EUREKA MATH ${ }^{2}$.

Lesson 15:

Divide three-digit numbers by two-digit numbers in problems that result in two-digit quotients.
CCSS Standard - 5.NBT / 5.NBT.B. 6

FLUENCY (10-min)
Whiteboard Exchange: Write and Evaluate Expressions

Write an expression to represent the statement.

The total of 2 and 3

\square

Let's use our knowledge of math key words to translate each expression into a math statement.

MATH KEY WORDS

Addition	Subtraction	Multiplication	Division
$\boldsymbol{+}$	-	\mathbf{X}	\div
plus	subtract	times	quotient
add	minus	product	split
sum	difference	factor	share
total	left	double	divide
all together	left over	groups	separate
increase	decrease	each	each
more	take away	area	equal groups
combine	fewer	rows	average

```
FLUENCY (10-min)
```

Write an expression to represent the statement.

1 more than 47

\square
\square

Let's use our knowledge of math key words to translate each expression into a math statement.

MATH KEY WORDS

Addition	Subtraction	Multiplication	Division
$\boldsymbol{+}$	-	X	\div
add	subtract	times	quotient
sum	minus	product	split
total	left	double	divide
all together	left over	groups	separate
increase	decrease	each	each
more	take away	area	equal groups
combine	fewer	rows	average

```
FLUENCY (10-min)
```

Write an expression to represent the statement.
2 sixths more than 3 sixths

Let's use our knowledge of math key words to translate each expression into a math statement.

MATH KEY WORDS

Addition	Subtraction	Multiplication	Division
$\boldsymbol{+}$	-	X	\div
add	subtract	times	quotient
sum	minus	product	split
total	left	double	divide
all together	left over	groups	separate
increase	decrease	each	each
more	take away	area	equal groups
combine	fewer	rows	average

```
FLUENCY (10-min)
```

Write an expression to represent the statement.

5 less than 20

Let's use our knowledge of math key words to translate each expression into a math statement.

MATH KEY WORDS

Addition	Subtraction	Multiplication	Division
$\boldsymbol{+}$	-	X	\div
add	subtract	times	quotient
sum	difference	factor	share
total	left	double	divide
all together	left over	groups	separate
increase	decrease	each	each
more	take away	area	equal groups
combine	fewer	rows	average

```
FLUENCY (10-min)
```


4 tenths less than 7 tenths

Addition	Subtraction	Multiplication	Division
$\boldsymbol{+}$	-	X	\div
plus	subtract	times	quotient
add	minus	product	split
sum	difference	factor	share
total	left	double	divide
all together	left over	groups	separate
increase	decrease	each	each
more	take away	area	equal groups
combine	fewer	rows	average

```
FLUENCY (10-min)
```


The sum of 14 and 72

Let's use our knowledge of math key words to translate each expression into a math statement.

MATH KEY WORDS

Addition	Subtraction	Multiplication	Division
$\mathbf{+}$	-	X	\div
add	subtract	times	quotient
sum	minus	product	split
total	left	double	divide
all together	left over	groups	separate
increase	decrease	each	each
more	take away	area	equal groups
combine	fewer	rows	average

```
FLUENCY (10-min)
```


Let's use our knowledge of math key words to translate each expression into a math statement.

Addition	Subtraction	Multiplication	Division
\boldsymbol{f}	-	\mathbf{X}	\div
plus	subtract	times	quotient
add	minus	product	split
sum	difference	factor	share
total	left	double	divide
all together	left over	groups	separate
increase	decrease	each	each
more	take away	area	equal groups
combine	fewer	rows	average

FLUENCY (10-min)

Counting by Multiples of 4 and 40

Say the first ten multiples of 4. Ready?
Multiples of $4: \square, \square, \square, \square, \square, \square, \square, \square, \square$

Say the first ten multiples of 40. Ready?

Notice: the numbers in the multiples of 40 are 10 times as much as the multiples of 4 .

FLUENCY (10-min)

Raise your hand when you know the answer to each question. Wait for my signal to say the answer.

How many groups of 20 are in 140 ?
$140 \div 20=\square$

LAUNCH (5-min)

Why do you think
11 was used as the unit?

Students write multiplication and division equations that are represented by area models. ?

Similar to how we can use area models to multiply, we can use area models to divide!

LAUNCH (5-min)

Students write multiplication and division equations that are represented by area models.

1. Determine the unknown values in the area model. Then write a multiplication equation and a division equation that the area model represents.

Based on what you know about how area models work, how can we determine the unknown values?
Think about your multiples of $6.6 \times 10=60,6 \times 11=66,6 \times 12=72, \ldots \ldots . .6 \times 13=78,6 \times 14=84$!

LAUNCH (5-min)

Students write multiplication and division equations

 that are represented by area models.A completed AREA MODEL represents BOTH a multiplication equation and a division equation.

The DIVIDEND is INSIDE the AREA MODEL. The sum of all the partial products.
The DIVISOR is the on the LEFT OUTSIDE the box.

The QUOTIENT are the numbers ON THE TOP OF THE BOX.

LEARN (35-min)

Compare Area Models and Vertical Form

The picture below shows three methods for dividing. Kayla and Tara used an AREA MODEL.
Eddie used vertical form (standard form). What do you notice about their work?

LEARN (35-min) Compare Area Models and Vertical
Let's perform the AREA MODEL and the vertical form side-by-side.

$$
798 \div 38
$$

$380+380+38=798$
$10+10+1=21$
$798 \div 38=\mathbf{2 1}$

LEARN (35-min)

Compare Area Models and Vertical Form

LEARN BOOK - PAGE 131

$464 \div 29=$?

1. Julie started the division for $464 \div 29$ by using the area model shown.

$29 \times$? $=145$
$10+5+1=16$
$29 \times 5=145$

AREA MODEL

		X	1	6
2	9	3	16	4
	-	2	9	4
		1	7	4
	-	1	7	4
				0

```
LAND (10-min) Exit Ticket
```

Name
Date

A parking lot has 567 parking spots in 27 rows. If each row has the same number of parking spots, how many parking spots are in each row?

Exit Ticket - PAGE 135

Small Group Time:

Problem Set Page 131-132

Homework:

Page 95 APPLY BOOK

