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Abstract
When a tennis ball is incident at an oblique angle on a tennis racket, the ball slides or
rolls along the strings before it rebounds. The dynamics of this interaction in a direction
perpendicular to the string plane are determined by the coef®cient of restitution (COR).
In a direction parallel to the string plane, the dynamics depend on the coef®cients of
sliding (lS) and rolling (lR) friction, and also depend on the COR. For example, if
lS � 0, and if the ball impacts in the middle of the strings, then the ball will rebound
with no change in its spin or parallel speed. Spaghetti strings, with a high value of lS, are
banned from competitive tennis since they can be used to impart excessive spin to the
ball. It is shown that the most useful strings are those with lS > 0.3 and that the
performance of the strings deteriorates sharply if lS drops below about 0.3.
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Nomenclature

D Distance to line of action of N (Fig. 2)
e Coef®cient of restitution
eA Apparent coef®cient of restitution
F Friction force
I Moment of inertia of ball about its CM (2mR2/3)
m Mass of ball (57 g)
M Mass of racket
N Normal reaction force
R Radius of ball (32.5 mm)
v1 Incident velocity of ball in racket frame (Fig. 1)
v2 Rebound velocity of ball in racket frame (Fig. 1)
vin Incident velocity of ball in court frame (Fig. 1)
vout Rebound velocity of ball in court frame (Fig. 1)
V2 Rebound velocity of racket head
VR Incident velocity of racket head (see Fig. 1)
b Head tilt (see Fig. 1)
h1 Angle between incident ball and string plane (Fig. 1)
h2 Angle between rebounding ball and string plane (Fig. 1)
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hin Angle between incident ball and horizontal (Fig. 1)
hout Angle between rebounding ball and horizontal (Fig. 1)
hR Approach angle of racket head (see Fig. 1)
lR Coef®cient of rolling friction
lS Coef®cient of sliding friction
x1 Angular velocity of incident ball
x2 Angular velocity of rebounding ball

Introduction

The impact of a tennis ball with the strings of a
tennis racket is most commonly studied for cases
where the ball is incident normally on the strings. It
appears that only two previous theoretical studies
have been made under conditions where the ball is
incident at other angles (Groppel et al. 1983; Brody
1987). However, these authors did not consider the
effects of varying the coef®cient of friction between
the ball and the strings. This is an important
parameter since it determines the dynamics of the
collision in a direction parallel to the string plane
and it determines the amount of spin that can be
imparted to the ball. It also appears that only one
previous measurement has been made of the
coef®cient of friction between the ball and the
strings of a tennis racket. Putnam & Baker (1984)
found that lS � 0.30 for a 45° impact on a clamped
racket, based on the uncertain assumption that the
ball was sliding throughout impact. To the author's
knowledge, no systematic measurements have been
made of the rebound angle, spin or speed of a ball
incident at various angles on the string plane.
Bower & Sinclair (1999) also studied the rebound
speed and angle for a 45° impact on a clamped
racket, but did not measure the coef®cient of
friction.

In this paper, a simple theoretical model is used
to investigate effects of varying the coef®cient of
friction between the ball and the strings. The
motivation for this work was to determine whether
such effects might explain some of the subtle
differences between different strings reported by
elite players. For example, players describe new
strings as having a `crisper' feel than old strings,
and they describe old strings as being dead or

lifeless or lacking the power of new strings. These
observations are not consistent with laboratory
measurements of the rebound of a ball at normal
incidence. If one drops a steel ball vertically onto
the strings of a horizontal, head-clamped racket,
there is almost no measurable difference in bounce
height between new and old strings, at a 1% level,
even if the racket contains strings that are 10 years
old. Similarly, there is no obvious difference in
bounce height between different types of string
or different string tensions (Cross 2000a). These
results show that the energy lost in the strings
during an impact is negligible.

In the case of an impact with a tennis ball, racket
power can be increased by decreasing the string
tension so that the ball is not as severely deformed,
in which case the energy loss in the ball is reduced.
The question is, by how much? Detailed calcula-
tions for normal incidence show that the rebound
speed of the ball increases by a negligible amount for
the range of string tensions commonly used in tennis
rackets. For a tennis ball incident on a head-clamped
racket, the normal component of the rebound speed
of the ball can be increased by about 7% when the
string tension is halved (Bower & Sinclair 1999;
Cross 2000b). However, the speed of a ball struck by
a moving racket depends mainly on the speed of the
racket head, and depends only weakly on string
tension. For example, if the string tension is reduced
from 60 lb (27.2 kg) to 50 lb (22.7 kg), the serve
speed increases typically by only 0.7% and the
rebound speed for a groundstroke increases typically
by only 1.1% (Cross 2000b). Consequently, any
differences between strings are more likely to be
associated with differences in the transverse motion
of the ball, as determined by the coef®cient of
friction between the ball and the strings.

