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Abstract
Computing a Nash equilibrium in multiplayer
stochastic games is a notoriously difficult prob-
lem. Prior algorithms have been proven to converge
in extremely limited settings and have only been
tested on small problems. In contrast, we recently
presented an algorithm for computing approximate
jam/fold equilibrium strategies in a three-player no-
limit Texas hold’em tournament—a very large real-
world stochastic game of imperfect information [5].
In this paper we show that it is possible for that al-
gorithm to converge to a non-equilibrium strategy
profile. However, we develop an ex post procedure
that determines exactly how much each player can
gain by deviating from his strategy and confirm that
the strategies computed in that paper actually do
constitute an ε-equilibrium for a very small ε (0.5%
of the tournament entry fee). Next, we develop sev-
eral new algorithms for computing a Nash equilib-
rium in multiplayer stochastic games (with perfect
or imperfect information) which can provably never
converge to a non-equilibrium. Experiments show
that one of these algorithms outperforms the orig-
inal algorithm on the same poker tournament. In
short, we present the first algorithms for provably
computing an ε-equilibrium of a large stochastic
game for small ε. Finally, we present an efficient
algorithm that minimizes external regret in both the
perfect and imperfect information cases.

1 Introduction
Poker exemplifies many challenging problems in computa-
tional game theory and multiagent systems: it has enormous
strategy spaces, it is a game of imperfect information, it
can have many players, and poker tournaments are stochas-
tic games. There has been much interest recently in devis-
ing strong game-theoretic strategies for a single hand of two-
player limit Texas hold’em (e.g., [1, 6, 15]). However, there
has been relatively little work on the no-limit variant despite
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the fact that it is much more popular among humans. (In limit
poker bets must be of a fixed size, while in no-limit poker
players can bet any amount up to the amount of chips they
have left.) A notable exception is a recent paper by Gilpin et
al. [7]. However, that paper still focuses on playing a single
hand rather than a tournament.

A significant deviation point from prior literature was a re-
cent paper that computes an approximate equilibrium for both
a single hand and a tournament of two-player no-limit Texas
hold’em [12]. That paper studies a restricted set of strate-
gies known as jam/fold strategies and shows that the equilib-
rium profile when both players are restricted to such strate-
gies closely approximates an equilibrium of the unrestricted
game. However, the results and the algorithms of that paper
do not apply to more than two players. There often exists
a large complexity gap between the difficulty of solving two
and three-player zero-sum games; for example, two-player
zero-sum matrix games can be solved in polynomial time by
linear programming while solving three-player matrix games
is PPAD-complete [3]. Furthermore, poker tournaments are
stochastic games, and there are no known algorithms that
are guaranteed to converge to an equilibrium in three-player
stochastic games (even in the zero-sum case).

Stochastic games generalize Markov decision processes
(MDPs) to the multiagent setting: at each state all agents
choose an action, and the transition function now depends
on the joint action profile. As in other classes of games,
the standard solution concept is the Nash equilibrium. Prior
algorithms are guaranteed to converge to an equilibrium in
certain classes of games. For example, Friend-or-Foe Q-
learning [11] and Nash-Q [8] converge if the overall stochas-
tic game has a global optimum (a strategy profile that max-
imizes the payoff for each agent) or a saddle point (Nash
equilibrium such that if any agent deviates, all others become
better off)—and furthermore, the algorithm needs to know
which of these two settings it is operating in. Other algo-
rithms are guaranteed to converge to an optimal Nash equilib-
rium in team stochastic games—games in which all agents re-
ceive the same payoff [2, 14]. Interesting algorithmic results
have also been proven for planning in general-sum stochas-
tic games [10]. That paper does not specify a Nash selection
function; we provide such a function that is effective in prac-
tice. Their algorithm Finite-VI resembles our algorithm VI-
FP from [5], which we will review, but they do not have algo-



rithms resembling those that we will introduce in this paper.
Furthermore, their algorithms find equilibria only in finite-
horizon games; ours also do in infinite games. In summary,
the settings of prior work are quite restrictive, and all of those
algorithms have only been tested on tiny problems, if at all.

