
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1153 | P a g e

3D Game based on FPS using Artificial Intelligence
Sanjay Kumar S1, Sagar T Y2, Jayanth C3, Amruta T Bhat4, Prof. Vinayashree5

12345Vidya Vikas Institute of Engineering and Technology Mysuru,India

Abstract- A game is a structured form of play. A new solution

for the building a first- person shooter game is by using cross

platform unity’s game engine. This project uses unity’s

mecanium system in conjunction with root motion animation

and navigation mesh based pathfinding mechanism, and some

advanced methods like building the environment using

navigation and pathfinding. It also uses animation state

machines to control the animations of players and non-player

characters. Player finds the path to the target in game scene.

Another solution is A* algorithm is most widely used to
estimate the distance of any point to the target point. 3-

Dimensional rendering of the game objects is the interesting

and attracting key of this project.

Keywords- unity’s mecanim, pathfinding, a*algorithm, state

machines, rendering.

I. INTRODUCTION
An understanding of graphs and algorithm is an integral part

of the process. Establishing a clear understanding of object

and how various algorithms affect those objects is crucial for

anyone interested in learning programming. An algorithm is a

procedure of operations for correctly solving a problem in a

finite number of steps, where operations in each step can be

executed in sequential order or in parallel. A graph algorithm,

in turn, is an algorithm for solving problems that can be

formulated in terms of graph and its related data structures.

II. A* ALGORITHM

A* algorithm is a shortest path heuristic search algorithm, and

it is based on “Dijkstra” algorithm which finds the shortest
paths from the source vertex to all other vertices in the graph.

A heuristic is used to determine which neighbour to search

next. This significantly speeds up the search by trying to visit

as few nodes as possible. It does this by scoring neighbours as

they are encountered based on their likeliness to lay on the

cheapest path. It will always find the cheapest path .

Fig.1: Navigation graph from a grid

A* search is a loop which maintains two lists namely open

list and closed list. Open list: It contains nodes we have

discovered as neighbours during the search but have not yet
processed. It selects one node to process from the open list

with each iteration of the search loop and remove it from the

open list once processed. In the first loop iteration, the open

list contains only the start node.

Closed list: As A* selects nodes from the open list, it
removes them from the open list and it adds to the closed list.

This allows to keep track of all the nodes that A* have

already processed so it won't try to process them again (to

avoid infinite loop). The closed list will start off completely

empty.

Open list < 31, 51, 62, 63, 22, 23, 24, 50, 61, 21, 63, 65, 73,

74, 45, 56, 66 >

Closed list < 42, 43, 53, 33, 41, 52, 32, 64, 55, 46 >

Fig.2: A* path finding

For Navigation and Path-finding problem, we have used the

Manhattan Method of estimation to estimate the cost. The

function of current node n is expressed as follows:

F(n)=H(n)+G(n)
Where, F(n) is a cost estimated function, H(n) is the heuristic

value of the shortest path of any node n to the target point,

G(n) is the path which is shortest and also the initial point to

any node n.

Processing of a Neighbour in A* search

 In the iteration of search there is a calculation of score for

the A* terminology and it is called as fScore of the node.

 A* will set its parent node reference to the current node

that is going to be processed.

 If Neighbour already exists in Closed list the iteration

loop will skip that Neighbour and does not add to Open

list.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1154 | P a g e

 If Neighbour is not in Open or Closed lists the search

iteration will calculate and store fScore in Neighbour.

And it assigns the reference of Parent Neighbour to

Current node, then the current Neighbour is added to

Open list.

 If Neighbour is already in Open list, then the new fScore

will be calculated for the Neighbour factoring in current

node.

 If new fScore is lower than fScore already stored in the

Neighbour, then the current fScore will be replaced by

the new fScore. Also, Parent reference will be updated for
the current node.

III. UNITY 3D

Unity 3D is an incredibly powerful and versatile game and
interactive-experience development tool created by Unity

Technologies in 2005. Trendy game engines like unity’s

mecanim engine are unbelievably wealthy and powerful

cross-platform. The core game engine includes a rendering

engine for 2D and 3D graphics, a physics engine or collision

detection, sound, scripting advanced animations, audio

support, video support, and powerful UI-development tools.

