavailable,

current methods use ad hoc techniques such as random vectors

or vectors of ones. Numerous recent approaches also use one-

hot degree encoding [43]. However, this is rarely a suitable

substitute for the explicit node’s features. In Figure 1 (a), we

illustrate this by comparing the performance of explicit node

features and one-hot-degree encoding on Graph Convolutional

Networks (GCN) [20] with varying numbers of layers. We

observe up to 25% improvement in the results for the explicit

features compared to the degree encoding. These results evince

that one-hot degree encoding significantly degrades the model’s

performance, necessitating the use of robust techniques to

generate expressive node embeddings in graph lacking node

features. Specifically, the design of a framework that produces

topology-aware node features in situations when node features

are unavailable is one goal of this study.

The node features could be missing or abnormal for a

number of reasons, such as privacy concerns, human or machine

error, adversarial error, and incomplete data entry [26]. For

instance, in a social network, users may not have completed
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their profile information, resulting in missing user features.

Similarly, not all items in a co-purchase network may have a

complete description associated with them. In a transportation

network, traffic information coming from sensors may be noisy

due to complex dynamics, leading to abnormal node features.

We illustrated the effect, in Figure 1 (b) by running Graph

Attention Network (GAT) [39], and GCN on varying ratios

of random Gaussian noise in the node features on Facebook

dataset [27]. We observe a significant decline in performance

when noise is injected. Thus, the second objective of this study

is to design a mechanism resilient to abnormal node features.
We observe that node features in many social networks

originate the local subgraph topology. For example, keeping

the number of followers as a node feature in a Facebook-page

network reflects the in-degree of the node. At the same time,

we can gather sufficient information of the graph’s structure

from its subgraphs. The reconstructibility conjecture, which

holds true for many graph families, asserts that a graph can

be exactly constructed from a collection of its (single) vertex-

deleted subgraphs [1], [2]. A vertex-deleted subgraph for a

vertex v is obtained by deleting v from the graph. Even more,

if Bk(v) is the set of vertices at most k-hop from v, and Gk(v)
is the subgraph of G obtained by deleting vertices in Bk(v),
then many graph properties can be inferred or a graph can be

constructed exactly from a collection of such Gk(v) [21], [23].
Therefore, we propose to use topology-aware subgraph

embeddings that are based on the local topology of a network

as features of a node. The proposed framework, denoted as Ego-

centric Spectral subGraph Embeddings Augmentation (ESGEA)

allows to design topology-aware node features using expressive

graph embedding methods to enhance the existing node features.

In applications where node features are unavailable, ESGEA

provides a flexible way to produce node features that are

expressive enough to obtain quality results. ESGEA consists

of four modules: (a) ego-centric subgraph extraction, where

k−hops local subgraphs are extracted for each node, (b),

a spectral graph-embedding method is deployed to extract

expressive graph representations on each subgraph, (c) feature

augmentation module is proposed to augment features, and,

(d) GNN learning module is provided to learn nodes/graph

representations. The proposed approach is flexible to use any

off-the-shelf graph-based embedding with any GNN-based

architecture to design models for different applications. Unlike

existing subgraph methods that learn node representations with

nested subgraphs message passing, the proposed approach is

novel in terms of bridging the gap with topology-aware graph

descriptors to use with GNNs. Moreover, ESGEA provides a

flexible learning framework that can be customized to meet

the desired goal. We offer the following contributions:
• We introduce a topological feature augmentation method,

Ego-centric Spectral subGraph Embedding Augmentation

(ESGEA), that designs new or enhances corrupted/missing

node features.

• We introduce a novel framework that offers flexibility for

graph representation pipelines by combining spectral graph-

based embeddings with GNNs based on ESGEA.

• We evaluate the proposed framework in graph and node

classification settings where node features are unavailable or

corrupted (e.g., in the presence of varying amounts of noise)

and show its effectiveness through extensive experiments.

The structure of this paper is as follows. Section 2 presents

an overview of the related work. Section 3 provides the

preliminaries and an introduction to a few definitions, while

Section 4 details the methodology of the proposed approach. In

Section 5, an evaluation of the proposed approach in both graph

and node classification setting is provided. Finally, Section 6

concludes the paper and outlines potential future directions.