In contrast, our recent paper presents an algorithm for com-
puting approximate jam/fold equilibrium strategies in a three-
player no-limit Texas hold’em tournament [5]. It is easy to
see that the tournament does not fall into the classes of games
for which prior algorithms are guaranteed to converge, and
furthermore the game is many orders of magnitude larger than
the games previously solved. Additionally, the stage games
have imperfect information: players are dealt private cards at
each game state and must choose their action without know-
ing the cards dealt to the other players. The tournament uses
the actual parameters of tournaments played on the most pop-
ular poker site, Pokerstars. As we showed, it can be formu-
lated as a stochastic game with 946 states, each with 26×169

possible actions. Despite the fact that our earlier algorithm
converged when run on that tournament, very little is known
about it. In particular, we show that it is possible for that al-
gorithm to converge to a non-equilibrium. Thus, the strategy
profile computed in our earlier paper was not guaranteed to
be a jam/fold equilibrium of the tournament.

Fortunately, we show in this paper that the strategies com-
puted by that algorithm actually do constitute an approximate
jam/fold equilibrium of the tournament. We do so by devel-
oping an ex post checking procedure. The check reveals that
no player can gain more than 0.5% of the tournament entry
fee by deviating from the computed strategy for any start-
ing stacks. The techniques we use in the ex post check also
suggest new algorithms for solving stochastic games. We
present several new algorithms with the guarantee that if the
algorithm converges, the resulting strategy profile is an equi-
librium. One of these algorithms outperforms our original
algorithm on the same poker tournament. In short, this pa-
per presents the first algorithms for provably computing an
ε-equilibrium of a large stochastic game for small ε. Finally,
we present an efficient algorithm that minimizes external re-
gret in both the perfect and imperfect information case.

2 Rules of no-limit Texas hold’em
In this section we briefly review the rules of no-limit Texas
hold’em. Each player at the table is dealt two private hole
cards, and one player is selected to be the button—a desig-
nation which shifts one position clockwise each hand. The
player to the left of the button is called the small blind (SB),
and the player to his left is the big blind (BB). Both the SB and
BB are forced to put some number of chips into the pot be-
fore the hand (normally BB = 2 × SB); these investments are
called blinds. Then there is a round of betting starting with
the player to the BB’s left. After that, three cards (called the
flop) are dealt face up in the middle of the table. Then there
is another round of betting starting with the player directly
left of the button, followed by another card dealt face up (the
turn). Then another round of betting, followed by a fifth card
face up (the river), followed by a final round of betting. If
there is more than one player who has not folded, the player

with the best five-card hand (constructed from his two hole
cards and the five community cards) wins the pot. In case of
a tie, the pot is split evenly among those players.

During each round of betting, each player has four possible
options. (1) fold: pass and forfeit his chance of winning the
pot. (2) call: put a number of chips equal to the size of the
current bet into the pot. (3) raise: put some additional amount
of chips in the pot beyond what was needed to make a call.
(4) jam (also referred to as moving all-in or pushing): put all
of one’s remaining chips into the pot (even if that amount is
smaller than the amount needed to call; in this case a side pot
is created for the other players so that everyone has invested
equally into the main pot).

3 Poker tournaments and stochastic games
Tournaments are an extremely popular form of poker; they
work as follows. Some number of players (say 10) all pay
an entry fee (say $10) and are given a number of chips (say
1500), which have no monetary value per se except that a
player is eliminated from the tournament when he runs out of
chips. The first seven players eliminated from the tournament
lose their entry fee, while the three top finishers receive 50%,
30%, and 20% of the sum of the entry fees ($100) respec-
tively. Usually the blinds increase every five or ten minutes in
online tournaments, starting at SB = 10, BB = 20 and approx-
imately doubling at every level. Since chips have no explicit
monetary value, tournaments are actually stochastic games,
where each state corresponds to a vector of stack sizes.

