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Abstract�In this paper, we study resilient distributed diffusion
for multi-task estimation in the presence of adversaries where
networked agents must estimate distinct but correlated states of
interest by processing streaming data. We show that in general
diffusion strategies are not resilient to malicious agents that do
not adhere to the diffusion-based information processing rules.In
particular, by exploiting the adaptive weights used for diffusing
information, we developtime-dependentattack models that drive
normal agents to converge to states selected by the attacker.We
show that an attacker that has complete knowledge of the system
can always drive its targeted agents to its desired estimates.
Moreover, an attacker that does not have complete knowledge
of the system including streaming data of targeted agents or
the parameters they use in diffusion algorithms, can still be
successful in deploying an attack by approximating the needed
information. The attack models can be used for both stationary
and non-stationary state estimation. In addition, we present
and analyze a resilient distributed diffusion algorithm that is
resilient to any data falsi�cation attack in which the number
of compromised agents in the local neighborhood of a normal
agent is bounded. The proposed algorithm guarantees that all
normal agents converge to their true target states if appropriate
parameters are selected. We also analyze trade-off between the
resilience of distributed diffusion and its performance in terms
of steady-state mean-square-deviation (MSD) from the correct
estimates.Finally, we evaluate the proposed attack models and
resilient distributed diffusion algorithm using stationary and non-
stationary multi-target localization.

Index Terms�Resilient diffusion, multi-task estimation, net-
work topology, adaptive systems

I. I NTRODUCTION

Diffusion Least-Mean Squares (DLMS) is a powerful algo-
rithm for distributed state estimation [2]. It enables networked
agents to interact with neighbors to process streaming data and
diffuse information across the network to perform the estima-
tion tasks. Compared to a centralized approach, distributed dif-
fusion offers multiple advantagesincludingrobustness to drifts
in the statistical properties of the data, scalability,reliance
on local data, and fast response among others. Applications
of distributed diffusion include spectrum sensing in cognitive
networks [3], target localization [4], distributed clustering [5],
and biologically inspired designs for mobile networks [6].

Diffusion strategies are known to be robust to node and
link failures as well as to high noise levels[7], [8], [9], [10].
However, it is possible that a single adversarial agent that
does not update its estimates according to the diffusion-based
information processing rules, for instance by retaining a �xed
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A subset of the results appeared in preliminary form in [1].

value throughout, can fail other agents to converge to their true
estimates. Resilience of diffusion-based distributed algorithms
in the presence of such �xed-value Byzantine attacks has been
studied in [2], [5]. A general approach to counteract such
attacks is to allow agents to fuse information collected from
other agents in local neighborhoodsusing adaptive weights
instead of �xed ones. By doing so, only neighbors estimating
a similar state will be assigned large weights so as to eliminate
the in�uence of a �xed-value Byzantine adversary.

In this paper, we consider distributed diffusion for multi-
task estimation where networked agents must estimate dis-
tinct, but correlated states of interest by processing streaming
data.Agents use adaptive weights when diffusing information
with neighbors since adaptive weights have been successfully
applied to multi-task distributed estimation problems. How-
ever, we are interested in understanding if adaptive weights
introduce vulnerabilities that can be exploited by Byzantine
adversaries. The �rst problem we consider is to analyze if it is
possible for an attacker to compromise a node, and make other
nodes in its neighborhood converge to a state selected by the
attacker. Then, we consider a network attack and determine
a minimum set of nodes to compromise to make all nodes
within the network converge to attacker’s desired state.

We assume astrong attackmodel, that is, the attacker
has complete knowledge of the network topology, streaming
data of targeted agents and their parameters used in the
diffusion algorithm. A strong attacker can know the topology
by monitoring the network, streaming data of agents by
stealthily compromising their sensors/controllers and estab-
lishing backdoor channels, and diffusion parameters by doing
reverse engineering. We note that having complete knowledge
is a strong assumption, however, it is common to assume
a strong attacker with complete knowledge of the system
to examine the resilience of distributed networks [11], [12],
[13], [14], [15]. In addition to this strong attack model, we
also consider aweak attackmodel in which the attacker
has no knowledge of streaming data of targeted agents or
their parameters. We show that such an attacker can also be
successful in preventing normal agents from converging to true
estimates by approximating their states.