II. RELATED WORK

Graph Neural Networks (GNNs) have made substantial ad-

vancements in learning representations of graph-structured data

in recent years [3]. GNNs essentially generalize end-to-end

learning from regular grid data such as image, video, and text,

to graph-structured data [42]. Unlike deep neural networks, the

key idea behind such generalization is the message passing

framework that smooths the message with respect to the local

neighborhood [14]. The design of message passing are majorly

motivated in spatial domain [10], [33] and spectral domain [8],

[20]. GNNs literature broadly includes convolutional layers

[20], [25], aggregation operators [15], pooling methods [45],

and feature augmentation [5], [29].

There is a growing interest in minimizing the vulnerability

of GNNs to node feature and graph structure noise in recent

years. A few notable works in this direction include [7], [25],

[47]. Similarly, numerous approaches for alleviating structural

noise in GNN settings have been proposed, including [12],

[46]. For further reading, please refer to the comprehensive

survey of adversarial attacks on graphs [17], [18].

Unlike the existing techniques, we pursue a novel approach

to advance graph learning in social networks through the

incorporation of subgraph embeddings, with a primary focus on

applications where crucial node features are absent. To this end,

we have introduced a learning framework that integrates GNNs

with graph descriptors, thereby presenting a comprehensive

methodology that is adaptable to all types of graph embeddings

and GNN architectures. Our evaluations in both node and graph

classification settings show encouraging results.

III. PRELIMINARIES

Let G = (V,E,X) denote a graph with a set of nodes V ,

edges E and a node feature matrix X ∈ R
n×d, where n is the

total number of nodes and d is the dimension of the feature

vector associated with each node. We represent the feature

vector associated with the node, v, by xv. For some positive

integer k, let Nv(k) be the set of nodes in the k-neighborhood

of node v, i.e., nodes that are at most distance k from v. Nv(k)
also includes v. For a fixed k, let skv , or sv when k is clear

from context, be an induced subgraph of G on Nv(k). Let

S = {s1, s2, · · · , sn} be the family of all such subgraphs. We

refer to sv as a k-order subgraph at node v. Let L indicates the

Laplacian matrix of the graph and Φ is the matrix consisting
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of normalized and mutually orthogonal eigenvectors of L. Let

Λ represents the diagonal matrix of the eigenvalues of the

Laplacian. We define a subgraph embedding as a function φ
that extracts a compact and expressive signature of a k-order

subgraph, φ : G → R
d′

, where G is the family of all finite

graphs and d′ is the required dimension of latent feature space,

which may be different from d.

IV. EGO-CENTRIC SPECTRAL SUBGRAPH EMBEDDING

AUGMENTATION FRAMEWORK

In this section, we outline the details of our Ego-centric Spectral

subGraph Embedding Augmentation (ESGEA) framework. The

proposed scheme is divided into four phases: (1) ego-centric

subgraph extraction around each node, (2) subgraph embedding

design (φ), (3) feature augmentation and, (4) learning module.

In the forthcoming sections, we outline the details of these

phases one by one.

A. Ego-Centric Subgraph Extraction
Locally induced subgraphs capture the topological informa-

tion of nearby nodes, enabling similar representations for nodes

with identical subgraphs. They encode distinct attributes that are

not always determined by explicit node features or properties

based on the overall topology of the network. Subgraphs feature

non-trivial internal structure, border connectivity, and concepts

of neighborhood and position in relation to the remainder of

the graph. They are, therefore, conducive to learning effective

graph representations.
The importance of subgraphs can be further motivated by the

famous reconstructibility conjecture, which holds true for many

graph families, including but not limited to regular graphs, trees,

Eulerian graphs, outer planner graphs, and graphs with at most

9 vertices [1], [2], [35]. The conjecture states the following:

Conjecture [2], [19], [38] A graph with at least three vertices
can be constructed uniquely (up to isomorphism) from a
collection of its vertex-deleted subgraphs.

In other words, if sv is a subgraph of G = (V,E) obtained

by deleting vertex v and its incident edges, then s has a unique

(up to isomorphism) collection of vertex deleted subgraphs

{s1, s2, · · · , sn}. Variants of this conjecture deal with different

subgraphs of s (e.g., [22], [23]). The primary assertion here is

that the topological and structural properties of a graph can
ensue from its subgraphs.

