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Abstract— We investigate how the graph topology influences
the robustness to noise in undirected linear consensus networks.
We consider the expected steady state population variance of
states as the measure of vulnerability to noise. We quantify
the structural robustness of a network by using the smallest
value this measure can attain under edge weights from the
unit interval. Our main result shows that the average distance
between nodes and the average node degree define tight upper
and lower bounds on the structural robustness. Using these
bounds, we characterize the networks with different types of
robustness scaling. We also present a fundamental trade-off
between the structural robustness and the sparsity of networks.
We then show that random regular graphs typically have near-
optimal structural robustness among the graphs with same size
and average degree. Some simulation results are also provided.

I. INTRODUCTION

Consensus networks, where the state of each node ap-
proaches a weighted average of the states of adjacent nodes,
are used to model the diffusive couplings in a variety of
natural and engineered systems such as biological systems,
financial networks, social networks, communication systems,
transportation systems, power grids, sensor networks, and
robotic swarms. These systems typically operate in the
face of various disturbances such as measurement/process
noise, communication delays, component failures, misbe-
having nodes, or malicious attacks. Accordingly, a central
question regarding such networks is how well they behave
in the face of disturbances. This question has motivated
many studies on the robustness of consensus networks. Graph
measures such as connectivity, expansion ratios, centrality,
and Kirchoff index have been used in the literature to
quantify the robustness to various disturbances (e.g., [1], [2],
[3], [4], [5], [6]).

This paper is focused on the robustness of undirected
consensus networks to noisy interactions. In such networks,
each edge is endowed with some positive weight denoting
the coupling strength between the corresponding nodes. We
consider a setting with additive process noise, where the
state of each node is attracted towards the weighted average
of the states of its neighbors plus some independent and
identically distributed (i.i.d.) white Gaussian noise with zero
mean and unit covariance. We use the expected steady state
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population variance of states, which is a variant of the H2-
norm of the system with the output defined as the deviation of
nodes from global average, as the measure of vulnerability to
noise. We define the notion of structural robustness to noise,
which assesses each network based on the smallest value
of expected steady state variance that can be attained under
the noisy consensus dynamics with edge weights from the
unit interval. As such, the structural robustness is determined
by the amount of vulnerability to noise, which persists even
under the best allocation of edge weights, due to the network
topology. We show that two simple graph measures, namely
the average distance between nodes and the average node
degree, define tight bounds on the proposed measure of
structural robustness. We then use these bounds to obtain
some fundamental graph topological limitations on structural
robustness and characterize graphs with extremal robustness
scaling. We also show that random k-regular graphs, which
are graphs that are selected uniformly at random from the
set of all graphs with n nodes such that the number of edges
incident to each node (degree) is equal to k, typically have
near-optimal structural robustness among the graphs of size
n and average degree k.

The organization of this paper is as follows: Section
II provides some graph theory preliminaries. Section III
presents our main results. Section IV provides some sim-
ulation results. Finally, Section V concludes the paper.

II. PRELIMINARIES

A. Notation

We use R and R+ to denote the set of real numbers and
positive real numbers, respectively. For any finite set A with
cardinality |A|, we use R|A| (or R|A|+ ) to denote the space
of real-valued (or positive-real-valued) |A| − dimensional
vectors. For any pair of vectors x, y ∈ R|A|, we use x ≤ y (or
x < y) to denote the element-wise inequalities, i.e., xi ≤ yi
(or xi < yi) for all i = 1, 2, . . . , |A|. The all-ones and all-
zeros vectors, their sizes being clear from the context, will
be denoted by 1 and 0.

B. Graph Theory Basics

A graph G = (V,E) consists of a node set
V = {1, 2, . . . , n} and an edge set E ⊆ V ×V . For an undi-
rected graph, each edge is represented as an unordered pair
of nodes. For each i ∈ V , let Ni denote the neighborhood
of i, i.e.,

Ni = {j ∈ V | (i, j) ∈ E}



A path between a pair of nodes i, j ∈ V is a sequence of
nodes {i, . . . , j} such that each pair of consecutive nodes are
linked by an edge. For any node i, the number of nodes in
its neighborhood, |Ni|, is called its degree, di. Accordingly,
the average node degree of a graph is

d̃(G) = 1

n

n∑
i=1

di.