Any animation designed for Unity 3D must work with the

logic of the sport loop. The Unity 3D game loop consists of a

variable-time update and fixed-time update. Unity 3D

scripting supports co-routines, that permits referred to as

strategies, that permits referred to as strategies to possess
multiple entries interleaved with the Unity 3D system. A

package in Unity 3D may be an instrumentation of scenes and

numerous assets like scripts, models, images, and sound

effects employed by the sport objects inside those scenes.

Fig.3: CSI interpreter design Different aspects of development

process

 Rendering: Unity’s graphics engine uses its own APIs

like OpenGL, direct3D and also supports other file

formats from other software’s like Blender Adobe

Photoshop etc.

 Scripting: Programmers write Unity Script similar to

JavaScript on mono-an open source platform for .net

framework.

 Physics: Provides built-in support for PhysX [10] physics

engine with real time simulations on skinned meshes,

thick ray casts etc.

IV. IMPLEMENTATION

A. STATE MACHINES

A device which can be in one of a set number of condition

dependency on its previous condition and the present value of

its input. It starts entry next node only if the given condition is

true otherwise it will stay in their current node. Finite state

machines are one of the most effective and most frequently

used methods of programming artificial intelligence. Each

state possesses code responsible for the initialization and de-
initialization of the object. The finite state machine method

lets us easily divide the implementation of each game object's

behavior into smaller fragments. A long animation

implemented in the update method may be controlled by a

state machine to break the animation sequence into sequential

pieces so that draws will not be blocked for long period of

time.

Fig.4: State machine

B. SCENE BUILDING, NAVIGATION AND PATH

FINDING

A Scene contains the environments and menus of your game.

Contemplate each distinctive Scene file as a singular level. In

each Scene, you place your environments, obstacles, and

decorations, essentially turning out with and building your

game in things.

Fig.5: A new empty Scene, with the default 3D objects

a. Navigation mesh

NavMesh (short for Navigation Mesh) is a data structure which

describes the walkable surfaces of the game world and allows
to find path from one walkable location to another in the game

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1155 | P a g e

world. The data structure is built, or baked, automatically from

your level geometry.

Fig.6: Game scene with NavMesh

NavMesh (short for Navigation Mesh) is a data structure which
describes the walkable surfaces of the game world and allows

to find path from one walkable location to another in the game

world. The data structure is built, or baked, automatically from

your level geometry.

NavMesh Agent component help you to create characters

which avoid each other while moving towards their goal.

Agents reason about the game world using the NavMesh and

they know how to avoid each other as well as moving

obstacles.

Fig.7: Avoiding obstacles in navigation

The controlling rationale takes the situation of the following

corner and dependent on that makes sense of an ideal heading

and speed (or speed) expected to achieve the goal. Utilizing the

ideal speed to move the specialist can prompt impact with

different operators.

Hindrance evasion picks another speed which adjusts between

moving in the ideal bearing and avoiding future crashes with

different specialists and edges of the route work. Solidarity is

utilizing complementary speed deterrents (RVO) to anticipate
and counteract impacts.

Numerous utilizations of navigation require different kinds of

deterrents as opposed to simply different specialists. These

could be the standard containers and barrels in a shooter

amusement, or vehicles. The obstructions can be taken care of

utilizing neighbourhood hindrance evasion or global

pathfinding.

When associate obstacle is moving, it's best handled

exploitation native obstacles shunning. this fashion the agent

will predictively avoid the obstacle. once the obstacle becomes

stationary, and might be thought-about to dam the trail of all

agents, the obstacles ought to have an effect on the worldwide

navigation, that is, the navigation mesh.
dynamic objects. Multiple agents and other dynamic objects

also need to be able to happily co-exists. As the navigation

graph is compiled at development time, path searches do not

take into account objects which can moves at run time. A local

avoidance system is employed to push dynamic objects always

away from each other during agent steering. Unity can alter the

navigation mesh at run time by carving objects into it. This is

useful for when we know a dynamic object will never move

again.

Fig.8: Local avoidance system

c. Path corridor

A path search in unity returns to the agent a corridor. A
corridor is a list of polygons that must be traversed. Corridors

are useful for supplying the agent with surrounding

information so run-time path diversions can be safely

computed. It is actually the vertices of the corridor that form

the waypoint list the agent must pass through.

Fig.9: Run-time path diversions using Path corridor.