Formally, a stochastic game G is a tuple (N,S,A, p, r)
where N = {1, . . . , n} denotes a finite set of players, and S
denotes a finite set of states. A is a tuple (A1, . . . , An) where
for each i ∈ N, s ∈ S, Ai(s) is a finite set corresponding
to player i’s available actions at state s. For s ∈ S let A(s)
denote the vector (A1(s), . . . , An(s)). For each s, t ∈ S and
a ∈ A(s), ps,t(a) denotes the probability that we transition
from state s to state t when all players play their component
of the action vector a. Finally, r : S → Rn denotes the payoff
function, where for each s ∈ S, r(s) is a vector whose i’th
component is the payoff to player i when state s is reached (in
some formulations the reward function has domain S ×A).

At each state s, player i can choose any probability distri-
bution σ over actions in Ai(s). Let σ(ai) denote the proba-
bility he selects action ai. Let a = (a1, . . . , an), and define
σ(a) =

∏
i σ(ai). Then we extend our definition of the tran-

sition function so that ps,t(σ) =
∑

a∈A(s) [σ(a)ps,t(a)] . A
policy π for player i is a choice of probability distributions
over actions in Ai(s) at each state s.

If we let st denote the current state at time t then the goal
of agent i is to maximize

∑∞
t=0 γtri(st), where 0 < γ ≤ 1

is the discount rate. If γ = 1 then we say that the game is
undiscounted, and otherwise we say that it is discounted.

We say that a state s is terminal if ps,t(a) = 0 for all t 6=
s, a ∈ A(s) and ps,s(a) = 1 for all a ∈ A(s). If we ever
arrive at a terminal state s, then we will remain at s for the
remainder of the game. A state is nonterminal if it is not a
terminal state.

A stochastic game with one agent is called a Markov deci-
sion process (MDP).



4 Existing algorithm for three-player
tournaments (VI-FP)

When blinds become sufficiently large relative to stack sizes
in tournaments, rationality dictates more aggressive play. In
particular, prior work suggests that it is near optimal for play-
ers to either go all-in or fold preflop [5, 12] (such strategies
are called jam/fold strategies). In this section we review
our recent algorithm for computing an approximate jam/fold
equilibrium in a three-player tournament [5]. The algorithm
consists of iteration at two nested levels. The “inner loop”
uses an extension of smoothed fictitious play to determine
ε-equilibrium strategies for playing a hand at a given state
(stack vector) given the values of possible future states. This
is done for all states. The iteration of the “outer loop” adjusts
the values of the different states in light of the new payoffs
obtained from the inner loop. Then the inner loop is exe-
cuted again until convergence, then the outer loop, and so on.
The algorithm terminates when no state’s payoff changes by
more than δ between outer loop iterations. As the outer loop
resembles Value Iteration and the inner loop uses smoothed
Fictitious Play, we refer to this algorithm as VI-FP.

4.1 Inner loop
In standard fictitious play, each player plays a best response
to the average strategies of his opponents thus far. Similarly,
in smoothed fictitious play each player i applies the following
update rule at each time step t to obtain his current strategy:

st
i =

(
1− 1

t

)
st−1

i +
1
t
s′ti , (1)

where s′ti is a best response of player i to the profile st−1
−i

of the other players played at time t − 1 (strategies can be
initialized arbitrarily at t = 0). This algorithm was originally
developed as a simple learning model for repeated games, and
was proven to converge to a Nash equilibrium in two-player
zero-sum games [4]. However, it is not guaranteed to con-
verge in two-player general-sum games or games with more
than two players.

In poker tournaments the strategy spaces are exponential in
the number of possible private signals. In particular, in Texas
hold’em there are 169 strategically distinct preflop hands
(see, e.g., [6]) and two jam/fold moves each player can make
at each information set. Therefore, the strategy spaces (for
any given stack vector) are of size 2169, 22×169, and 23×169

for the button, small blind, and big blind, respectively (the
big blind does not need to act when the other two players
fold). To deal efficiently with this exponential blowup, the
algorithm works with the extensive form of the game instead
of enumerating the strategies. In the extensive form, each
player’s best response can be computed by traversing his in-
formation sets one at a time. The button has 169 information
sets, the small blind has 2×169, and the big blind has 3×169.
Therefore, the best response (for each player in turn) can be
computed efficiently.