This discussion inspires and motivates the study of subgraphs

for graph learning. For our purpose, we generate a k-order

subgraph for each node v, which is essentially a subgraph

induced on the nodes that are at most distance k from node

v. Subsequently, we generate an embedding for each node v
based on its k-order subgraph (as discussed in the next subsec-

tion). Depending on a node’s structural role or position, the

corresponding k-order subgraph may have different structural

features. For instance, as shown in the simplest example k=1

in Figure 2, 1-order subgraphs of leaf nodes (B,E, F, and H)

are the same (up to isomorphism). We note that non-leaf nodes

generate 1-order subgraphs distinct from leaf nodes and as k
increases more nodes are likely to have distinct embeddings.
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Figure 2: An illustration of constructing the simplest ego-centric
subgraph embeddings (with 1-order subgraphs). For each node
(indicated in blue), an induced subgraph from its immediate 1-order
neighborhood is extracted and embeddings obtained. The obtained
embeddings are finally associated with each node, respectively.

This subgraph embedding approach improves the learning

of GNNs, particularly when abnormal or no node features

are provided. Moreover, it enables a fairly broad approach by

bridging the gap between GNNs and graph descriptors [31],

[37], [40].

B. Design of Subgraph Embeddings

Designing a subgraph embedding that encode structural in-

formation at all scales, along with succinctness and expressivity,

is a challenging task. Network Laplacian Spectral Descriptor

(NetLSD) [37] was designed to satisfy most of the required

properties that a graph descriptor should possess. For instance,

the permutation invariance, extracting small, medium and large

scale information, and time and memory efficient. NetLSD is

based on the idea of diffusion in graphs, for example, how the

heat diffuses across the nodes in the graph. The heat diffusion

process over the graph at time t is examined through the heat
kernel Ht, which is the matrix exponential Ht = e−Lt, where

L is the graph Laplacian and t is the time. Since L can be

factorized as, L = ΦΛΦ�, where Φ is the matrix consisting of

normalized and mutually orthogonal eigenvectors, and Λ is a

diagonal matrix consisting of the eigenvalues of L, we obtain

the following:

Ht = e−Lti = eΦ(−Λti)Φ
�
= Φe−ΛtiΦ�. (1)

where the ijth entry of Ht indicates the amount of heat

transferred from node vi to vj at time ti. Similarly, the

wave kernel, on the other hand, measures the propagation

of mechanical waves across the graph. NetLSD is then defined

by the traces of the heat or wave kernels at various time

intervals: hti = tr(Hti), which allows extracting more global

information over time. In addition, they are permutation- and

size-invariant and scale-adaptive. In terms of time complex-

ity, the Laplacian spectrum requires O(n3) time and O(n2)
memory, which hinders its scalability. Thus, the authors opted

for block Krylov-Schur implementation in SLEPc [16], [32]

to compute only λ extreme eigenvalues, thereby reducing the

computation time and making NetLSD a fitting choice for the

subgraph embedding.

C. Feature Aggregation with ESGEA

Aggregation functions play a crucial role in the representation

and modeling of graph-structured data, specifically in the mes-

sage passing framework, and has received significant attention
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in the literature [15]. The performance and representational

power of the models are significantly influenced by the selection

of aggregation functions. For instance, several studies show that

sum aggregation allows learning of graph structural properties

[43]. Likewise, the mean aggregation is often employed to

capture the distribution of the elements under consideration,

while the max aggregation is commonly utilized to identify the

most representative elements [43]. Given xv and φ(sv), we

define a general aggregation function as follow:

x′
v = f(xv, φ(sv))

xv and φ(sv) correspond to the node feature vector and

subgraph embeddings, respectively. The function f(.) can be

substituted with aggregation such as mean, max, min or sum,

depending upon the choice of the method. Because simple

aggregations like mean, max and sum may result in the loss

of valuable information, several recent studies have suggested

using multiple aggregations, feature concatenation [15], aggre-

gation in hierarchical fashion, as well as learnable aggregations

[24]. Learnable aggregations typically entail the utilization

of different techniques such as multi-layered perceptron or

deep neural networks, which are capable of encoding intricate

details and nuances of the input representations. Such methods

have demonstrated significant potential in achieving superior

performance in a wide range of applications, and are thus the

subject of extensive research and investigation in the field.

In our proposed framework, we offer an adaptable aggrega-

tion module that can integrate any of the current aggregation

operators to amalgamate the embeddings obtained from the

subgraph to the primary node embeddings. However, it is

crucial to take into account the limitations of these operators

before deciding on the most suitable aggregation approach.