Friction between ball and strings · R. Cross
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Theoretical model

The geometry of the problem addressed in this
paper is shown in Fig. 1. A tennis ball of mass m
is incident at velocity vin, in the court frame of
reference, on a racket of mass M. The ball is
assumed to be moving upwards at an angle hin to
the horizontal when it strikes the racket. It is also
assumed to be spinning, at angular velocity x1,
about a horizontal axis orientated transverse to the
path of the ball. The point of impact on the racket
head approaches the ball at velocity VR, rising
upwards at an angle hR to the horizontal. The head
of the racket is tilted forwards at an angle b to the
vertical. It is assumed that the ball impacts at the
centre of the strings, or at some other point along
the long axis through the handle, so that there is no
rotation about this axis as a result of the impact. In
fact, the ball will tend to slide some distance along
the strings before rebounding, but one can assume
that there is no rotation about the long axis if the
average position of the ball coincides with a point
on the long axis. It is also assumed that vin and VR

are in the same vertical plane, so that the rebound
path of the ball is in the same vertical plane as the
the incident path.

It is convenient to analyse the bounce off the
strings in a reference frame where the racket is
initially at rest. In the racket frame of reference, the
ball is incident at velocity v1 � vin ± VR, at an angle
h1 to the string plane, and it rebounds at velocity
v2 and at an angle h2 to the string plane. The
components of v1 are easily determined vectorially,
from the diagram shown in Fig. 1(b). The heart of
the problem is to calculate v2 and the rebound spin
of the ball. One can then transform back to the
court reference frame to obtain the rebound vel-
ocity vout � v2 + VR, as shown in Fig. 1(c). The ball
usually bounces off the court with topspin, but it is
usually incident on the strings as backspin, as
shown in Fig. 1(b), in which case x1 is taken to be
negative. It is assumed that the ball rebounds at
angular velocity x2. The sign of x2 is taken as
positive if the spin is reversed during the collision
so that the ball rebounds with topspin. In fact, a
ball bouncing off the court with topspin could be

incident on the strings with topspin, especially if
the ball is rising sharply, the racket is moving more
or less horizontally and the racket face is approxi-
mately vertical. This case requires a separate
analysis, similar to that described below, but it will
not be considered further in this paper since it is
not as commonly encountered and it is not relevant
to the calculations presented below.

In the racket frame of reference, the y-axis is
taken normal to the strings and the x-axis is parallel
to the string plane. The y and x axes both lie in
the vertical plane. If the racket rebounds at velocity
V2, then the coef®cient of restitution, e, for the
collision is given by

e � v2y � V2y

v1y
�1�

Figure 1 The impact of a tennis ball with a tennis racket (a) in
the court reference frame, (b) transformed to the racket
reference frame and (c) transformed back to the court frame.
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where the additional y subscripts denote velocity
components in the y direction. The sign convention
adopted in Eqn (1) and all following equations is to
take all velocity components as positive, assuming
that a ball incident in the negative y direction will
rebound in the positive y direction, and that the
racket will rebound in the negative y direction.
Similarly, if a ball is incident in the positive x
direction, then the ball and the racket are both
assumed to rebound in the positive x direction.

The apparent coef®cient of restitution, eA, is
de®ned by

eA � v2y=v1y �2�
Conservation of linear momentum in the y direc-
tion indicates that

eA � �eM ÿm�=�m�M� �3�
Conservation of linear momentum in the x direc-
tion gives

v2x � v1x ÿMV2x=m �4�
The rebound speed of the ball is completely
determined if one can specify eA and V2x. The
parameter eA is easily measured from rebound
experiments at normal incidence. e is more easily
measured if the racket head is clamped, but it will
differ from the result for a free racket if there is any
energy loss due to frame vibrations. However, V2x,
as well as x2, depends on the coef®cient of friction,
l, which has not previously been measured apart
from the one uncertain value reported by Putnam
& Baker (1984).