As a result, we show that DLMS, which was considered
to be resilient against Byzantine agents by itself ([2], [5],
[8]), is in fact, not resilient. A Byzantine agent sharing
incorrect estimates whose values are not �xed and change
over time (time-dependent Byzantine attack) can manipulate
the normal agents to converge to incorrect estimates. On the
one hand, adaptive weights improve the resilience of diffusion
algorithms to �xed-value Byzantine attacks, but on the other
hand, introduce vulnerabilities that can be exploited by time-
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dependent attacks. We analyze this issue in detail and propose
a resilient diffusion algorithm that ensures that normal agents
converge to true �nal estimates in the presence of any data
falsi�cation attack.

The main contributions of the paper are summarized below.
1) By exploiting the adaptive weights, we develop attack

models that drive normal agents to converge to states
selected by an attacker. The attack models can be used
to deceive a speci�c node or the entire network and
are applicable to both stationary and non-stationary state
estimation. Although the attack models are based on a
strong knowledge of the system, we also show that the
attack can succeed without such knowledge.

2) We propose a resilient distributed diffusion algorithm pa-
rameterized by a positive integerF . We show that if there
are at mostF compromised agents in the neighborhood of
a normal agent, then the algorithm guarantees that normal
agents converge to their actualgoal states under any
data falsi�cation attack. If the parameterF selected by
the normal agents is large, the resilient distributed diffu-
sion algorithm degenerates to non-cooperative estimation.
Thus, we also analyze trade-off between the resilience of
distributed diffusion and its performance degradation in
terms ofthe steady-stateMSD.

3) We evaluate the proposed attack models forboth strong
and weak attacksand the resilientdistributed diffusion
algorithm using both stationary and non-stationary multi-
target localization. The simulation results are consistent
with our theoretical analysis and show that the approach
provides resilience to attacks while incurring performance
degradation which depends on the assumption about the
number of compromised agents.

The rest of the paper is organized as follows: Section II
brie�y introduces distributed diffusion. Section III presents the
attack and resilient distributed diffusion problems.Sections
IV and V discuss single node attack and network attack
models respectively. Section VI presents and analyzes the
resilient distributed diffusion algorithm. Section VII provides
simulation results evaluating our approaches with multi-target
localization. Section VIII discusses and evaluates the attack
model that does not require complete knowledge of the system.
Section IX gives a brief overview of the related work and
Section X concludes the paper.

II. PRELIMINARIES

We use normal and boldface fonts to denote deterministic
and random variables respectively. The superscript(�) � de-
notes complex conjugation for scalars and complex-conjugate
transposition for matrices,Ef�g denotes expectation, andk � k
denotes the Euclidean norm of a vector.

Consider a network ofN (static) agents1, in which an
undirected edge (or a link) between two agents indicates that
they share information and are neighbors of each other. The
neighborhood of an agentk, denoted byNk is the set of
neighbors ofk, including the agentk itself. At each iteration

1We use the terms agent and node interchangeably.

i , agentk has access to a scalar measurementdk (i) and a
regression vectoru k;i of sizeM with zero-mean and uniform
covariance matrixRu;k , Efu �

k;i u k;i g > 0, which are related
via a linear model of the following form:

dk (i) = u k;i w0
k + vk (i ):

wherevk (i) represents a zero-mean i.i.d. additive noise with
variance� 2

v;k andw0
k denotes the unknownM � 1 state vector

of agentk.
The objective of each agent is to estimatew0

k from (stream-
ing) datafd k (i ); u k;i g (k = 1; 2; :::; N; i � 0). The objective
statecan be static or dynamic and we representit asw0

k or w 0
k;i

respectively. For simplicity, we usew0
k to denote the objective

state in both the static and dynamic cases.
The statew0

k can be computed as the the unique minimizer
of the following cost function:

Jk (w) , Efkd k (i ) � u k;i wk2g: (1)

An elegant adaptive solution for determiningw0
k is the least-

mean-squares (LMS) �lter [2], where each agentk computes
successive estimators ofw0

k without cooperation (noncooper-
ative LMS) as follows:

w k;i = w k;i�1 + � k u �
k;i [dk (i) � u k;i w k;i�1 ];

where � k > 0 is the step size (can be identical or distinct
across agents).

Compared to noncooperative LMS, diffusion strategies in-
troduce an aggregation step that incorporatesinformation gath-
ered from the neighboring agents into the adaptation mecha-
nism. One powerful diffusion scheme is adapt-then-combine
(ATC) [2] which optimizes the solution in a distributed and
adaptive way using the following update:

 k;i = w k;i�1 + � k u �
k;i [dk (i) � u k;i w k;i�1 ] (adaptation) (2)

w k;i =
X

l 2N k

alk (i ) l;i ; (combination) (3)

wherealk (i ) represents the weight assigned to agentl from
agentk that is used to scale the data it receives froml , and
the weights satisfy the following constraints:

alk (i ) � 0;
X

l 2N k

alk (i ) = 1 ; alk (i ) = 0 if l 62 Nk :

(4)
Here the intermediate state k;i (obtained by the adaptation
step) is shared among neighboring agents and a combination
of neighbors’ intermediate states contribute to the current
estimatew k;i of agentk.

In the case where agents estimate a common statew0 (i.e.,
w0

k is same for everyk), several �xed combination rules
can be adopted such as Laplacian, Metropolis, averaging, and
maximum-degree [16]. In the case of multiple tasks, agents are
pursuing distinct but correlated objectivesw0

k . In this case, the
combination rules mentioned above are not applicable because
they simply combine the estimation of all neighbors without
distinguishing if the neighbors are pursuing the same objective.
An agent estimating a different state will prevent its neighbors
from estimating the state of interest.
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Diffusion LMS (DLMS) has been extended for multi-task
networks in [5] using the following adaptive weights:

alk (i ) =

8
<

:


 �2
lk (i)

P
m2N k


 �2
mk (i)

; l 2 N k

0; otherwise:
(5)

where 
 2
lk (i) = (1 � � k )
 2

lk (i � 1) + � k k l;i � w k;i�1 k2

and � k is a positive step size known as the forgetting factor.
This update enables agents to continuously learn about the
neighbors agents should cooperate with. During the estimation
task, agents pursuing different objectives will continuously
assign smaller weights to each other according to (5). Once
the weights become negligible, communication links between
agents do not contribute to the estimation task. Consequently,
as the estimation proceeds, only the agents estimating the same
state cooperate.

DLMS with adaptive weights (DLMSAW) outperforms the
noncooperative LMS as measured by the steady-state mean-
square-deviation performance (MSD) [2]. For suf�ciently
small step-sizes, the network performance of noncooperative
LMS is de�ned as the averagesteady-stateMSD level among
agents:

MSDncop , lim
i!1

1
N

NX

k=1

Ek ~w k;i k2 �
�M

2
� (

1
N

NX

k=1

� 2
v;k );

where ~w k;i , w0
k � w k;i and M is the size of regression

vector u k;i . The network MSD performance of the diffusion
network (as well as the MSD performance of a normal agent
in the diffusion network) can be approximated by

MSDk � MSDdiff �
�M

2
�

1
N

� (
1
N

NX

k=1

� 2
v;k ): (6)

In [2], it is shown that MSDdiff = 1
N MSDncop, which demon-

strates anN -fold improvement of MSD performance.