The distance between any two nodes i and j, which is
denoted by δij , is equal to the number of edges on the
shortest path between those nodes. The maximum distance
between any two nodes, maxi,j∈V δi,j is known as the
diameter of the graph, and the average distance between
nodes is given as

δ̃(G) = 2

n2 − n
∑

1≤i<j≤n

δij .

A graph is connected if there exists a path between every
pair of nodes. For weighted graphs, we use w ∈ R|E|+ to
denote the vector of edge weights and wij ∈ R+ to denote
the weight of the edge (i, j) ∈ E. The adjacency matrix, A,
of a weighted graph is defined as

[Aw]ij =
{
wij if (i, j) ∈ E
0 otherwise,

and the corresponding (weighted) graph Laplacian is

[Lw]ij =

{ ∑
k∈Ni

Aik if i = j
−Aij otherwise,

In the remainder of the paper, we will use L to denote the
unweighted Laplacian, i.e., the special case when w = 1.

C. Consensus Networks

Consensus networks can be represented as a graph, where
the nodes correspond to the agents, and the weighted edges
exist between the agents that are coupled through local in-
teractions. For such a network G = (V,E), let the dynamics
of each agent i ∈ V be

ẋi(t) =
∑
j∈Ni

wij(xj(t)− xi(t)) + ξi(t),

where xi(t) ∈ R denotes the state of i, each wij ∈ R+ is
a constant weight representing the strength of the coupling
between i and j, and ξ(t) ∈ Rn is i.i.d. white Gaussian
noise with zero mean and unit covariance, which is one of
the standard noise models for agents that are independently
affected by disturbances of same intensity due to various
effects such as communication errors, noisy measurements,
or quantization errors (e.g.,[4], [5], [7]). Accordingly, the
overall dynamics of the agents can be expressed as

ẋ(t) = −Lwx(t) + ξ(t), (1)

where Lw denotes the weighted Laplacian. In a noise-
free setting (ξ(t) = 0 for all t ≥ 0), the dynam-
ics in (1) are known to result in a global consensus,
limt→∞ x(t) ∈ span{1}, for any x(0) ∈ Rn if and only

if the graph is connected [8]. In the noisy case, a perfect
consensus can not be achieved. Instead, some finite steady
state variance of x(t) is observed on connected graphs
[4], [5]. Accordingly, the robustness of the network can be
quantified through the expected population variance in steady
state, i.e.,

H(G, w) := lim
t→∞

1

n

n∑
i=1

E[(xi(t)− x̃(t))2],

where x̃(t) ∈ R denotes the average of
x1(t), x2(t), . . . , xn(t).

It can be shown that (e.g., see [4], [5]) H(G, w) is equal
to 1/n times the square of the H2-norm of the system in
(1) from the input ξ(t) to the output y(t) ∈ Rn defined as
yi(t) = xi(t)− x̃(t), and it satisfies

H(G, w) = 1

2n

n∑
i=2

1

λi(Lw)
, (2)

where and 0 < λ2(Lw) ≤ . . . ≤ λn(Lw) denote the
eigenvalues of the weighted Laplacian Lw.

In this paper, we investigate how much the structure of
the underlying graph (the edge set E) causes vulnerability to
noise in consensus networks. We measure the structural vul-
nerability of any given network to noise based on the smallest
possible value of H(G, w), given that the edge weights
should belong to the feasible set W = {w | 0 < w ≤ 1}.
Since multiplying all the weights by some α ∈ R+ results
in Lαw = αLw and H(G, αw) = H(G, w)/α due to (2), it is
possible to make H(G, w) arbitrarily small for any network
by just scaling up all the weights. By considering only
weights in (0, 1], we remove this possibility and focus on
the impact of network structure.

Definition (Structural Vulnerability and Robustness) The
structural vulnerability of an undirected consensus network
G = (V,E) to noise is the smallest possible value ofH(G, w)
that is achievable under weights from the unit interval, i.e.,

H∗(G) := min
0<w≤1

H(G, w). (3)

The structural robustness to noise is quantified via the
reciprocal of structural vulnerability, 1/H∗(G).

In the remainder of this paper, for brevity we will say
“structural robustness (or vulnerability)” without explicitly
saying “to noise”. The term “structural robustness” is also
used in the literature to refer to the robustness of a network’s
connectivity to node or edge failures (e.g., [9], [6]). While
the two notions of robustness have some connections (e.g.,
[6], [2]), the distinction should be clear from the context.