A trivial result is obtained if l � 0, since there is
then no transverse force acting on M so Vx remains
zero. There is also no change in the ball spin.
Another simple result is obtained if F � lSN, where
N is the normal reaction force between the ball and
the strings, F is the friction force in the x direction
and lS is the coef®cient of sliding friction. In this
case, the collision dynamics are described by

F �MdVx=dt � ÿmdvx=dt �5�
N �MdVy=dt � mdvy=dt �6�

and

FR � Idx=dt �7�
where I � 2mR2/3 is the moment of inertia of the
ball, taken as a thin spherical shell of radius R.
Equations (5)±(7) can be integrated over the period
of the impact to show that

V2x � lSV2y �8�
v2x � v1x ÿ lS�1� eA�v1y �9�

and

x2 � x1 � 1:5�v1x ÿ v2x�=R �10�

Equation (9) shows that the change in the trans-
verse speed of the ball depends on both lS and eA.
This is because the friction force is proportional to
both lS and the normal reaction N. The change in
the perpendicular speed of the ball depends only on
eA, from Eqn (2). Equations (7)±(10) are applicable
only if the ball slides along the strings without
rolling. This occurs in situations where lS or h1 are
relatively small. If lS or h1 are suf®ciently large,
then vx will decrease during the impact and x will
increase up to a point where the ball will start to
roll along the strings. If a player wishes to impart
maximum spin to the ball, then the ball needs to go
into a rolling mode, as described in the following
Section. If lS is not large enough for the particular
stroke or grip the player chooses, then the ball will
not go into a rolling mode and the spin imparted to
the ball will be diminished. Consequently, it is in
the player's interest to select strings with a large
coef®cient of friction. Given that the coef®cient of
friction of different strings has never been meas-
ured, it is not yet possible to specify whether this
requires thin strings or thick strings, low tension
or high tension, or any other variation in string pro-
perties or string pattern. It is known that lS can be
increased by using spaghetti strings (a second layer
of strings threaded through the string plane to
allow for a better grip on the ball), but this is now
banned by the International Tennis Federation.
Apart from that, and the fact that no `protuberan-
ces' are allowed on the strings other than a vibration
dampener located near the frame, there are no rules
in tennis to limit the maximum value of lS.

Friction between ball and strings · R. Cross
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Rolling friction

If a ball rolls horizontally at speed vx, and the
surface on which it rolls moves horizontally at
speed Vx, then the condition for rolling is that

vx ÿ Vx � Rx �11�
The point or points of contact of the ball on the
string are then motionless with respect to the
string. The interaction with the strings can be
modelled using a similar approach to that adopted
by Brody (1984) to determine the rebound speed
and angle for a bounce off the court surface.
However, the ball and the strings are both
deformed signi®cantly during an impact with the
strings, in which case the coef®cient of rolling
friction is not entirely negligible as assumed by
Brody. When a rolling ball decelerates as a result of
surface friction, the normal reaction force, N, on
the ball acts at a distance D ahead of the centre of
mass, as shown in Fig. 2. When D is ®nite, N
provides a torque that opposes the torque due to F,
in which case vx and x can both decrease at a rate
that maintains the rolling condition. The resulting
torque on the ball about its centre of mass is then

FRÿND � Idx=dt �12�
where F � lRN is the horizontal friction force on
the ball and lR is the coef®cient of rolling friction.
Differentiating Eq (11), and using Eqs (5) and (12),
one ®nds that

D � RlR 1� 2

3
1� m

M

� �� �
�13�

lR cannot be larger than about 0.6, otherwise D
would be larger than R. As described below, lR is
typically about 0.05 for small deformations of the
ball and string plane.

A ball that is incident on the strings with no spin
or with backspin initially slides along the strings. It
will commence to roll if vx decreases to a value vxo

given, from Eqs (5), (7) and (11) by

vxo � Rx1 � �1:5�m=M�v1x

2:5�m=M
�14�

The ball will therefore roll if v2x < vxo where v2x is
given by Eq (9). If this condition is satis®ed, then
Eq (9) is invalid. In order to determine v2x cor-
rectly, the differential equations describing the
motion of the ball and racket must be integrated
over two separate periods, to account for sliding
while vx > vxo and then rolling when vx decreases to
vxo. In this case, it can be shown that

v2x � v1x ÿ ��1ÿ lR=lS��v1x ÿ vxo�
� lR�1� eA�v1y�

�15�

Equations (14) and (15) reduce to those given by
Brody (1984) when M � ¥, x1 � 0 and lR � 0.
Then v2x � vxo � 0.6v1x. Equation (15) reduces to
Eq (9) if lR � lS. If a ball starts rolling before it
rebounds, then

