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Abstract  

This paper proposes a comparative analysis of different 
state estimation techniques on linear and non-linear 
systems.Estimation is the process of finding a value that is 
usable even if the subject of interest is un-certain, delayed or 
corrupted due to noise. An Iterative Kalman Filter has been 
developed for a class of uncertain discrete time system with 
delay. It extends, the KF and EKF to the case in which the 
underlying system is subjected to norm bounded uncertainties 
and constant state delay. The IKF is a robust version of KF, 
but with the necessary modification to account for the 
parameter uncertainty as well as delay. 
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1. Introduction  

The ultimate goal of algorithms research is to find an 
optimal solution for a given problem. In this paper we have 
discussed the performance of Kalman Filter (KF), Extended 
Kalman Filter (EKF) and Iterative Kalman Filter (IKF) over a 
system affected by uncertainties and time delay. 

 

2.  Algorithms for Estimation: 

In this section we will discuss in detail the performance of 
various estimation algorithms along with their strengths and 
drawbacks. 

2.1 The Kalman filter (KF) 

The Kalman filter (KF) is a tool that can estimate the 
variables of a wide range of processes. In mathematical terms 
we would say that a Kalman filter estimates the states of a 
linear system. The Kalman filter not only works well in 
practice, but it is theoretically attractive because it can be 
shown that of all possible filters, it is the one that minimizes 
the variance of the estimation error. The KF is an extremely 
effective and versatile procedure for combining noisy sensor 
outputs to estimate the state of the system with uncertain 
dynamics. When applied to a physical system, the observer or 
filter will be under the influence of two noise sources: (i) 
Process noise, (ii) Measurement noise. 

In order to use a Kalman filter to remove noise from a 
signal, the process that we are measuring must be able to be 
described by a linear system. 

Suppose we have a linear discrete-time system given as 
follows: 

1k k kx Ax Bw      (1) 

k k ky Cx v      (2) 

Where 
n

kx   is the system state, 
m

ky  is the 

measured output, 
q

kw   is the process noise,
p

kv   is 

the measurement noise, and ,A B and C are known real 

matrices with appropriate dimensions. Our objective is to 
design a KF of the from 

1
ˆ ˆ

k f k f kx A x k y      (3) 

Where ,f fA K  are time varying matrices to be 

determined in order that the estimation error ˆk k ke x x   is 

guaranteed to be smaller than a certain bound for all 
uncertainty matrices, i.e., the estimation error dynamics 

satisfies    ˆ ˆ
T

k k k k kx x x x S    ,with kS being an 

optimize upper bound of filtering error covariance over the 
class of quadratic filter to be defined later.  

f fA A k C      (4) 

  1T

f kK AQ C R    (5) 

Ultimately we have 

   1

1

T
T T T T

k k k kS AQ A AQ C R AQ C BWB

   

                                                                                 (6)
 

According to all these result we say that, the filter is a 
robust quadratic estimator with an upper bound of error 

covariance kS . 
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2.2 Extended Kalman Filter for System with 
Uncertainties 

 1k k k kx A A x Bw    
                 (7) 

 k k ky C C x v   
             (8) 

Where, 
n

kx 
 is the system state, 

m

ky 
is the 

measured output, 
q

kw 
 is the process noise,

p

kv 
 is 

the measurement noise. In the following kv
 and kw

will be 
regarded as zero mean, uncorrelated white noise sequence 

with covariance kR
and kQ

. 

 0,k kv N R
                                     (9) 

 0,k kw N Q
             (10) 

The matrix 
n nA  and 

n n

kA  
 in the difference 

equation (7) is the dynamics matrix and time-varying 

uncertainty which relates the state at time step k to the state at 

time step 1k  . The matrix 
1nB   called noise matrix. 

The matrix 
m mC  and 

n n

kC  
in the measurement 

equation (8) relates the state measurement y . In this chapter a 
critical issue concerns the uncertainty model used. If the 
uncertain model used does not give an accurate representation 
of the true uncertainty in the problem but rather over bounds 
the true uncertainty then this will lead to an overlay 
conservative robust filter with a correspondingly poor 
performance, therefore in order to obtain good results from 
EKF we are assuming the uncertainty matrix in the following 
structure. 

 

1

2

k

k

k

A H
F E

C H

   
   

                (11) 

Where, 
I J

KF 
is an unknown real time varying 

matrix and 1H
, 2H

and E are known real constant matrices of 

appropriate dimensions that specify how the elements of A  

and C  are affected by uncertainty in kF
.  

Our objective is to design KF in the form of an Equation 
(12), and determine a gain matrix which minimize the mean 

square of the error ke
, 

 1ˆ ˆ ˆk f k f k ek kx A x K y C C x        (12) 

 T T

ek k k kA AS E I ES E E   
           (13) 

 T T

ek k k kC CS E I ES E E   
      (14) 

  
1

1 2

T T T

f k k k kK AQ C H H CQ C R


  
     (15) 

 

   

1 1

1 1 1 1 2

1
1

1 2

T T T T T

k k k

T
T T T

k k

S AQA H H BWB AQC H H

R CQC AQC H H

 



 






    

  

     (16) 

According to all these result we can say that, the filter (12) 
is a quadratic estimator with an upper bound of error 

covariance kS
. 