While fictitious play is not guaranteed to converge, we for-
tunately have the following result:
Theorem 1. (Fudenberg and Levine [4]) Under fictitious
play, if the empirical distributions over each player’s choices

converge, the strategy profile corresponding to the product of
these distributions is a Nash equilibrium.

4.2 Outer loop

As stated earlier, poker tournaments are stochastic games in
which each state corresponds to a vector of stack sizes. In par-
ticular, we analyze the tournament in which there are 13500
total chips, and blinds are SB = 300, BB = 600. These cor-
respond to common endgame parameters of sit-and-go tour-
naments at Pokerstars, the most popular online poker site.
Each state in our game G is defined by a triple (x1, x2, x3),
where x1 denotes the stack of the button, x2 denotes the stack
of the small blind, x3 denotes the stack of the big blind,∑

i xi = 13500, and all xi are multiples of 300. When one
of the xi becomes zero, that player is eliminated, and we can
already solve the remaining game with the prior techniques
because there are at most two players left. So we can ignore
states in which stacks are zero from our model and just sub-
stitute the corresponding payoffs to players when we arrive in
such states. G has 946 non-terminal states.

The algorithm for solving the game works as follows. First
we initialize the assignment V 0 of payoffs to each player at
each game state using a heuristic from the poker community
known as the Independent Chip Model (ICM), which asserts
that a player’s probability of winning is equal to his fraction
of all the chips; his probability of coming in second is asserted
to be the fraction of remaining chips conditional on each
other player coming in first, etc. [5]. ICM has been shown
to be quite accurate when two players remain in the tourna-
ment [12]; when three players remain it has been shown to be
relatively accurate overall, although in some states it is sig-
nificantly inaccurate [5].

Next, suppose we start at some game state x0. If we as-
sume that the payoffs of V 0 at all states are the actual val-
ues of those states to the players, then the whole stochastic
game just becomes a standard game in which every transi-
tion from x0 leads to a terminal payoff. So we can run the
fictitious play algorithm described in Section 4.1 at state x0

until it (hopefully) converges. Supposing it does converge to
an approximate equilibrium, each player will now have some
new expected payoff at state x0 if that equilibrium is played.
(These payoffs might differ from V 0.) If we do this for all
946 game states, we come up with a new assignment V 1 of
payoffs to each player at each game state. Now suppose we
repeat this process and that hypothetically the payoffs remain
the same between iterations k and k + 1 (all the payoffs in
V k and V k+1 are equal). This would suggest that the strate-
gies computed by fictitious play at iteration k (assuming they
converge) are close to an equilibrium of the full game G.

Now, stated explicitly with tolerances, the overall algo-
rithm works as follows. First, fix γ, δ > 0. Initialize the V 0

to ICM, and run fictitious play using V 0 as payoffs until an γ-
equilibrium is reached (a strategy profile in which no player
can gain more than γ in expectation by deviating). Then use
the payoffs V 1 which result from the computed strategy pro-
file and repeat. The algorithm halts when it reaches an iter-
ation k such that each payoff of V k differs from the corre-
sponding payoff of V k−1 by less than δ.



Algorithm 1 VI-FP(γ, δ)
V 0 = initializeValues()
diff = ∞
i = 0
while diff > δ do

i = i + 1
regret = ∞
S = initializeStrategies()
while regret > γ do

S = fictPlay()
regret = maxRegret(S)

end while
V i = getNewValues(V i−1,S)
diff = maxDev(V i, V i−1)

end while
return S

5 Our ex post check
We now move to the contribution of this paper. In the ex-
perimental results with VI-FP, both the inner and outer loops
converged. However, we observe that this does not guarantee
that the final strategies constitute an approximate equilibrium.
For example, suppose we initialized all the payoffs at nonter-
minal states to be $100 (higher than the first-place payoff)
and initialized payoffs at the terminal states using ICM. Then
the optimal strategy for each player would be to fold every
hand (except for the shortest stack if he is all-in), and the al-
gorithm would converge to this profile (in a single outer-loop
iteration). However, this profile is clearly not an equilibrium
of the game, as the players will not receive any payoff (while
they would receive at least $20 if the game ended after some
finite time). Thus there exist initializations for which VI-FP
converges to a non-equilibrium profile.