x2 � v2x ÿ V2x

R
� v2x

R
ÿm�v1x ÿ v2x�

MR
�16�

If lR is large enough, Eq (15) indicates that v2x can
be negative when the ball is incident with positive
v1x. When a rolling ball is slowed by friction, it
normally comes to rest without reversing its
motion. Consequently, it is assumed that v2x cannot
be negative, and that the friction force drops to
zero if vx � Vx. Under these conditions, x2 � 0 and

v2x � v1x

1�M=m
�17�

Experimental data

Several experiments were undertaken to determine
the coef®cients of sliding and rolling friction, at
relatively low values of the normal reaction force.
Using masses up to 10 kg held lightly on top of aFigure 2 Forces acting on a rolling ball.
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new tennis ball to prevent the mass toppling, and a
spring balance to measure the force needed to drag
the ball at constant speed across the strings of a
racket, it was found that lS varied from 0.27 to 0.42
for ®ve different rackets. By comparison, it was
found that lS � 0.8 for a tennis ball sliding on
rubber, 0.54 when sliding on the Sydney Olympic
Games tennis courts, 0.25 when sliding on a low
pile carpet and 0.13 when sliding on a smooth
wood surface.

A separate experiment was set up to measure lR.
A horizontal platform containing masses up to
74 kg was placed on top of four balls resting on the
strings, and a horizontal force was applied to the
platform so that the balls could roll on the strings
underneath the platform. The 74 kg load, shared
equally by the four balls, represents about a quarter
of the force on a single ball for a typical ground-
stroke. This gave lR » 0.035 for loads less than
10 kg and lR � 0.05 � 0.01 for loads between 20
and 74 kg. The ball diameter decreased by up to
14 mm in the rolling experiments, indicating that
lR is not a strong function of ball deformation. The
coef®cients obtained therefore provide a useful
guide for calculation purposes.

Other parameters used in the calculations pre-
sented below are as follows: e � 0.9, eA � 0.443,
M � 0.18 kg, m � 57 g, R � 32.5 mm, x1 �
±300 rad s±1, vin � 10 m s±1 and hin � 0. The value
of M represents the effective mass of the racket at
the impact point, which is typically about half the
actual mass for an impact near the centre of the
strings. The effective mass is equal to the actual mass
only if the ball impacts at the centre of mass of the
racket. At any other impact point, the effective mass
is less than the actual mass due to rotation of the
racket about an axis through the centre of mass. In
the above analysis it was assumed that the effective
mass is the same in the x and y directions. In fact, M
is slightly different in the two directions since the
moment of inertia of a racket about one axis is
typically about 10% larger than that about the other
axis. The added complexity of this effect was
ignored as being of minor signi®cance, particularly
since it would alter terms such as 2.5 � m/M in
Eqs (14), (18) and (19) by a relatively small amount.

A value of lR � 0.05 was used in all calculations
since it was found that the ball rebound properties
are not particularly sensitive to lR, at least when
lR < 0.1. The calculations are more sensitive to x1,
vin and hin, but the essential features and main
conclusions of this paper do not depend on the
choice of these parameters. The latter parameters
were chosen to be typical of those in a forehand or
backhand stroke (Elliott & Christmass 1995;
Takahashi et al. 1996). The parameters e and eA

are also typical for such an impact (Cross 2000b).

Rebound results in the racket
reference frame

Results of the model calculations, in the racket
frame of reference, are shown in Figs 3 and 4.
From a player's point of view, results in the court
frame are more important, but results in the
racket frame are easier to interpret. Furthermore,
laboratory measurements of a rebounding ball
would be best made in a reference frame where
the racket is at rest with the head ®rmly clamped
(in which case M � ¥). As shown in Fig. 3, x2

increases and v2 decreases as lS increases from
zero, up to a point where the ball starts rolling
before it rebounds. Up to this point, the effect of
increasing lS is to increase the friction force on
the ball, thereby decreasing v2x and increasing the
torque on the ball. The normal component of the
ball rebound velocity, v2y, is independent of lS.
Consequently, the rebound angle, h2 � tan)1(v2y/
v2x) increases as lS increases. This result is
analogous to the behaviour of the ball when it
bounces on the court surface. On a fast grass
surface, the ball skids and rebounds at a low angle.
On clay, the ball kicks up. Once the ball starts to
roll, there is a slight decrease in v2 and x2 as lS

increases, resulting from the relatively small coef-
®cient of rolling friction.