III. PROBLEM FORMULATION

Diffusion strategies have been shown to be robust to node
and link failures as well as to nodes or links with high noise
levels[8], [9]. In this paper, we are interested in understanding
if the adaptive weights introduce vulnerabilities in the case a
subset of nodes within the network is compromised by a cyber
attack.In this direction, �rst we analyze if it is possible for
an attacker who has compromised a nodek to make nodes
in Nk converge to a state selected by the attacker. Second,
we consider a network attack modelin which we determine
a minimum set of nodes to compromise to make the entire
network converge to states selected by the attacker. Finally,
we formulate the resilient distributed diffusion problem that
guarantees that normal agents are not driven to the attack-
ers’ desired states, and continue the normal operationwith
the cooperation among neighborspossibly with a degraded
performance.

A. Single Node Attack Model
We consider false data injection attacksdeployed by a

strong attacker that has complete knowledge of the system.
In particular, we assume the following for the strong attack.

Assumption 1. A strong attacker knows the topology of
the network, the streaming data of targeted agents and the
diffusion algorithm parameters they use, such as� k .

To examine the resilience of distributed networks, it is
common to assume a strong attack with full knowledge of the
system, for instance, Byzantine attackers having a complete
knowledge of the system are considered in [11], [12], [13],
[14], [15]. However, we also consider a weak attack model
in Section VIII in which an attacker has no knowledge of
agents’ parameters and has no access to their streaming data.
Compromised nodes are assumed to be Byzantine in the sense
that they can send arbitrary messages to their neighbors, and
can also send different messages to different neighbors.

The objective of the attacker is to drive the normal nodes to
converge to a speci�c state. We assume a compromised node
a wants agentk to converge to state

wa
k;i =

(
wa

k ; for stationary estimation
wa

k + � a
k;i ; for non-stationary estimation:

This is equivalent to minimizing the objective function of the
following form:

min
w k;i

lim
i!1

G(w k;i ); w a
k;i 2 Dw;k ; (7)

where
G(w k;i ) = kw k;i � wa

k;i k2;

andDw;k is the domain of statew k;i .
Another objective of the attacker can be to delay the

convergence time of the normal agents.We observe thatif
the compromised node can make its neighbors to converge to
a selected state, it can keep changing this state before normal
neighbors converge. By doing so, normal neighborsof the
attacked nodewill never converge to a �xed state. Thus, the
attacker can achieve its goal to prolong the convergence time
of normal neighbors. For that reason, we focus on the attack
model based on objective (7).

B. Network Attack Model
If the attacker has a speci�c target node that she wants to

attack and make it converge to a speci�c state, the attacker
can compromise any neighbor of this node to achieve the
objective. In the case the attacker wants to compromise the
entire network and drive the multi-task estimation to speci�c
states, she needs todetermine a minimum set of nodes to
compromise such that every normal node in the network can
be driven to an incorrect estimate. Computing such a minimum
set directly depends on the underlying structure, and can be
formulated asminimum dominating set problemin graphs as
discussed in Section V.

C. Resilient Distributed Diffusion
Distributed diffusion is said to beresilient if

lim
i!1

w k;i = w0
k : (8)

for all normal agentsk in the network which ensures that all
the noncompromised nodes converge to the true state.
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We note that if agents do not cooperate or interact with each
other at all, such as in the non-cooperative diffusion, then ad-
versary cannot impact agents’ estimates. So, non-cooperative
diffusion is resilient in this sense. At the same time, agents
are also unable to utilize the information from other agents
aiming to achieve the similar objective. Consequently, the
steady-state MSD as result of non-cooperative diffusion can be
quite large. Here, our objective is to design a resilient diffusion
algorithm that guarantees convergence to the true estimates in
the presence of adversary and also results in smaller MSD
(as compared to the non-cooperative diffusion) by leveraging
cooperation and information exchange between agents.We
assume that in the neighborhood of a normal node, there could
be at mostF compromised nodes [11]. Assuming bounds on
the number of adversaries is typical forthe resiliency analysis
of distributed algorithms, and our resilient algorithm is also
based on this assumption.