Despite this fact, we suspected that the computed strategies
formed an approximate equilibrium (as the strategies seemed
very reasonable and we used an intelligent initialization). To
verify this, we developed an ex post checking procedure to
make sure. It computes the best response of each player to the
computed strategy profile and determines the improvement in
payoff (while the overall algorithm is somewhat obvious, it
is difficult in our setting for reasons described below). If the
improvement is less than ε for each player, then the original
strategies indeed constitute an ε-equilibrium.

Stepping back to the big picture, VI-FP is an incomplete
algorithm; but if it converges, our ex post check can be used
to check the quality of the solution. Furthermore, the check
can be applied at every iteration of the outer loop, even if VI-
FP does not converge. As we will see, we have developed
several new algorithms for solving stochastic games that can-
not converge to a non-equilibrium strategy profile (as VI-FP
can). Thus, if the new algorithms converge we will not need
to waste extra resources performing the ex post check after
every iteration, as we are guaranteed to be at an equilibrium.

We will now describe the ex post check in detail. The first
step is to construct the MDP induced by the strategy pro-
file s∗ (computed by VI-FP). Denote this MDP by M. Each
nonterminal state si of M is determined by a nonterminal

state vi of the stochastic game G (stack vector) and a posi-
tion αi (button, small blind, or big blind). So, M contains
946× 3 = 2838 nonterminal states. In addition, M contains
a terminal state for each terminal of G corresponding to each
stack vector with at most two nonzero stacks that is reachable
from a nonterminal state (say that a state s2 is reachable from
state s1 if there exists an a ∈ A(s1) such that ps1,s2(a) > 0).

The set of actions available at each state is essentially the
set of jam/fold strategies available at that stack vector in G.
If αi is the button then there are 2169 possible actions at state
si; if αi is the small blind there are 22×169 actions; and if αi

is the big blind there are 23×169 actions. The transitions of
M are determined by the probability distribution over states
when player αi chooses action ai and the other players fol-
low the strategy profile s∗−i. It is important to note that in a
transition to a nonterminal state the position changes; that is,
if we are at state si with position αi equal to the button and
transition to state sj , the new position αj is the big blind (be-
cause blinds move clockwise). Finally, the rewards at each
nonterminal state are 0, and at each terminal state they are the
ICM payoff of the corresponding stack vector (since previ-
ous two-player results showed that ICM payoffs very closely
approximate equilibrium payoffs in this case).

An optimal policy for M corresponds to a best response of
each player in G to the profile s∗. However, we cannot apply
the standard value or policy iteration algorithms for solving
the MDP because we are in the undiscounted setting (since
the players only care about their final payoffs). Instead we
turn to variants of these algorithms that work when the ob-
jective is expected total reward and the following conditions
hold: 1) for all states s and policies π, the value of state s
under π is finite and 2) for each s there exists at least one
available action a that gives nonnegative reward. In the re-
sults below, we refer to these conditions as “our setting.”

For value iteration, the change from the classic discounted
setting is the initialization:
Theorem 2. (Puterman [13]) In our setting, if v0 is initial-
ized pessimistically (i.e., ∀s, v0(s) ≤ v∗(s)), value iteration
converges (pointwise and monotonically) to v∗.

5.1 Policy iteration
We refer the reader to [13] for a thorough description of the
standard policy iteration algorithm and present the modified
algorithm needed to obtain convergence in our setting here
(while noting deviations from the classic setting). Policy it-
eration converges to an optimal policy in our setting if 1)
our initial policy obtains non-negative expected total reward
(which is obviously the case here), 2) we choose the minimal
non-negative solution of the system of equations in the evalu-
ation step (if there is a choice), and 3) if the action chosen for
some state in the previous iteration is still among the optimal
actions for that state, then select it again.