In terms of imparting topspin to the ball, x2

can always be increased by increasing v1, for
example by hitting the ball harder. If lS is
relatively large, then x2 can also be increased by
decreasing h1, which can be achieved by hitting
the ball closer to glancing incidence. This strategy

Friction between ball and strings · R. Cross
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is often used in table tennis where lS is probably
quite high due to the dimpled rubber bat.
However, if lS is relatively small, this strategy
will reduce x2. For any given value of lS there is
an optimum value of h1 which will maximize x2.
This effect is shown in Fig. 4 for cases where
v1 � 40 m s)1 and where lS � 0.2, 0.4 or 0.6.
Each of these curves is characterized by a region
at low h1 where the ball slides across the strings
without rolling, and a region with h1 > 70° where
the ball rolls to a stop before it rebounds.

The lS � 0.4 curve in Fig. 4 shows that if a player
wishes to maximize topspin, then the optimum angle
of incidence is h1 � 40°, giving x2 � 370 rad s)1.
Similarly, if lS is increased to say 0.6, then the
optimum angle of incidence is h1 � 28°, giving
x2 � 435 rad s)1. However, if lS decreases to say
0.2, and the angle of incidence is held at h1 � 40°
then x2 � 40 rad s)1. This is perhaps an extreme
example, but it highlights a remarkable sensitivity of
ball spin to the coef®cient of friction. The outgoing
ball speed, v2, is also sensitive to lS, but the effect
would not be as noticeable to a player since the
rebound speed in the court frame depends more on
the racket speed than on v2.

The results in Figs 3 and 4 can be regarded
as representative of conditions encountered for
groundstrokes when x1 � ±300 rad s)1. The gen-
eral behaviour does not change when x1 is varied,
but the effects of changing x1 can be described
analytically as follows. The maximum value of x2 is
obtained when the ball starts to roll at the end of
the impact period. Under these conditions, v2x in
Eq (9) is equal to vxo as given by Eq (14). By
equating these results, it is easy to show that x2 is
maximized when

lS �
1ÿ Rx1=v1x

�1� eA��2:5�m=M�tan h1
�18�

From Eqs (14) and (16), the maximum value of x2

is given by

x2 � �1�m=M�x1 � 1:5v1x=R

2:5�m=M
�19�

For example, in Fig. 3, where x1 � )300 rad s)1,
h1 � 45° and v1x � 21.21 m s)1, x2 has a maximum
value of 207 rad s)1 when lS � 0.36. If x1 �
)500 rad s)1, then the maximum value of x2 is
114 rad s)1, when lS � 0.43.

Figure 4 Model calculations, in the racket frame of reference,
showing the rebound speed (v2, solid curves) and angular
velocity (x2, dashed curves) vs. h1 when lS � 0.2, 0.4 or 0.6 as
labelled. The ball is incident at speed v1 � 40 m s)1 and with
x1 � )300 rad s)1.

Figure 3 Model calculations, in the racket frame of reference,
showing the rebound speed (v2), rebound angle (h2) and angular
velocity (x2) vs. lS. The ball is incident at speed v1 � 30 m s)1

at an angle h1 � 45° to the string plane and with initial spin
x1 � )300 rad s)1.

R. Cross · Friction between ball and strings
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Rebound results in the court reference frame

Calculations in the court reference frame, with
VR � 20 m s)1, are shown in Figs 5±7 to illustrate
the effects of varying the orientation of the racket.
Apart from varying the racket speed, the only other
choices available to the player are to vary hR or b.
The player might also vary the return angle across
court, but it is assumed in this paper that the
incident and rebound paths of the ball are in the
same vertical plane.

Figure 5 shows, for any given hR, the value of
lS required for the ball to enter a rolling mode.
The theoretical curves in Fig. 5 are solutions of
Eqs (18) and (19) in the court reference frame,
when vin � 10 m s)1, hin � 0, VR � 20 m s)1,
b � 5°, and when x1 � )300 or )500 rad s)1.
These parameters are typical of a groundstroke. If
lS is equal to the value given by Eq (18) then the
ball will rebound with maximum spin for that value
of hR. A larger value of lS will cause the ball to
rebound with marginally smaller spin due to the
effect of rolling friction. A lower value of lS means
that the strings have insuf®cient friction for the ball
to start rolling, and hence the ball will rebound
with reduced spin. Provided that lS is large
enough, the player can increase the spin by
swinging the racket at a larger angle upwards.
However, lS is typically about 0.3±0.4, in which

case this strategy will work only up to a certain
limiting value of hR as shown in Fig. 6(c).