III. MAIN RESULTS

In this section, we first express stuctural vulnerability in
terms of the Laplacian eigenvalues. Then, we derive tight
bounds on structural vulnerability based on the average node
degrees and average distances. We use these bounds to
characterize graphs with extremal robustness scaling. We
then show that there is a fundamental trade-off between



sparsity and structural robustness. Finally, we show that
random regular graphs typically have near-optimal structural
robustness among the graphs of same size and sparsity.

A. Connection to the Laplacian eigenvalues

Lemma 3.1. For any connected undirected graph G,

H∗(G) = 1

2n

n∑
i=2

1

λi(L)
, (4)

where L denotes the unweighted Laplacian of G.

Proof: For any connected undirected graph G, any
weighted Laplacian is a positive semidefinite matrix. In-
creasing any of its weights or adding new edges leads to
a new Laplacian that is equal to the initial Laplacian plus
another matrix that is also a weighted Laplacian (a graph
with only the added/strengthened edges). All the Laplacian
eigenvalues monotonically (not necessarily strictly) increases
under such an addition of a positive semidefinite matrix due
to the Weyl’s inequality (e.g., see [10]). Hence, H(G, w)
is minimized for w = 1 within the feasible set of (3).
Accordingly, using (2), we obtain (4).

In light of Lemma 3.1, H∗(G) of any connected network
can be computed through the eigenvalues of the unweighted
Laplacian. Furthermore, using this result, H∗(G) can also be
expressed in terms of a graph measure known as the Kirch-
hoff index (total effective resistance) [11], which satisfies

Kf (G) = n

n∑
i=2

1

λi(L)
,

where L is the Laplacian of G. Accordingly, due to (4),

H∗(G) = Kf (G)
2n2

. (5)

The connection in (5) is particularly useful as it links the
structural robustness to the rich literature in graph theory
on Kirchhoff index. For instance, closed form expressions in
terms of size are known for some graph families (e.g., see
[12], [13], [14]). Using those results on Kirchhoff index we
immediately obtain that the path (Pn), cycle (Cn), star (Sn),
and complete (Kn) graphs of size n have

H∗(Pn) =
n2 − 1

12n
, H∗(Cn) =

n2 − 1

24n
, (6)

H∗(Sn) =
(n− 1)2

2n2
, H∗(Kn) =

(n− 1)

2n2
. (7)

Furthermore, among all the connected undirected graphs with
n nodes, the Kirchoff index is minimized in the complete
graph Kn and maximized in the path graph Pn (e.g., see
[14]). As such, in light of (5), Kn and Pn are also the
minimizer and maximizer of H∗(G), respectively.

B. Impact of Average Degree and Average Distance

The structural vulnerability of any given network can be
computed by using the Laplacian eigenvalues as in (4).
Furthermore, the connection with the Kirchhoff index in
(5) enables the identification of extremal graphs (path and

complete) and provides closed form expressions in terms
of network size for several graph families. However, it is
not easy to use (4) or (5) for certain analysis and design
applications in a systematic and efficient way. For instance,
finding an optimal way to add a given number of edges
to an arbitrary network to reduce the H∗(G) would require
searching among all possibilities (e.g., see [14]). Further-
more, while it is possible to see how H∗(G) scales with size
for the special graph families with closed form expressions, it
is hard to do this for generic structures. One way to overcome
these type of difficulties is focusing on some upper/lower
bounds on H∗(G) rather than its exact value.

Many upper and lower bounds on the Kirchhoff index
have been proposed in the literature by using graph measures
such as chromatic number, independence number, edge/node
connectivity, diameter, or degree distribution (e.g., see [7],
[15], [16]). These bounds typically require significant amount
of global information and/or computation, which limits
their applicability in large networks (e.g., see [17], [18]).
Motivated by such limitations, we present a fundamental
relationship between the H∗(G) and two aggregate measures,
namely the average node degree and the average distance
between nodes, which can be computed/estimated efficiently
(e.g. in time sublinear in network size [19]), possibly in
a distributed manner with partial information (e.g., [20]).
Specifically, our next result shows that these two aggregate
measures define tight upper and lower bounds on H∗(G).

Theorem 3.2. For any connected undirected graph
G = (V,E) with n ≥ 2 nodes,

(n− 1)2

2d̃(G)n2
≤ H∗(G) ≤ δ̃(G)(n− 1)

4n
, (8)

where d̃(G) is the average node degree, δ̃(G) is the average
distance between nodes. Moreover, the lower bound holds
with equality if and only if G is a complete graph, and the
upper bound holds with equality if and only if G is a tree.