Since step 2 is critical for our new algorithms for solving
multiplayer stochastic games in the next section, we will ex-
plain it in more detail here. For each state i in the MDP M,
v(i) is a variable corresponding to its value. Thus, the equa-
tion in step 2 is linear in the unknowns v(i), i = 1, . . . , |S|,
where |S| is the number of states in M. Thus we have a linear
system of |S| equations with |S| unknowns. If the equations



Algorithm 2 Policy iteration for our setting

1. Set n = 0 and initialize the policy π0 so it has nonnega-
tive expected reward.

2. Let vn be the solution to the system of equations

v(i) = r(i) +
∑

j

pπn

ij v(j)

where pπn

ij is the probability of moving from state i to
state j under policy πn. If there are multiple solutions,
let vn be the minimal nonnegative solution.

3. For each state s with action space A(s), set

πn+1(s) ∈ argmax
a∈A(s)

∑
j

pa
ijv

n(j),

breaking ties so that πn+1(s) = πn(s) whenever possi-
ble.

4. If πn+1(s) = πn(s) for all s, stop and set π∗ = πn.
Otherwise increment n by 1 and return to Step 2.

are linearly independent, then there will be a unique solution
which can be computed by matrix inversion. If there are no
solutions, then we are in a degenerate case and the MDP has
no optimal policy (it can be proven that this can never be the
case in our setting). If there are multiple solutions, then we
select the minimal nonnegative solution (see [13] for a further
explanation). In all of our experiments the coefficient matrix
had full rank and hence the system had a unique solution.
Theorem 3. (Puterman [13]) Let S be the set of states in
M . Suppose S and A(s) are finite. Then, for some finite N ,
vN = v∗ and πN = π∗.

5.2 Ex post check algorithm
Since we already have a policy s∗ that we expect to be near-
optimal (and the corresponding values from the final iteration
of the outer loop) from VI-FP, we would like to use these val-
ues to obtain a warm start for v0 in the ex post check. How-
ever, this would not work with the value iteration algorithm
because v0 would not be simultaneously pessimistic for each
player (at any state) because we are in a zero-sum game (un-
less the values from VI-FP were precisely correct). On the
other hand, we can use s∗ as the initial policy in policy it-
eration because it clearly obtains non-negative expected total
reward. Therefore we opt for using the warm start and choose
policy iteration in the ex post check.

Algorithm 3 Ex post check
Create MDP M from the strategy profile s∗.
Run Algorithm 2 on M (using initial policy π0 = s∗) to
get π∗.
return maxi∈N,s∈S ui(π∗i (s), s∗−i(s))−ui(s∗i (s), s

∗
−i(s))

Proposition 1. Algorithm 3 correctly computes the largest
amount any agent can improve its expected utility by deviat-
ing from s∗.

Proof. By Theorem 3, the policy iteration step of the ex post
check converges in finite time to an optimal policy of the
MDP M determined by s∗. Since the agent assumes that all
other players are following s∗ at each state of M, the final pol-
icy π∗ is a best response to s∗. Thus the algorithm returns the
largest amount any agent can gain by deviating from s∗.

As in VI-FP, for efficiency in Step 3 of the policy itera-
tion (Algorithm 2) we do not compute best responses in the
exponential strategy space directly, but instead we consider
the extensive form and compute best responses by traversing
each agent’s information sets in turn. Again, this avoids the
exponential blowup.

We executed the ex post check on the strategies output by
VI-FP. It converged in just two iterations. The conclusion
from that experiment is that for any starting state of the tour-
nament, no player can gain more than $0.049 by deviating
from s∗. This represents less than 0.5% of the tournament
entry fee. In other words, while VI-FP does not guarantee
that convergence is to an equilibrium, it happened to indeed
converge to a strategy profile that is an ε-equilibrium for very
small ε.

6 New algorithms for solving stochastic games
The approaches used in the ex post check motivate new algo-
rithms for equilibrium finding as well. We now present those
new algorithms. They apply to multiplayer stochastic games
of either perfect or imperfect information in which best re-
sponses can be computed efficiently. Unlike VI-FP, each of
the new algorithms has the following guarantee: if the algo-
rithm converges, the final strategy profile is an equilibrium.