Figure 6 shows court frame results where the
head is tilted slightly forwards, at b � 5°, while hR

is varied from 0° to 60° to examine the effects on
vout (Fig. 6a), hout (Fig. 6b) and x2 (Fig. 6c). Each
®gure shows results with lS � 0.2, 0.3 and 0.4.
Figure 6(c) shows that x2 passes through a

Figure 5 Solutions of Eqs (18) and (19) in the court reference
frame with vin � 10 m s)1, hin � 0, VR � 20 m s)1, b � 5°, and
with x1 � )300 or )500 rad s)1.

Figure 6 Court frame results showing (a) vout, (b) hout and (c) x2

vs. hR when vin � 10 m s)1, hin � 0, VR � 20 m s)1 and b � 5°.
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maximum as hR is increased and that the maximum
increases as lS increases. This is similar to the
result in Fig. 4, but the ®gures are reversed in the
sense that an increase in hR corresponds to a
decrease in h1. For example, if hR < 20° then
h1 > 70° and the ball rolls to a stop before it
rebounds, so x2 � 0.

Figure 7 shows a similar set of results where the
racket rises upwards at an angle hR � 45° and the
head is tilted forwards by an angle b which is varied
from 0 to 30° to examine the effects on vout

(Fig. 7a), hout (Fig. 7b) and x2 (Fig. 7c). When
lS � 0.2, the ball slides across the strings without
rolling, regardless of the angle b.

Ball trajectories

The effects of friction between the ball and strings
are best illustrated, from a practical point of view,
by considering the effects on the ball trajectory. For
this purpose one can consider a typical ground-
stroke where a ball is returned from a point directly
above the baseline so that it lands close to the
opponent's baseline. The perpendicular distance
between the two baselines is 78 feet (23.774 m).
The net is located 39 feet (11.887 m) from each
baseline and is 3 feet (0.914 m) high in the centre
of the court. For purposes of illustration, it is
assumed that the ball is incident at vin � 10 m s)1,
with hin � 0, x1 � ±300 rad s)1 and it impacts the
centre of the strings at a point 0.8 m above the
baseline. The resulting trajectory of the ball
depends on lS and lR as well as the player's choice
of VR, hR and b. Equations used to compute the
trajectory are given in the Appendix.

Typical ball trajectories are shown in Fig. 8. If
hR � 45°, b � 5°, lS � 0.3 and VR � 24.15 m s)1,

Figure 7 Court frame results showing (a) vout, (b) hout and (c) x2

vs. b when vin � 10 m s)1, hin � 0, VR � 20 m s)1 and hR � 45°.

Figure 8 Ball trajectories with VR � 24.15 m s)1 when
lS � 0.2, 0.3 or 0.4 (solid lines). The dashed curve is for
VR � 32.3 m s)1 and lS � 0.2. The baseline is at x � 23.77 m.
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then the ball will land on the opponent's baseline.
If hR, b and VR are unaltered, but lS � 0.4, then the
ball will land 1.23 m beyond the baseline. If lS

drops to 0.2, then the ball will land 3.7 m short of
the baseline since the ball rebounds from the racket
at a relatively low value of hout. In the latter case the
player could correct the stroke, for example by
increasing the speed of the racket to VR � 32.3
m s)1, in order for the ball to land on the oppo-
nent's baseline, as shown by the dashed trajectory in
Fig. 8. Alternatively, the player could correct the
trajectory by maintaining the same racket speed (i.e.
24.15 m s)1) and either decreasing hR to 25.5° or
decreasing b to 3.07°. These corrected trajectories
are shown in Fig. 9. The corrected trajectories are
¯atter, and the ball does not bounce as steeply off
the court as when lS � 0.3, since the ball rebounds
off the strings with lower values of hout and x2. In
Figs 8 and 9, the bounce off the court was deter-
mined using the same procedure as that used to
determine the bounce off the strings, but the
bounce parameters were changed to e � 0.745,
lS � 0.6, lR � 0 and M � ¥.

Figure 9(d) (thin line) shows the effect on curve
(a) of reducing the coef®cient of restitution, e, from
0.9 to 0.85, corresponding to a reduction in eA from
0.443 to 0.405. All other results in this paper are
computed with e � 0.9. A small reduction in e
occurs when the string tension is increased so that

the strings store a smaller fraction of the impact
energy and the ball dissipates a larger fraction.
Despite the relatively large change in eA, there is
an almost negligible change in the ball trajectory
since the outgoing speed of the ball is determined
primarily by the racket speed rather than the
incident speed of the ball.