Proof: (Lower bound:) Since the harmonic mean is
always less than or equal to the arithmetic mean, we have

n− 1∑n
i=2 λi(L)

≤ 1

n− 1

n∑
i=2

1

λi(L)
, (9)

where the left side is the harmonic mean and the right side
is the arithmetic mean of 1/λ2(L), 1/λ3(L), . . . , 1/λn(L).
Furthermore since L is a symmetric matrix, the sum of its
eigenvalues equals its trace, which is equal to the sum of
node degrees nd̃(G). Hence, (9) implies

(n− 1)2

nd̃(G)
≤

n∑
i=2

1

λi(L)
. (10)

Due to (2) and (10),

H∗(G) = 1

2n

n∑
i=2

1

λi(L)
≥ (n− 1)2

2d̃(G)n2
. (11)

Note that the harmonic mean equals the arithmetic mean



if and only if all the numbers are equal. Hence, (9) holds
with equality if and only if λ2(L) = λ3(L) = . . . =
λn(L). Furthermore, all the positive Laplacian eigenvalues
of a connected graph are equal if and only if the graph is
a complete graph (e.g., see [21]). Hence, (11) holds with
equality if and only if G is a complete graph. Alternatively,
the lower bound can also be proved by using (4) and the
inequality shown in [22].

(Upper bound:) The Kirchoff index satisfies

Kf (G) ≤
∑

1≤i<j≤n

δij , (12)

where the δij denotes the distance between nodes i and j, and
(12) holds with equality if and only if G is a tree (e.g., see
[14]). Since the sum of distances between the nodes satisfy∑

1≤i<j≤n

δij =
n(n− 1)δ̃(G)

2
,

(5) and (12) together imply

H∗(G) ≤ δ̃(G)(n− 1)

4n
. (13)

Furthermore, since (12) holds with equality if and only if G
is a tree, the same is true for the inequality in (13).

C. Graphs with Extremal Robustness Scaling

One of the important considerations when designing large
scale networks is how the robustness of the system would
scale with its size. As indicated by (6)-(7), different net-
work topologies may exhibit different robustness scaling
properties. For instance, while the structural vulnerability
of complete graph, H∗(Kn), tends to zero as the network
size increases (see (7)), the structural vulnerability of path
graph,H∗(Pn), tends to infinity as the network size increases
(see (6)). Apart from these two extremal cases of robustness
scaling, there are also networks (e.g., star graph) such that
H∗(Gn) converges to some non-zero value as the network
size increases. One question of interest is then which topo-
logical properties determine how H∗(Gn) behaves as the size
increases. In this regard, the following result provides a graph
topological characterization of networks with different types
of robustness scaling.

Theorem 3.3. Let {Gn}n∈N denote an infinite sequence of
connected undirected graphs with n nodes. The structural
vulnerability of Gn tends to zero as n goes to infinity only if
the average node degree grows unbounded, i.e.,

lim
n→∞

H∗(Gn) = 0⇒ lim
n→∞

d̃(Gn) =∞.

Furthermore, the structural vulnerability grows unbounded
only if the average distance also grows unbounded, i.e.,

lim
n→∞

H∗(Gn) =∞⇒ lim
n→∞

δ̃(Gn) =∞.

Proof: (H∗(Gn)→ 0): Note that the lower bound in (8)
is non-negative for any connected undirected G with n ≥ 2

nodes. Hence, due to the squeeze theorem, if H∗(Gn) tends
to zero then the lower bound must also tend to zero, i.e.,

lim
n→∞

H∗(Gn) = 0⇒ lim
n→∞

(n− 1)2

2d̃(Gn)n2
= 0. (14)

Since the average node degree d̃(Gn) is always non-negative,
(14) implies

lim
n→∞

d̃(Gn) =∞.

(H∗(Gn)→∞): If H∗(Gn) diverges as n goes to infinity,
the upper bound in (8) must also diverge, which is only
possible if δ̃(Gn) diverges.

D. Price of Structural Robustness

In light of the lower bound in Theorem 3.2, the average
degree of a network imposes a fundamental limit on how
good the structural robustness can be. For instance, as shown
in Theorem 3.3, the structural vulnerability to noise can
disappear with increasing size only if the average degree
grows unbounded. Accordingly, we observe that the graphs
with good structural robustness typically pay the price in
terms of sparsity, which is also a desirable property in
networks since each edge denotes some communications,
sensing, or a physical link between the corresponding agents.
As such, dense graphs require more resources. That is one
of the main reasons why in most cases complete graph is not
a feasible network structure although it has the best possible
structural robustness as per (7).