C. CHARACTER DESIGN
Changing the NavMesh is termed carving. the method detects

that elements of the obstacle touches the NavMesh and carves

holes into the NavMesh. this can be computationally

overpriced operation, that is one more compelling reason,

why moving obstacles ought to be handled exploitation

collision shunning.

b. Local avoidance system

As other dynamic objects will not be represented in the
navigation graph a separate system must exist that moderates

the queried path to perform on-the-fly adjustment to the

agent’s velocity to avoid nearby dynamic objects. Only static

objects are compiled into the navigation graph. Without the

addition of a local avoidance system for dynamic objects,

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1156 | P a g e

agents may collide with each other or other When making a

personality for a game there's typically a predefined work flow

or pipeline which has plenty of steps. a number of the foremost

common steps embody idea style, base modelling, high poly

modelling, low poly modelling, unwrap, texturing and

rigging/skinning. the primary step of making a personality is to

come back up with an idea. an idea may be a painting or

sketch, illustrating the specified look and theme of the finished

character.

The next step is base modelling. during this step, the bottom

model ought to include a rough model, with the proportions
and shapes fairly correct whereas still keeping the pure

mathematics straightforward. This step is sometimes wiped out

a 3D special effects software package like liquidizer and

Autodesk 3ds GHB. liquidizer could be a free and open supply

software package used for modelling and making animated

films, visual effects, interactive 3D applications or video

games. once the bottom model has been created, a high poly

model is to be created. this will be done by sculpting the

bottom model to feature additional detail to the character, for

example wrinkles. thanks to the introduction of high level

details, this step may be terribly long. The sculpting method

may be delineated as shaping a coffee plane figure virtual clay

mesh into a high polygon elaborated clay mesh.

Fig.10: A high polygon model

Rigging and Skinning

When the look and modelling of the character is complete, the

character must be rigged and abraded so as to be able to use

with animations within a game engine. Character animation is

that the most advanced sort of animation. not like a tree, a

personality not solely must be able to move, it conjointly

should be able to categorical itself and show emotions. To rig

the character, a skeleton designed along by completely

different bones must be additional to the character. The bones

must be connected to the character employing a skin modifier.
This method is to make sure that the pure mathematics close

the bones deforms properly once the skeleton moves. In

liquidizer a skeleton might either be created by with either a

separate bone affiliation approach or with Blender’s

equivalence of Biped, the Rigify system. once a skeleton has

been created and placed so as to suit with the proportions and

anatomy of the character, the bones should be abraded to the

character. For skinning a Skin modifier is employed with this

modifier, every bone can should be adjusted with envelopes

and weights to attach the proper vertices to the bone for that

specific part. rather than creating the character style method

manually, there are tools to come up with a completely rigged

and abraded low two- dimensional figure character with

corresponding maps. this may provide artists an extremely

high freedom of exploitation the creations from build Human

in any manner imaginary.

Fig.11: Rigging, Skinning and humanoid avatars

D. MECANIM
An important a part of 3D game development is animations,

and additional specifically character animations. 2 of the best

difficulties once desegregation the animations in a very game

engine are generating diagrammatically swish transitions

between different animations and additionally the advanced

scripting that's needed for the various animation state
transitions. However, Unity recently free Unity four. Unity

four comes with the new animation system referred to as

Mecanim.

Mecanim provides the user practicality to setup and

management animations for a personality within the Unity

editor. There are 2 styles of character varieties supported by

Mecanim, particularly mechanical man and generic characters.

A mechanical man may be a character that resembles the looks

of a person's being whereas a generic character has no

predefined bone structure, center of mass or orientation. If a

generic character is to be used with Mecanim, a number of the
elementary options provided by Mecanim won't be on the

market. a straightforward example of a generic character may

be a dog. once a mechanical man character is to be foreign to

Unity and used with Mecanim, Mecanim creates Associate in

Nursing Avatar. Associate in Nursing Avatar is an interface

that interprets the characters bone structure to the bone

structure understood by Mecanim. Fig.9 shows a translation

mapping between the Mecanim bone structure and therefore

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1157 | P a g e

the actual bones within the character.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1158 | P a g e

Fig.12: Avatar Configuration, mapping the character’s bone

structure to Mecanim’s bone structure.

When a character has been successfully created with an

Avatar, Mecanim allows the user to tell the game engine

how and when different character animation clips should be

played. A powerful tool within Mecanim is the Animator

component.