While the use of learnable aggregations has its advantages,

it is important to note that these methods can be computa-

tionally complex, posing challenges in terms of scalability

and efficiency. Additionally, the traditional mean, max, and

sum aggregation operators may not always be appropriate,

especially in cases where the dimensions of the embeddings

(d′ and d) are unequal. In such cases, a simple combine

function such as feature concatenation is a viable alternative,

which can work effectively in all scenarios and potentially

yield improved results. Figure 3 illustrates our methodology

for extracting subgraph, computing spectral embeddings, and

feature augmentation. The illustration shows a graph with

three corrupted (in gray) and four complete node features (in

green) and highlights the overall subgraph feature extraction

and augmentation approach.

D. Graph Learning Module for ESGEA

This section focuses on Message Passing Graph Neural
Networks (MPNNs), which uses an iterative learning approach

to acquire graph representations. MPNNs retain a representation

vector hl
v ∈ Rd̂ for each node v ∈ V in a given a graph

G = (V,E,X). Note that d̂ is the size of the embedding h,

which may vary from d and d′ which are the sizes of the input

A

B

B

A

(a) (b) (c) (d) (e)

... ...010 1

... ...010 1

Figure 3: Illustration of the overall ego-centric subgraph extraction,
embeddings and aggregation: (a) is the input graph with normal
(green) and abnormal (gray) node features; (b) demonstrates step 1,
i.e., the generation of k−order subgraphs for each node; (c) shows
the use a set of graph descriptors for extracting graph embeddings; (d)
indicates the corresponding embeddings extracted for each subgraph;
and (e) illustrates feature aggregation (concatenation in this case) of
subgraphs feature vectors with their original features.

Algorithm 1: ESGEA for Graph Classification

Input: Graph G = {g1, g2, . . . , gn}, subgraph depth: k, #Layers: L,
non-linearity: σ Weight matrices W l

Output: vector output zg for all g ∈ G
1 for G in G do
2 for node v in G do
3 sv ← Extract subgraph(G, v, k);
4 h′

v ← φ(sv)
5 x′

v ← h′
v

6 h
(0)
v ← x′

v ∀ v ∈ G

7 for G in G do
8 for l = 1, . . . , L do
9 for node v in G do

10 a
(l)
v = fAGG

(
h
(l−1)
u |u ∈ N (v)

)

11 h
(l)
v = f

(l)
UPDATE

(
h
(l−1)
v , a

(l)
v

)

12 h
(l)
g ← hL

v ∀ v ∈ G

13 return zg ← hg ∀ g ∈ G

features and subgraph embeddings respectively. MPNNs are

defined as follows:
h(0)
v = xv ∀v ∈ V (2)

a(l)v = f
(l)
AGG

(
h(l−1)
u |u ∈ N (v)

)
(3)

h(l)
v = f

(l)
UPDATE

(
h(l−1)
v , a(l)v

)
(4)

Node features h
(0)
v are initialized with the original node

features xv and then the aggregate and update functions are

used to update the node features based on its neighbors, and

the prior state at every iteration.

In Algorithm 1, we provide a step by step procedure of

the proposed framework in a graph classification setting. The

algorithm first extracts subgraph embeddings for each node

using an input parameter k, which is the depth of the subgraphs.

These subgraphs are then supplied to the embedding function

to produce graph embeddings. We would like to note that

we propose spectral graph embeddings, e.g., NetLSD [37] for

generating subgraph embeddings which distinguishes our work

from the existing nested subgraphs GNN methods. As described
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in section IV-B, spectral descriptors are powerful methods

for extracting expressive graph embeddings. Nonetheless, our

proposed framework is general, thus any embedding method

may be used in this step. As we do not consider node features

in social networks, we assign subgraph embeddings h′
v as

node features in the graph classification setting (step 5 and

8). In addition, we provide a generalized MPNNs strategy

for learning representations for each graph that may be used

for the subsequent ML task. fAGG(.) and fUPDATE(.) are

generic functions that may be fine-tuned based on the learning

architecture of choice.

Similar to the graph classification, node classification is a

well-studied problem, particularly in semi-supervised learning.

It has numerous applications in several fields, such as online

social networks, biological networks, and ecommerce networks.

Node classification involves training a model in a supervised or

semi-supervised setting that can predict a label for a new unseen

node. In a GNN setting, we obtain node representations from

the last layer followed by a linear layer to obtain the class label.

A loss function is then applied to train the model accordingly.