There are several ways to interpret these results,
but the player is likely to conclude, if lS drops
below 0.3, that the strings are not as responsive or
that the strings have lost power. This conclusion
will be reinforced if the player needs to hit the ball
much harder to achieve the same range as strings
with lS � 0.3. In terms of the dynamics of the
impact, Fig. 7(a) shows that the reduction in vout is
negligible when lS decreases. The main effect is
that both hout and x2 decrease when lS decreases.

Elite players have an ability to hit the ball
accurately to any desired position of the court, and
with any desired top or backspin, by changing the
grip and racket trajectory as required. This is done
on the basis of previous experience and familiarity
with the racket and strings that they are using.
Consequently, if a player were to ®nd that the ball
lands consistently short of the expected position, it
is highly likely that the player would change rackets
or strings rather than change the grip or racket
trajectory. Changes in lS result in relatively small
changes in ball spin and trajectory when lS is larger
than about 0.3, in which case an elite player should
be able to compensate for these changes with
suf®cient practice. However, when lS drops below
about 0.3, the changes in ball spin and trajectory
are relatively large and are not within a player's
normal expectations. These effects are shown more
clearly in Fig. 10, where the range and spin of the
ball is plotted as a function of lS for similar initial
conditions to those in Fig. 8. The range is de®ned
as the distance travelled by the ball in the x
direction between x � 0 and the initial impact
point on the court.

Discussion

The results presented above show that the coef®-
cient of sliding friction plays a dominant role in the

Figure 9 Ball trajectories with VR � 24.15 m s)1 when (a) lS �
0.3, hR � 45°, b � 5, (b) lS � 0.2, hR � 25.5°, b � 5 and (c)
lS � 0.2, hR � 45°, b � 3.07°. The ball lands on the baseline at
x � 23.77 m in each case. The thin line curve (d) is for the same
parameters as (a) but e is reduced to 0.85.
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performance of tennis strings. A cursory experi-
mental investigation of the variations in lS between
different rackets showed small differences, but this
needs to be investigated further, especially since the
measurements of lS were made under conditions
that are not representative of those normally
encountered during a high speed impact. Ideally,
the coef®cients of friction should be measured
under impact conditions where a ball is ®red at
high speed at various angles of incidence onto the
string plane. One can speculate that lS will depend
on a number of factors such as string type, tension,
diameter and number of strings. It may also depend
on the extent of lateral movement of the strings
during an impact, and this is likely to depend on
string tension and on the coef®cient of friction
between the strings. Friction between the strings
will depend on the amount of wear and tear, and on
the extent to which the strings are `bedded in' due
to the formation of notches where the strings
overlap. The condition of the ball may also have a
signi®cant effect on lS.

Putnam & Baker (1984) found that lS does not
depend on the string pattern, but this result was
based on the assumption that sliding occurred
throughout the impact. The need for such an
assumption highlights a dif®culty with this type of
measurement. If the conditions are such that the
ball starts to roll before the end of the impact
period, then it can be seen from Fig. 3 that
measurements of x2, h2 and v2 are all insensitive

to lS (in Fig. 3, rolling occurs when lS > 0.36).
Inspection of the results shown in Fig. 4 shows that
it is necessary to choose a low angle of incidence,
where h1 < 30°, in order to obtain a reliable
measurement of lS. For the same reason, the ITF
speci®es an angle of incidence of 16° for impact
tests of a ball on a court surface when measuring
the pace of the court, where `pace' is de®ned as 1 ± lS.
Since Putnam and Baker chose an incident angle
h1 � 45°, it is possible to interpret their results to
mean that conventional and diagonal strings both
have a value of lS that is 0.3 or larger.

An additional effect, that can be regarded as an
effective change in lS, arises when a ball impacts the
strings off-centre. As described by Cross (2000a),
the string plane will then deform asymmetrically,
resulting in a transverse force acting on the ball
towards the centre of the strings. Even if the ball
impacts in the centre of the strings, it will slide or
roll across the strings by a signi®cant distance
during the impact. For example, if the relative speed
between the ball and strings is 30 m s)1 and the ball
is incident at 45° to the string plane, then the ball has
a velocity component of 21 m s)1 in a direction
parallel to the strings. It would travel a distance of
about 70 mm across the string plane during a typical
5 ms impact, rebounding with a parallel velocity
component somewhat less than 21 m s)1. For part
of this time, there is a restoring force acting towards
the centre of the strings, which could accelerate or
decelerate the ball depending on the initial contact
location. The magnitude of the transverse force is
such that lS is effectively increased or decreased by
about 0.1 (Cross 2000a). However, this effect cannot
be considered in isolation, since there will also be a
tendency for the racket to rotate about its long axis
whenever the ball impacts towards the top or
bottom edge of the racket (Groppel et al. 1987;
Brody 1997; Cross 2000b).