2.3 Iterative Kalman Filter for System with 
Uncertainties and Time Delays: 

We use an IKF to estimate the state
n

kx 
 of a discrete 

time uncertain controlled system. The system is described by a 
linear stochastic difference equation as follows, 

   1

d

k k k d k k d kx A A x A A x Bw       
    (17) 

 k k ky C C x v   
                            (18) 

Where
n

kx 
 is the system state, 

m

ky 
is the 

measured output, 
q

kw 
 is the process noise,

p

kv 
 is 

the measurement noise. In the following kv
 and kw

will be 
regarded as zero mean, uncorrelated white noise sequence 

with covariance kR
and kQ

. 

 0,k kv N R
                                      (19) 

 0,k kw N Q
   (20) 

The matrix 
n nA  and 

n n

kA  
 in the difference 

equation (17) is the dynamics matrix and time-varying 

uncertainty which relates the state at time step k to the state at 

time step 1k  . The matrix 
1nB   called noise matrix. 

The matrix 
m mC  and 

n n

kC  
in the measurement 

equation (18) relates the state measurement y . The matrix 
p p

dA 
and 

d

kA
in the difference equation (17) is the 

delayed matrix and time varying delayed matrix. In this 
chapter a critical issue concerns the uncertainty model with 
time delay used. Earlier we already discussed if the uncertain 
model used does not give an accurate representation of the 
true uncertainty in the problem but rather over bounds the true 
uncertainty then this will lead to an overlay conservative 
robust filter with a correspondingly poor performance, 
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therefore in order to obtain good results from IKF we are 
assuming the uncertainty matrix in the following structure. 

1

2

3

.

k

k k

d

k

A H

C H F E

A H

   
   
 
   
                        (21) 

Where, 
I J

KF 
is an unknown real time varying 

matrix and 1H
, 2 3,H H

and E are known real constant 
matrices of appropriate dimensions that specify how the 

elements of 
, dA A

 and C  are affected by uncertainty in kF
.  

Our objective is to design KF in the form of an equation 
(22), and determine a gain matrix which minimize the mean 

square of the error ke
, 

 1ˆ ˆ ˆk f k f k ek kx A x K y C C x                  (22) 

 T T

ek k k kA AS E I ES E E   
     (23) 

 T T

ek k k kC CS E I ES E E   
     (24) 

  
1

1 2

T T T

f k k k kK AQ C H H CQ C R


  
       (25) 

 
 

   

  

1 1

1 1 1 2

1 1
1

1 2

1 1 1

3 3

1

1

T T T T T

k k

k k T
T T T

k k

T T T

k d k d d k

AQA H H BWB AQC H H
S

R CQC AQC H H

A M A H H BWB



 




 

 

 


  



     
     
      

   

                                                                 (26) 

According to all these result we can say that, the filter 
(4.22) is a quadratic estimator with an upper bound of error 

covariance kS
. 

 

3.  RESULT: 

In this section we will consider a simulation example and 
test the performance of all three algorithms discussed above. 

Consider the following uncertain discrete time system, 

 

1

0 0.5 0 0 6

1 1 0 1

100 10

k k k

k k k

x x w

y x v




        
        

      

  

 

Where  is an uncertain parameter satisfying 0.3  . 

Note that the above system is of the form of system (7)-(8) 
with, 

 1 2

0
, 0, 0 0.03

10

1 0
, 1

0 1

H H E

P S W V

 
   
 

 
    

 

 

 

Fig. 1:No. of Iteration vs. True State and Estimated State 
of  KF when uncertainty is zero. 

 

Fig. 2:No. of Iteration vs. True State and Estimated State 
of KF when uncertainty is 0.3. 

Fig. 5.3., shows the graph between no. of iteration vs. true 

state and estimated state when  =0, here the value of 

estimated state is nearly equal to true state but, when  =0.3 

the KF give poor result as shown in Fig.2. 

 

 

 

Fig. 3:No. of Iteration vs. True State and Estimated State 
of EKF when uncertainty is 0.3. 
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Fig. 3 shows the graph between true state and estimated 
state with varying time iteration. When  

 =0.3, here the value of true state nearly equal to the 

value of estimated state. From the above figures we can see 
that estimating the states with EKF is better than KF when 
system is having uncertainty. 

 

Fig. 4:No. of Iteration vs. True State and Estimated State 
of KF when delay is zero. 

 

Fig. 5:No. of Iteration vs. True State and Estimated State 
of KF when delay is 2. 

 

Fig.4 shows that KF performs better when delay is zero but 
its performance degrades drastically when delay is introduced 
as shown in fig.5. 

.  

Fig. 6:No. of Iteration vs. True State and Estimated State 
of EKF when delay is 0. 

       

Fig. 7:No. of Iteration vs. True State and Estimated State 
of EKF when delay is 2. 

 

Fig. 8:No. of Iteration vs. True State and Estimated State 
of IKF when delay is 2 and uncertainty is 0.3. 

Fig.6 shows that EKF performs better when delay is zero 
but it performs poorly when delay is introduced as shown in 
fig.7. 

So we can conclude that EKF performs better in presence 
of uncertainty but performs poorly when delay is present. 

As can be seen from Fig.8, IKF performs much better 
when delay and uncertainty both are present in the system. So 
we can conclude that of the three algorithms that we discussed, 
IKF is the one that performs better for a non linear system. 
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