We define the cross entropy loss function as follows that we

use for binary classification.

L = − 1

N

N∑
j=v

yj log(pj) + (1− yj) log(1− pj) (5)

where pi is the Softmax probability obtained for the data point

j, and yj is the corresponding ground truth value.

To adapt Algorithm 1 to the node classification task, a

few modifications can be made. Specifically, the subgraph

embeddings generated by the embedding function (step 4) are

integrated with the node features using an aggregation function,

which is thoroughly explained in IV-C. The resulting aggregated

node features are then fed into the learning framework to obtain

node representations. In contrast to the graph classification

setting, where we process a collection of graphs (step 1 and

7), in this case we iterate solely over the nodes of a single

graph and learn node embeddings. Thus, the proposed learning

framework provides a flexible MPNNs-based solution for node

classification as well.

The Algorithm 1 introduces a novel framework that primarily

involves two crucial input parameters impacting the model’s

performance: (a) the depth of subgraphs (k) and the number

of GNN layers L. The combination of these parameters plays

a crucial role in feature aggregation and the receptive fields

of the models. Figure 4 demonstrates the comparative merits

of different combinations of these parameters. A larger value

of k and L for a given training node can increase the overlap

of information obtained from the node’s neighborhood. In

addition, it increases the model’s receptive field and may

result in oversmoothing that hinders the model’s performance.

Similarly, a combination of large and small input values widens

the distance between the embeddings and message passing,

which may result in a reduction in performance. Conversely,

combining both parameters can result in superior performance.

GNN layers -  4

Subg. depth - 1
GNN layers -  3

Subg. depth - 2
GNN layers -  2

Subg. depth - 3

1

2

3

4

1 2 3 4

k

#GNN layers

performance

71.8

74.7

67.2

67.9

Training node

Figure 4: An illustration of the comparative merits of GNNs and
subgraph depth with respect to their receptive fields within the graph
and resultant performance reported on LastFM Asia dataset.

V. EXPERIMENTAL EVALUATION

To assess the performance of the proposed framework, here

we define the following two research questions.

• RQ-1 Can the proposed ESGEA framework improve

performance in the absence of explicit node features?

• RQ-2 Does the effectiveness of the proposed ESGEA

framework remain intact to improve performance in

applications where node features are unreliable?

To answer the first question, we consider a graph classi-

fication setting in which node features are unavailable. For

the second research question, we consider node classification

setting with abnormal node features. The forthcoming sections

detail the experimental design and results.

General Setup: We ran all the experiments on a 112-core

Intel Xeon CPU 2.20 GHz machine with 512 GB of RAM and

an Nvidia GPU with 48 GB of memory. Each method is trained

on 80% and tested on 20% of the dataset. We run all methods

with 10 different seeds, and average accuracy and Area Under

the Curve (AUC) are reported for node classification and graph

classification tasks, respectively. Throughout the experiments,

we consider the depth of the subgraphs to be 3 and use NetLSD

descriptor to construct subgraph embeddings. The source code

is made publicly available1.

A. Graph Classification

When node features are unavailable, current graph classifi-

cation techniques typically rely on one-hot-degree encoding to

provide relevant node features for GNNs in order to improve

their performance. However, in the majority of cases, these

features do not provide a stronger learning basis for GNNs.

Here, we hypothesize that the features generated through the

proposed approach improve the performance of models for

datasets without node features. We test our hypothesis in the

graph classification setting on five datasets where node features

are unavailable.

Datasets: We consider Github Stargazers, Reddit threads,

Reddit Binary, Deezer Egos, and Twitch Egos social network

datasets in our experimental setup. Due to space limitation, we

refer the reader to [28] for further dataset details.

Baselines: We consider the following backbone GNN mod-

els, including which include the seminal GCN, GraphSAGE,

and Residual Gated GCN (RGGCN), along with more recent

advanced model UniMP and provably more expressive k-GNN.

1ESGEA publicly available code: https://github.com/Anwar-Said/ESGEA
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Figure 5: Comparison of mean AUC scores (10 runs with different random seeds) against one-hot-degree-encoding (deg) as node features on
five different GNN models in graph classification setting.

Table I: Comparison of node classification accuracy on the test set of
Facebook dataset across 10 seeded runs1.