Conclusion

Much has been written in popular tennis magazines
about the properties of tennis strings and the
signi®cance of factors such as elasticity, string
tension, tension loss with time, string diameter,

Figure 10 Range and x2 vs. lS for ball trajectories with vin �
10 m s)1, hin � 0, x1 � )300 rad s)1, VR � 20 m s)1, hR � 40°
and b � 5°. The racket strikes the ball 0.8 m above the court
surface.
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string type, string pattern, etc., but the signi®cance
of the coef®cient of friction has not previously
received much attention, apart from the study by
Putnam & Baker (1984) and the fact that spaghetti
strings are banned by the ITF. In this paper, it has
been shown that the coef®cient of friction plays a
dominant role in determining the interaction
between the ball and the strings. All tennis strings
are able to store elastic energy ef®ciently, without
signi®cant energy loss, regardless of string tension
or type or previous history. The coef®cient of
restitution can be increased slightly, with a conse-
quent increase in racket power, by decreasing the
string plane stiffness so that the impact is `softer'
and so that the ball dissipates a smaller fraction of
the total energy. However, the resulting increase in
ball speed is typically less than 1% and would not
be apparent to most players.

It appears more likely that any change in string
performance, related to a change in string type or
tension or general wear and tear, will be associated
with a change in the coef®cient of friction between
the ball and the strings. Such a direct connection
was not established in this paper, since no
experiments were undertaken to see if there is any
correlation between string type or tension and the
coef®cient of friction. However, it was shown that a
small decrease in the coef®cient of sliding friction
below about 0.3 results in a large change in the
rebound angle of the ball. This is accompanied by a
slight change in rebound speed of the ball, but
players are more likely to perceive these effects as a
decrease in racket power since the ball lands short
of the target and since the amount of topspin
imparted to the ball is reduced. If lS remains larger
than about 0.3, a small change in lS results in a
relatively small change in rebound angle and spin.
However, preliminary measurements indicate that
lS is typically about 0.3, which is somewhat
marginal in regard to string performance.
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Appendix

The trajectory of a tennis ball through the air
depends on the spin of the ball and can be calculated
in terms of lift and drag coef®cients, as described
by Stepanek (1988), De Mestre (1990) or Mehta
(1985). The drag force on a spherical ball is given by

FD � CD�qv2A=2� �A1�
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where q � 1.21 kg m)3 is the density of air,
A � pR2 is the cross-sectional area of a ball of
radius R, v is the relative speed of the ball and the
air, and CD is the drag coef®cient. The trajectory of
a spinning ball of mass m can be described by the
relations

dvx=dt � ÿkv�CDvx � CLvy� �A2�
dvy=dt � ÿkv�CDvy ÿ CLvx� ÿ g �A3�

where x and y are the horizontal and vertical coor-
dinates, respectively, v is the ball speed, vx and vy are
the components of v, CL is the lift coef®cient and

k � pqR2=�2m� �A4�
In Eqs (A2) and (A3) it is assumed that the lift is
upwards or that the ball has backspin. The sign of
CL changes if the ball has topspin since the `lift' or
Magnus force is then directed towards the ground.
The drag and lift coef®cients of a spinning tennis
ball have been measured by Stepanek (1988) at ball

speeds up to 28 m s)1 and at angular speeds up to
340 rad s)1. Within this range, Stepanek found that

CD � 0:508� 1

�22:503� 4:196�vspin=v�ÿ5=2�2=5

�A5�

CL � 1

2:022� 0:981�v=vspin� �A6�

where vspin � Rx is the peripheral speed of the ball
and x is the angular speed about a horizontal axis
perpendicular to the path of the ball. Stepanek used
a factor 2.202 in his Eq (10), but the correct factor
is 2.022 as shown in his Fig. 4. It is assumed that
the lift and drag coef®cients are independent of the
Reynold's number for all ball speeds of interest and
that CD � 0.508 and CL � 0 when vspin � 0. Recent
measurements of CD using wind tunnels, conducted
independently by the author and by Haake et al.
(2000), show that CD remains constant even at ball
speeds up to 60 m s)1.
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