6.1 PI-FP: Policy Iteration as outer loop;
Fictitious Play as inner loop

Our first new algorithm is similar to VI-FP except now the
value updates take the form of Step 2 of Algorithm 2. After
the inner loop of fictitious play converges at each stack vec-
tor to an ε-equilibrium s′ (assuming the currently outer-loop
values), we evaluate the expected payoffs at all stack vectors
under the profile s′ by constructing the induced MDP and
finding the minimal solution of the system of equations de-
termined by Step 2 of Algorithm 2. (We initialize the payoffs
using ICM.) Thus, PI-FP differs from VI-FP in how the val-
ues are updated in the outer loop, while the inner loop remains
the same.

Proposition 2. If the sequence of strategies {sn} determined
by iterations of the outer loop of this algorithm converges,
then the final strategy profile s∗ is an equilibrium.

Proof. Let M denote the induced MDP determined by the
profile s∗ and define π0 to be the policy such that π0(s) =
s∗i (s) for all states s in M, where i is the player corresponding
to state s. Now suppose we run Algorithm 2 on M using π0

as our initial policy. By the convergence of PI-FP, we must
have π1(s) = π0(s) for all s. Thus Algorithm 2 converges
in one iteration on M, and we have π∗ = π0 = s∗i . So, all
players are playing a best response to each other under profile
s∗, i.e., s∗ is an equilibrium.



Algorithm 4 PI-FP(γ, δ)
V 0 = initializeValues()
diff = ∞
i = 0
while diff > δ do

i = i + 1
regret = ∞
S0 = initializeStrategies()
while regret > γ do

Si = fictPlay()
regret = maxRegret(Si)

end while
M i = createTransitionMatrix(Si)
V i = evaluatePolicy(M i)
diff = maxDev(V i, V i−1)

end while
return Si

While VI-FP might converge to a non-equilibrium given a
poor initialization (e.g., if all values are initialized to be above
the first-place payoff), PI-FP can still recover from a poor
initialization since it uses the values resulting from evaluating
the policy, not the values from the initialization.

6.2 FP-MDP: switching the roles of Fictitious Play
and MDP solving

Our next new algorithm involves reversing the roles of the in-
ner and outer loops from the previous two algorithms: now
fictitious play serves as the outer loop and MDP solving as
the inner loop. As argued previously, we prefer policy iter-
ation to value iteration for this application because it allows
us to get a good warm start more easily (although value iter-
ation may be preferable in some applications). (We initialize
values using ICM and generate our initial strategy profile s0

as before.) As in the ex post check, we construct the MDP
induced from the strategy profile s0 and compute the best re-
sponse for each player using policy iteration. We combine
the computed best responses with s0 using the fictitious play
updating rule to obtain s1, and repeat until the sequence {sn}
(hopefully) converges. We can use several different termina-
tion criteria, such as specifying a number of outer loop iter-
ations or specifying a minimum deviation for the values or
strategies between two outer loop iterations.

Algorithm 5 FP-MDP
S0 = initializeStrategies()
i = 0
while termination criterion not met do

M i = constructMDP(Si)
S′ = solveMDP(M i)
Si+1 = i

i+1Si + 1
i+1S′

i = i + 1
end while
return Si

Proposition 3. If the sequence of strategies {sn} determined
by iterations of the outer loop of this algorithm converges,

then the final strategy profile s∗ is an equilibrium.

Proof. By Theorem 3, policy iteration will converge to an
optimal (deterministic) policy at each step t of the inner loop,
which corresponds to a best response to the strategy profile
st−1
−i . Thus by Theorem 1, convergence of the outer loop im-

plies we are at an equilibrium.

Again, unlike VI-FP, FP-MDP can potentially recover
from poor initializations because it only uses the values re-
sulting from evaluating the policy.