Corruption ratio
Model 0% 10% 20% 50% 80% 90%

MLP 76.30 67.96 61.48 43.29 32.84 30.70

ESGEA 76.81 68.49 62.10 43.51 31.14 30.56

GCN 93.88 92.01 89.89 83.60 77.08 75.60

ESGEA 93.89 92.08 90.16 83.67 78.23 76.75

GAT 93.86 85.06 72.80 59.01 54.85 59.82

ESGEA 94.01 85.96 81.09 67.77 66.19 63.03

AirGNN 90.01 88.06 86.27 79.53 64.80 61.46

ESGEA 90.02 87.80 86.14 79.54 66.15 58.61

UniMP 95.16 94.44 93.05 85.03 78.44 77.80

ESGEA 95.27 94.31 93.22 89.41 85.89 85.13

Experimental setup: Initially we generate node features

for each node with subgraphs embedding using NetLSD

descriptor. The dimension of NetLSD descriptor is set to 20
and depth of the subgraphs k is set to 2 (small diameters)

and 3. We then run each of these models with the generated

NetLSD embeddings and one-hot-degree encoding and compare

the results. Each model consists of three convolution layers

followed by SortPooling layers [45], two 1D convolutions and

three MLP layers. The train:test splits ratio was set to 80 : 20,

batch size to 128, learning rate to 1e−4 and the number of

epochs was set to 100. We consider Area Under the Curve

(AUC) similar to [28] as the evaluation metric.

We report the performance comparison in terms of AUC

with degree encoding as node features in Figure 5. The results

demonstrate that ESGEA vastly outperforms one-hot-degree

encoding. More specifically, Residual Gated GCN and k-GNN

demonstrate an encouraging improvement of up to 10% on the

Reddit binary dataset. Similarly, each method has received up

to 4% improvement on the Github StarGazers dataset. ESGEA

also outperforms throughout on Twitch Egos and Deezer Egos

datasets. These results clearly illustrate the effectiveness of the

proposed approach in the applications where node features are

unavailable.

B. Node Classification

In the node classification setting, we evaluate the proposed

method in a setting where a certain percentage of node features

is corrupted. We apply the proposed approach to enrich the

corrupted node features and then trained different GNNs to

evaluate the results. In the following sections, we describe the

datasets, experimental setup, and results in detail.

1The results are colored red where the proposed method ESGEA outperforms
the baseline and are colored blue otherwise

Table II: Comparison of node classification accuracy on the test set
of LastFM Asia dataset across 10 seeded runs1.

Corruption ratio
Model 0% 10% 20% 50% 80% 90%

MLP 71.76 59.50 49.43 31.13 21.62 20.24

ESGEA 71.85 60.00 50.39 30.32 20.98 20.25

GCN 86.11 84.28 82.36 74.94 67.50 66.03

ESGEA 86.50 84.55 86.47 75.43 68.04 66.89

GAT 85.52 79.37 78.03 72.20 67.65 70.91

ESGEA 85.72 79.52 85.72 75.42 73.21 75.24

AirGNN 86.45 85.76 85.69 82.31 79.37 77.17

ESGEA 86.39 85.70 85.70 83.35 78.50 77.36

UniMP 87.12 85.69 82.98 77.47 72.07 71.70

ESGEA 87.28 84.58 87.20 80.61 78.03 78.54

Figure 6: ESGEA with UniMP performance on both Facebook and
LastFM Asia datasets. Here we vary the percent of abnormality
injected into the original node features. The results are compared with
the standard one-hot-degree encoding (denoted as deg).

Datasets: We consider two social network datasets, Facebook
Page-page and LastFM Asia, for the node classification task.

We refer the reader to [27] for further details on these datasets.

Backbone GNNs: In our evaluations, we consider four

baseline methods: a two-layered MLP, GCN [20], GAT [39],

Unified Message Passing (UniMP) [34], and AirGNN [25].

Setup: We examine a three-layered architecture for every

method implemented in PyTorch Geometric. The number of

hidden channels was set to 16, learning rate as 0.01, k and L
equal 3 and the weight decay was set to 1e−4. Each model was

trained for 200 epochs with 50 epochs as an early stopping

criterion. Throughout the experiments, we evaluate all models

on 0%, 10%, 20%, 50%, 80%, and 90% noise setting, i.e., the

number represents the percentage of nodes for which original

node features were replaced with random features sampled

from a Gaussian distribution as done in [25].

