

Lesson 15:

Divide three-digit numbers by two-digit numbers in problems that result in two-digit quotients.

CCSS Standard – 5.NBT / 5.NBT.B.6

Whiteboard Exchange: Write and Evaluate Expressions

Write an expression to represent the statement.

The total of 2 and 3

Let's use our knowledge of math key words to translate each expression into a math statement.

Addition	Subtraction	Multiplication	Division
Ð		×	÷
plus	subiraci	times	quotient
add	minus	product	splił
sum	difference	factor	share
total	lefi	double	divide
all logether	left over	groups	separale
increase	decrease	each	each
more	lake away	area	equal groups
combine	fewer	rows	average

Whiteboard Exchange: Write and Evaluate Expressions

Write an expression to represent the statement.

$1 \mathrm{\,more\ than}\ 47$

Let's use our knowledge of math key words to translate each expression into a math statement.

Addition	Subtraction	Multiplication	Division
•		×	÷
plus	subiraci	limes	quotient
add	minus	product	spliŧ
sum	difference	factor	share
total	left	double	divide
all logether	left over	groups	separale
increase	decrease	each	each
more	łake away	area	equal groups
combine	fewer	rows	average

Whiteboard Exchange: Write and Evaluate Expressions

Write an expression to represent the statement.

$2 \ {\rm sixths} \ {\rm more} \ {\rm than} \ 3 \ {\rm sixths}$

Let's use our knowledge of math key words to translate each expression into a math statement.

Addition	Subtraction	Multiplication	Division
Ð		×	÷
plus	subiraci	limes	quotient
add	minus	product	spliŧ
sum	difference	factor	share
total	lefi	double	divide
all logether	left over	groups	separale
increase	decrease	each	each
more	łake away	area	equal groups
combine	fewer	rows	average

Whiteboard Exchange: Write and Evaluate Expressions

Write an expression to represent the statement.

$5 \, {\rm less} \, {\rm than} \, 20$

Let's use our knowledge of math key words to translate each expression into a math statement.

Addition	Subtraction	Multiplication	Division
H		×	÷
plus	subiraci	times	quotient
add	minus	product	splił
sum	difference	factor	share
total	lefi	double	divide
all logether	left over	groups	separale
increase	decrease	each	each
more	łake away	area	equal groups
combine	fewer	rows	average

Whiteboard Exchange: Write and Evaluate Expressions

Write an expression to represent the statement.

4 tenths less than 7 tenths

Let's use our knowledge of math key words to translate each expression into a math statement.

Addition	Subtraction	Multiplication	Division
÷		×	÷
plus	subiraci	limes	quotient
add	minus	product	spliŧ
sum	difference	factor	share
total	lefi	double	divide
all logelher	left over	groups	separale
increase	decrease	each	each
more	łake away	area	equal groups
combine	fewer	rows	average

Whiteboard Exchange: Write and Evaluate Expressions

Write an expression to represent the statement.

The sum of $14 \ {\rm and} \ 72$

Let's use our knowledge of math key words to translate each expression into a math statement.

Addition	Subtraction	Multiplication	Division
÷		×	H
plus	subiract	limes	quotient
add	minus	product	spliŧ
sum	difference	factor	share
total	lefi	double	divide
all logelher	left over	groups	separale
increase	decrease	each	each
more	łake away	area	equal groups
combine	fewer	rows	average

Whiteboard Exchange: Write and Evaluate Expressions

Write an expression to represent the statement.

The difference of 56 and 13

Let's use our knowledge of math key words to translate each expression into a math statement.

Addition	Subtraction	Multiplication	Division
E D		×	÷
plus	subtract	limes	quolient
add	minus	product	splił
sum	difference	factor	share
total	left	double	divide
all logelher	left over	groups	separate
increase	decrease	each	each
more	lake away	area	equal groups
combine	fewer	rows	average

Counting by Multiples of 4 and 40

Say the first ten multiples of 4. Ready?

Say the first ten multiples of 40. Ready?

Notice: the numbers in the multiples of 40 are **10 times** as much as the multiples of 4.

Choral Response: Divide in Standard Form

Raise your hand when you know the answer to each question. Wait for my signal to say the answer.

How many groups of 20 are in 140?

 $140 \div 20 =$

models to divide!

1. Determine the unknown values in the area model. Then write a multiplication equation and a division equation that the area model represents.

Area Model	Multiplication Equation	Division Equation	
6) + 5 + 2 14 84) 70 28		<u>938</u> ÷ <u>14</u> = <u>67</u>	

Based on what you know about how area models work, how can we determine the unknown values?

Think about your multiples of 6. 6 x 10 = 60, 6 x 11 = 66, 6 x 12 = 72, 6 x 13 = 78, 6 x 14 = 84!

LAUNCH (5-min)

Students write multiplication and division equations that are represented by area models.

A completed AREA MODEL represents <u>BOTH</u> a multiplication equation and a division equation.

The **DIVIDEND** is INSIDE the AREA MODEL. The sum of all the partial products.

The **DIVISOR** is the on the LEFT OUTSIDE the box.

The **QUOTIENT** are the numbers ON THE TOP OF THE BOX.

LEARN (35-min)

Compare Area Models and Vertical Form

The picture below shows three methods for dividing. Kayla and Tara used an AREA MODEL. Eddie used vertical form (standard form). What do you notice about their work?

LEARN (35-min)

Compare Area Models and Vertical Form

Let's perform the AREA MODEL and the vertical form side-by-side. Which one do YOU think is best for YOU? 798 ÷ 38

380 + 380 + 38 = 798

798 ÷ 38 = 21

LEARN (35-min)

Compare Area Models and Vertical Form

LEARN BOOK – PAGE 131

464 ÷ 29 = ?

1. Julie started the division for $464 \div 29$ by using the area model shown.

29 x ? = 145 29 x 5 = 145

10 + 5 + 1 = 16

AREA MODEL

A parking lot has 567 parking spots in 27 rows. If each row has the same number of parking spots, how many parking spots are in each row?

Exit Ticket – PAGE 135

Small Group Time:

Problem Set Page 131 - 132

Homework:

Page 95 APPLY BOOK