E. ANIMATOR

In the Animator part, completely different states and layers

are outlined and controlled. A state within the Animator part

corresponds to the precise set of actions and therefore the

surroundings of the character in the game. for instance, a

state outlined as ’Idle’ might correspond to a situation within

the game wherever the character isn't moving in any respect.

during this specific state, a whorled associate degree Imation

clip of an idle motion may be applied to the state, forcing the

character to play that animation whereas within the ’Idle’

state. so as for the character to perform another action of
movement, another state should be outlined. for instance, if

the character is meant to run, a state known as ’Running’

may be created, holding a clip of a whorled running motion.

Also, transitions between the 2 states should be outlined,

permitting the character to modify between the idle motion

and a running motion. A transition is controlled by one or a

lot of conditions that need to be met so as to modify

between the states. A condition is controlled by a user

outlined variable that successively is controlled by a script.

Fig.13: Animator component, showing an example of

different animation states and the transitions between

them.

Blend Tree

Another powerful feature of the Animator part is that the mix

Trees. a mix Tree may be created within a state to

interchange this animation clip therein state. for instance, the

‘locomotion’ state’s walking motion clip may be replaced by

a mix Tree, during which the recently created mix Tree might

then embody a multiple variety of motion clips i.e., ‘walk’,

and ’Run’. once the ‘locomotion’ state is active, the mix Tree

plays one among its motion clips betting on a user outlined
variable. during this example such a variable might represent

the speed of the run so as to let the character walk or run

consequently. If the worth of the speed variable is lesser than

given threshold value it'll walk or if its larger than threshold

value then it will begin running and also the animations will

mix into a dynamic animation that interpolates between the 2

motions. This feature ends up in sleek and dynamic transition

motions between completely different animation clips.

Fig.14: Blend Tree including three different animation clips.

V. CONCLUSION
In this paper, we have discussed various methods and

algorithm that are being used in the field of first person

shooter games. However, the combination of various

evolutionary algorithm along with the finite state machine

mechanisms have proven to be useful in generating AI bots

for first person shooter.

First person shooters are new phase in gaming world. With

their advanced technology and sophisticated environment,

FP shooter gives a player thrilling experience. In every
aspect it offers a great excitement with fast pace while

playing. They give you the complete freedom to configure

everything just the way you want it.

VI. REFERENCES
[1]. Geldenhuys, T. (2013) C# Interpreter Console for Unity 3D.

[ONLINE] <http://blog.tiaan.comilink!201

0/03115/csharpinterpreter-unity-plugin-console-debugger>.
[2]. Unity Asset Store: https://www.assetstore.unity3d.com.
[3]. Unity 3D: http://unity3d.com
[4]. S. M. LaValle, Planning algorithms, Cambridge University

Press, 2006. [2] T. K. Whangbo, “Efficient Modified
Bidirectional A * Algorithm for Optimal Route- Finding,”
New Trends in Applied Artificial Intelligence, Japan, vol.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1159 | P a g e

4570, pp. 344–353, June 2007.

[5]. Y. Lang, “Research on collision detection method in unity,”
Software Guide, China, vol. 13, pp. 24–25, July 2014.

[6]. Kennedy J, Eberhart R C. Particle swarm optimization[A].In:
Proceedings of IEEE International conference on Neural
Networks[C] . Perth, Australia: [s. n.], 1995. 1942- 1948.

[7]. Fuellerer G, Doemer K F, Hartl R F, et al. Metaheuristics for
vehicle routing problems with three- dimensional loading
constraints[J]. European Journal of Operational Research,
2010, 201(3): 751-759.

[8]. McFarlane, A., Sparrowhawk, A. & Heald, y. 2013. Report on
the educational use of games. [ONLINE] Available at:
http://www . pewinternet.org/-/media/ /F ileslReportsl2008/PI
 P _Teens_ Games_and_ Civics_Report_FINAL.
pdf. pdf. [Accessed 11 April 2013]. affiliations as succinct as
possible (for example, do not differentiate among departments
of the same organization).

[9]. Ismail Buyuksalih, Serdar Bayburt, Gurcan

Buyuksalih, A P Baskaraca, Hairi KAlias AbdulRahman.#d
modeling and visualization based on the Unity game engine-
advantages and challenges.4th International GeoAdvance
Workshop,2017.