IV. SINGLE NODE ATTACK DESIGN

We design a strong attack in which the attacker drives the
targeted nodek to converge to a wrong estimatewa

k;i by
makingk follow a desired trajectory de�ned using stochastic
gradient descent. The attacker’s goal is to ensure thatk, which
implements adaptive-then-combine LMS, actually updates its
estimates according to the stochastic gradient descent de�ned
by the attacker. Thus, the main task is to determine conditions
under which adaptive-then-combine LMS ofk guarantees
the convergence ofk’s estimate towa

k;i . We summarize the
conditions below and then analyze them in detail in the rest
of the section.

1) An attacker needs to know the estimate of nodek in the
previous iteration.Lemma 1shows that an attacker can
obtain the estimate given nodek’s streaming data and
parameters.

2) Node k should not assign any weight to the messages
from its non-attacked neighbors.Lemma 2ensures this
objective.

3) The magnitude of the stochastic gradient descent update
should be suf�ciently small. Details are given inPropo-
sition 1.

A. Gradient-based Attack Design
Here, we present an attack based on gradient-descent up-

dates, and in the next subsection, provide conditions under
which the attack is successful. For stationary estimation, the
following gradient-descent update with a suf�cient small step
size� a

k at thei th iteration is suf�cient to achieve the objective
in (7):

w k;i = w k;i�1 � � a
k r w G(w k;i�1 )

= w k;i�1 � r a
k (w k;i�1 � wa

k;i );
(9)

where r a
k = 2 � a

k is a non-negative step size(that can also
be time-varying).For non-stationary estimation, the form is
slightly different and it is described by2

w k;i = w k;i�1 � r a
k (w k;i�1 � x i ); (10)

2See Appendix A.

where

x i =

(
wa

k ; for stationary estimation
wa

k + � a
k;i�1 + �� a

k;i�1
r a

k;i
; for non-stationary estimation

with �� a
k;i = � a

k;i+1 � � a
k;i . And the diffusion estimate ofk is

w k;i =
X

l 2N k

alk (i ) l;i =
X

l 2N k na

alk (i ) l;i + aak (i ) a;i :

It is suf�cient to achieve the attack objective (7) if the attacker
could make the estimate ofk follow the gradient-descent
trajectory, i.e.,

X

l 2N k na

alk (i ) l;i + aak (i ) a;i = w k;i�1 � r a
k (w k;i�1 � wa

k;i ):

(11)
Since  l;i = w l;i �1 + � l u �

l;i [d l (i ) � u l;i w l;i �1 ] is a random
variable that is not controlled by the attacker, the attacker
should eliminate the in�uence of l;i for l 2 N k ; l 6= a.
Suf�cient conditions to hold (11), and thus to achieve the
attack objective are as follows:

 a;i = w k;i�1 � r a
k (w k;i�1 � x i ): (12)

and
alk (i ) ! 0; 8l 2 N k ; l 6=a;
aak (i) ! 1;

(13)

That is, the attacker uses the exchanging message k;i as
indicated in (12) and the targeted nodek updates its estimate
based only on k;i .  k;i is computed given the knowledge of
w k;i�1 , that can be obtained by the attacker givenLemma 1.

Lemma 1. If a compromised nodea has a knowledge of node
k’s streaming datafd k (i ); u k;i g and the parameter� k , then
it can computew k;i�1 .

Proof. The message received bya from k 2 N a is  k;i . Agent
a can computew k;i�1 from  k;i using

w k;i�1 =  k;i � � k u �
k;i (d k (i) � u k;i w k;i�1 )

from which it can computew k;i�1 as:

w k;i�1 =
 k;i � � k u �

k;i dk (i)
1 � � k u �

k;i u k;i

Given the knowledge of� k , dk (i ), andu k;i , the valuew k;i�1
can be computed exactly.