In this part, we provide a tight bound that highlights the
trade-off between structural robustness and sparsity. To do
that, we first consider the best structural robustness that
can be obtained with the minimum number of edges. For
connected graphs, minimum sparsity is observed in trees, i.e.,
graphs with n nodes and n − 1 edges. Note that any graph
with fewer edges has to be disconnected. In light of Theorem
3.2, the structural vulnerability of any tree is determined by
the average distance between nodes, δ̃. Furthermore, H∗(G)
is a monotonically increasing function of δ̃(G) for trees as per
the upper bound in (8). As such, it can be immediately shown
that the star graph Sn, has the best structural robustness
among the trees as given in (7). Despite being a member
of the sparsest family of connected graphs (i.e., trees), the
star graph exhibits a very good level of structural robustness.
Unlike the path graph, the structural vulnerability of star
graph does not grow unbounded as n goes to infinity. Instead
it converges to 1/2. Our next result shows that the average
degree of a graph defines a tight upper bound on how smaller
its structural vulnerability can be compared to the star graph.

Theorem 3.4. For any connected undirected graph with n
nodes, Gn, and the star graph with n nodes, Sn,

H∗(Sn)
H∗(Gn)

≤ d̃(Gn). (15)

Furthermore, this bound is tight.

Proof: The bound follows from (7) and the lower
bound in (8). The tightness follows from the fact that (15)



is satisfied with equality for the complete graph, Gn = Kn,
as per (7) since d̃(Kn) = n− 1.

Since Sn has the best structural robustness achievable with
the minimum number of edges a connected graph can have,
(15) highlights the price of structural robustness in terms
of sparsity. Any graph with a significantly better structural
robustness (smaller H∗(Gn)) than the star graph of same size
should have a proportionally high average degree.

E. Structural Robustness of Random Regular Graphs

In this subsection, we investigate the structural robustness
of random regular graphs and show that they typically have
near optimal structural robustness among the graphs of same
size and sparsity. A graph is called a k-regular graph if the
number of edges incident to each node (the degree) is equal
to k. For connected regular graphs with n ≥ 3 nodes, the
feasible values of k are {2, 3, . . . , n− 1} with the constraint
that n and k can not be both odd numbers since the number
of edges is equal to nk/2. The complete graph, which has
the best structural robustness possible as given in (7), is
the k-regular graph with k = n − 1. We will show that
most k-regular graphs have desirable structural robustness
properties, except for the special case of k = 2, which is
the cycle graph Cn. In light of (6), H∗(Cn) clearly grows
unbounded as the network size increases. Furthermore, the
structural vulnerability of a cycle graph is equal to the half
of the path graph’s, i.e., H∗(Cn) = H∗(Pn)/2. Hence, the
structural robustness of a cycle is always within a constant
factor of the worst possible among the graphs of equal size.

On the other hand, the structural robustness of k-regular
graphs for k ≥ 3 is significantly different from the cycle
graph’s structural robustness. As n goes to infinity, for k ≥ 3
almost every k-regular graph has λ2(L) ≥ k − 2

√
k − 1− ε

for any ε > 0 (e.g., see [23] and the references therein).
In light of (4), this property implies an upper bound on the
structural vulnerability of those graphs since for any graph

1

2n

n∑
i=2

1

λi(L)
≤ n− 1

2nλ2(L)
.

Accordingly, for any integer k ≥ 3 and ε ∈ (0, k−2
√
k − 1)

lim
n→∞

Pr

{
H∗(Gn,k) ≤

n− 1

2n(k − 2
√
k − 1− ε)

}
= 1,(16)

where Gn,k is a random k-regular graph, i.e., a graph that is
selected uniformly at random from the set of all k-regular
graphs with n nodes. Since n and k cannot be both odd,
for odd values of k the limit in (16) is defined along the
sequence of even integers n ∈ {k + 1, k + 3, . . .}.

By combining (16) with the lower bound in (8) for
d̃(G) = k, we can show that for large values of n, with high
probability, the structural vulnerability of random k-regular
graphs (k ≥ 3) is within a constant factor of the smallest pos-
sible value among the graphs with the same size and average
degree. Furthermore, this factor gets arbitrarily close to one
as k increases. In other words, for large values of k, random
k-regular graphs have structural robustness arbitrarily close

to the best possible (with that many edges) with arbitrarily
high probability as the network size increases.