6.3 FTPL-MDP: a polynomial time algorithm for
regret minimization

Note that we could use any suitable MDP-solving algorithm
in the inner loop of FP-MDP. In particular there exists a lin-
ear programming (LP) formulation for our setting [13]. We
can treat this as a polynomial-time best-response oracle. If we
replace fictitious play in the outer loop of FP-MDP with the
follow-the-perturbed-leader (FTPL) algorithm [9], we obtain
an efficient procedure for minimizing external regret in large
multiplayer stochastic games. FTPL is similar to fictitious
play except that instead of playing a best response to the pro-
file st−1

−i at time t, player i picks a strategy j that maximizes
ui(j, st−1

−i ) + Zj,t, where Zj,t corresponds to random noise.
The FTPL algorithm minimizes external regret; that is, if the
game is repeated n times and a player follows the algorithm,
then the per-period difference between the expected payoff of
his best fixed strategy in hindsight and his expected payoff by
following the FTPL algorithm approaches 0 (as 1√

n
).

Algorithm 6 FTPL-MDP
S0 = initializeStrategies()
i = 0
while termination criterion not met do

Ŝi = randomPerturbation(Si)
M i = constructMDP(Ŝi)
S′ = solveMDP-LP(M i)
Si+1 = i

i+1Si + 1
i+1S′

i = i + 1
end while
return Si

7 Experiments
We conducted experiments comparing the performance of VI-
FP with PI-FP and FP-MDP on the tournament using the
payouts $50, $30, and $20. The results are shown in Fig-
ure 1. The x-axis is the running time (in minutes, using 16
3GHz processors), and the y-axis is the maximal amount (in
dollars) a player could improve by deviating from the cur-
rent outer loop strategy profile of the algorithm (i.e., the ε
of ε-equilibrium). The y-axis value is the maximum ε over
all players and over all possible starting stack vectors of the
tournament. The solid line denotes VI-FP, the dashed line
denotes PI-FP, and the dashed/dotted line denotes FP-MDP.



The graph was generated by running the ex post check algo-
rithm over the strategies computed at the end of each outer-
loop iteration of the algorithms.

Since the outer loops for the algorithms take different
amounts of time, the graph contains different numbers of data
points for the different algorithms (the outer loop for VI-FP
and PI-FP takes about 2 hours while it takes about 40 min-
utes for FP-MDP). We halted VI-FP and PI-FP when ε fell
below 0.05, which represents 0.1% of the first place payoff;
we halted FP-MDP after 20 hours, as it failed to achieve
ε = 0.05.
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Figure 1: Epsilon as a function of running time.

PI-FP was the fastest to reach the target accuracy. VI-FP
also reached it, but took almost three times as long. FP-MDP
did not reach that accuracy in 20 hours.

8 Conclusions
Computing a Nash equilibrium in multiplayer stochastic
games is a notoriously difficult problem. We pointed out that
the best prior algorithm could converge to a non-equilibrium
strategy profile; however, we developed an ex post check
procedure that confirmed that the strategy profile computed
for a large three-player poker tournament actually constitutes
an ε-equilibrium for very small ε. We also presented several
new algorithms for solving multiplayer stochastic games of
imperfect information and proved that they can never con-
verge to a non-equilibrium. Experiments on the poker tourna-
ment showed that one of the new algorithms (PI-FP) outper-
forms the prior algorithm VI-FP; thus the equilibrium guar-
antee comes at no cost in run time. Finally, we presented a
polynomial-time algorithm for minimizing external regret in
the same class of games.

We find it interesting that the algorithms converged to an
equilibrium consistently and quickly despite the fact that they
are not guaranteed to do so. None of the algorithms are guar-
anteed to converge at all, and VI-FP was not even guaranteed
to be at an equilibrium even if it did converge. Hopefully
the results of this paper could lead to the investigation of
more general settings under which these convergence prop-
erties can be proven. While fictitious play is not guaranteed

to converge in three-player games, it converged in every iter-
ation of all of our algorithms; perhaps there is a more gen-
eral class of multiplayer games (that includes poker tourna-
ments) for which fictitious play is guaranteed to converge.
Furthermore, the value iteration of the outer loop of VI-FP
converged despite the fact that the initializations were clearly
not pessimistic for every player; perhaps the assumptions of
Theorem 2 can be weakened to allow limited optimistic ini-
tializations in some settings.
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