Results: Table I and II present the classification results

of our evaluation on both datasets. The proposed framework

achieves either comparable or superior performance in every
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experiment. Specifically, the proposed method with UniMP and

GAT models boasts a performance gain of up to 7% on the

Facebook and LastFM Asia datasets. In Figure 6, we visualize

the performance of ESGEA in conjunction with UniMP on

both Facebook and LastFM Asia datasets. We observe as the

abnormality increases, ESGEA is less impacted as degree

encoding and maintains stronger performance.

C. Parameters Sensitivity and Runtime
Graph neural networks that employ subgraph representations

are a novel and sophisticated category of expressive learning

techniques designed to represent graphs as an amalgamation

of subgraphs [13]. The efficacy of these methods is typically

contingent upon the depth of the subgraphs as well as the

number of GNN layers utilized, both of which constitute hyper-

parameters. As the number of layers in MPNNs increases,

a common phenomenon known as oversmoothing occurs,

whereby the node features begin to converge into indistin-

guishable vectors. This is evidenced in Figure 1, which shows

the performance of GCN on the Facebook dataset. Conversely,

while a deeper subgraph results in an enlarged receptive field, it

also exacerbates the oversmoothing effect, as node features are

smoothed too quickly. Moreover, it also increases the running

times of the methods by several folds. It is therefore imperative

to make informed selections for these hyper-parameters in order

to facilitate the training of the model. To delve deeper into

the interplay of these parameters, we conducted an empirical

analysis on both the node and graph classification tasks.

Graph Classification: We use Reddit threads dataset to

analyze k−GNN with varying numbers of layers and subgraph

depths, as illustrated in Figure 7 (a). Our objective was

to determine how these parameters affect performance. We

observe that a smaller or larger number of GNN layers reduces

the model’s performance, whereas a layer count of 3 or 4
yields optimal results. We also assessed the execution time of

subgraph embedding and model training on the Deezer egos

and Reddit threads datasets, as displayed in Figure 7 (b). These

datasets have small diameters averaging at 3.4 and 4.5. As a

consequence of their low diameters, the computation time for

subgraph embedding is not extensive and can be completed

within 50 seconds. Similarly, model training times fall within

the range of 200− 300 seconds. These findings demonstrate

Figure 7: Graph classification parameter sensitivity and runtime
analysis: (a) Performance comparison of k−GNN on Reddit threads
dataset. (b) running times of subgraph embeddings and training times
of GCN on Reddit threads and Deezer egos datasets.

Figure 8: Node classification parameter sensitivity and runtime
analysis: (a) Performance comparison of Graph attention network
on LastFM Asia dataset. (b) running times of subgraph embeddings
and training times of GCN on LastFM Asia and Facebook datasets.

that computing embeddings using subgraphs and NetLSD

descriptors is scalable on large graphs, without sacrificing

the method’s efficiency.
Node Classification: To assess the effectiveness of the

hyper-parameters and analyze the running times, we consider

both Last FM Asia and Facebook social networks in a node

classification setting. As illustrated in Figure 8 (a), our results

indicate increasing both the number of layers and the depth of

subgraphs can lead to suboptimal performance. Our analysis

suggests a favorable combination of hyper-parameters involves

three GNN layers with depth k = 3 for optimal results. In

Figure 8 (b), we present the running time of the NetLSD

descriptor for computing subgraphs of varying depth on the

LastFM Asia and Facebook datasets. We also compare the

training times of GCN on both datasets. Notably, as the

depth of the subgraphs increases, their size grows, which

consequently extends the running time of the descriptor as

depicted in Figure 8 (b). Nonetheless, we observe that subgraph

embeddings for k = 3 were calculated within a reasonable 2
and 45 minutes accordingly.

VI. CONCLUSION

In this paper, we proposed Ego-centric Spectral subGraph

Embedding Augmentation (ESGEA), a novel framework for

extracting node features from network topology, which is

especially important for settings where networks have missing

or unreliable node feature information. Preceding message

passing, our framework leverages the node’s neighborhood

topological structure from spectral graph embeddings obtained

on extracted ego-centric k-order subgraphs to generate informa-

tive and expressive node features, which are then augmented

to the feature matrix using a suitable aggregation approach.

Notably, our framework is flexible and compatible with any

GNN-based architecture, and exhibits impressive performance.

Our detailed evaluations on seven datasets, and eight baselines,

encompassing both node and graph classification settings,

illustrate the efficacy and potential of the proposed approach.
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