Theorem 3.5. For any ε ∈ (0, k−2
√
k − 1) and any integer

k ≥ 3

lim
n→∞

Pr

 H∗(Gn,k)
min

Gn:d̃(Gn)=k
H∗(Gn)

≤ k

k − 2
√
k − 1− ε

+ ε

 = 1,

(17)

where Gn,k is a random k-regular graph.

Proof: Using the lower bound in (8) and (7), for
any undirected graph Gn with n nodes and average degree
d̃(Gn) = k,

min
Gn:d̃(Gn)=k

H∗(Gn) ≥
(n− 1)2

2kn2
(18)

Using (18) with (16), for any random k-regular graph with
k ≥ 3 and ε ∈ (0, k − 2

√
k − 1),

lim
n→∞

Pr

 H∗(Gn,k)
min

Gn:d̃(Gn)=k
H∗(Gn)

≤ 2kn2

(2n2 − 2n)(k − 2
√
k − 1− ε)

 = 1.

(19)

Note that the upper bound in (19) satisfies

lim
n→∞

2kn2

(2n2 − 2n)(k − 2
√
k − 1− ε)

=
k

k − 2
√
k − 1− ε

.

Due to the definition of limit, there exists some n beyond
which the upper bound in (19) is smaller than its limit plus
ε. Consequently, we can replace the upper bound with that
value and obtain (17).

In light of Theorem 3.5, random k-regular graphs with
large k and size have almost optimal structural robustness
among the graphs of same size and average degree.

IV. SIMULATION RESULTS

We simulate the dynamics in (1) for uniform edge weights
w = 1 on different network topologies to demonstrate their
structural robustness. More specifically, we consider the path,
complete, and random 3-regular graphs with 20 nodes. In
each simulation, the network is initialized at x(0) = 0, and
the variance of x(t) is observed under the noisy consensus
dynamics as per (1), where ξ(t) ∈ Rn is white Gaussian
noise with zero mean and unit covariance. The results are
shown in Fig. 1. The average of state variances over the
whole horizon were observed as 1.64 (P20), 0.29 (G20,3),
and 0.03 (K20). These values are aligned with the theoretical
results. The average distance on a path graph is known to
satisfy δ̃(Pn) = (n+1)/3. Accordingly, the upper bound in
(8), which should satisfy with equality for the path graph, can
be computed as 1.66. Similarly, computing the lower bound
for n = 20 and d̃(K20) = 19 results in 0.024, which is close
to the observed value in the simulation. For the random 3-
regular graph used in the simulation, the average distance
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Fig. 1. Variance of states under the noisy consensus dynamics on path (top),
random 3-regular (middle), and complete (bottom). Graphs have 20 nodes
and the edge weights are all set to one to illustrate structural robustness.

was computed as 2.56. Accordingly, the lower bound and
the upper bound in (8) were computed as 0.15 and 0.6.

V. CONCLUSION

We investigated the structural robustness of undirected lin-
ear consensus networks to noisy interactions. We measured
the structural robustness of a graph based on the small-
est possible value of the expected steady state population
variance of states under the noisy consensus dynamics with
admissible edge weights from the unit interval. We showed
that the average distance and the average node degree in
the underlying graph define tight bounds on the structural
robustness. Using these bounds, we also characterized the
graphs with extremal robustness scaling. We then presented
a fundamental trade-off between the structural robustness and
the average degree of networks. We expressed this trade-off
in terms of a tight bound on the ratio of structural robustness
of any given graph to the structural robustness of the star
graph of same size, which has the best structural robustness
among the connected graphs with minimum average degree
(trees). We also showed that random k-regular graphs with
n nodes typically have near-optimal structural robustness
among the graphs of size n and average degree k.

As a future direction, we intend to extend our robustness
analysis to the generalized case of directed graphs, where the
interactions between nodes are not necessarily symmetric.
We also plan to investigate the fundamental relationships
between the structural robustness and other system proper-
ties. For example, recently it was shown that the distances
between nodes have a major impact on the controllability
of consensus networks and there are trade-offs between the
controllability and robustness of such systems (e.g., [24],
[25]). We believe that the results in this paper can be used
for further investigation of such relationships.
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