Next, we see thatby carefully designing a;i as explained
in Lemma 2, conditions in (13) are satis�ed.

Lemma 2. If the attacker sends the message a;i satisfying
k a;i � w k;i�1 k � k l;i � w k;i�1 k, 8l 2 N k ; l 6=a; 8i , then
(13) will be true.

Proof. We use� a;k;i to denotek a;i � w k;i�1 k, and � l;k;i to
denotek l;i � w k;i�1 k, for l 2 N k ; l 6=a. Since


 2
lk (i) = (1 � � k )
 2

lk (i � 1) + � k k l;i � w k;i�1 k2; l 2 N k ;
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Suppose the attack starts ati a , then at iteration(i a + n),


 2
ak (i a + n)

=(1 � � k )
 2
ak (i a + n � 1) + � k � 2

a;k;i a +n

=(1 � � k )((1 � � k )
 2
ak (i a + n � 2) + � k � 2

a;k;i a +n�1 )
+ � k � 2

a;k;i a +n

=(1 � � k )n+1 
 2
ak (i a � 1)

+ � k [(1 � � k )n � 2
a;k;i a

+ (1 � � k )n�1 � 2
a;k;i a +1

+ : : : + (1 � � k )� 2
a;k;i a +n�1 + � 2

a;k;i a +n ];


 2
lk (i a + n) =(1 � � k )n+1 
 2

lk (i a � 1)
+ � k [(1 � � k )n � 2

l;k;i a
+ (1 � � k )n�1 � 2

l;k;i a +1

+ : : : + (1 � � k )� 2
l;k;i a +n�1 + � 2

l;k;i a +n ]:

For large enoughn, (1 � � k )n+1 ! 0. Since we assume
k a;i � w k;i�1 k � k l;i � w k;i�1 k, i.e., � a;k;i � � l;k;i , for
i � i a + n, 
 2

ak (i ) � 
 2
lk (i ) holds. Thus,

alk (i)
aak (i )

/

 �2

lk (i )

 �2

ak (i )
! 0: (14)

Given the property of weights, (13) is true.

B. Suf�cient Conditions and Convergence Analysis

Here, using results from the previous subsection, we present
conditions that guarantee a successful attack. A direct conse-
quence ofLemma 2is that we could replace the condition in
(13) by k a;i � w k;i�1 k � k l;i � w k;i�1 k; 8l 2 N k ; l 6=
a; 8i . At the same time, from (12), we get

k a;i � w k;i�1 k = kr a
k (w k;i�1 � x i )k:

Therefore, a suf�cient condition to achieve the attack objec-
tive can be rewritten as

 a;i = w k;i�1 � r a
k (w k;i�1 � x i );

s:t: kr a
k (w k;i�1 � x i )k � k l;i � w k;i�1 k:

(15)

Thus, the attacker has to selecta suf�ciently small value ofr a
k

to make (15) true. Note that even thoughr a
k = 0 is suf�cient

for (15), it renders the gradient of (9) zero and as a result no
progress is made towards convergence towa

k;i . Also note that
to use (15), it is assumed that the communication message
 l;i from every l 2 N k is known by the attacker, which
can be achieved byintercepting the message. In practice, a
suf�ciently small value of r a

k guarantees that the condition
holds. The attacker can select a smallr a

k and observe if the
attack succeeds; if not, decreaser a

k to �nd an appropriate
value. It is also worth noting that for a �xed value of
r a

k , (15) may not hold for some iterationi because of the
randomness of variables. Yet we can always setr a

k = 0 for
such iterationsi (no progress at the current point). However,
in practice, the attack succeeds by using a small �xed value of
r a

k > 0 since estimation is robust to infrequent small values of
k l;i � w k;i�1 k caused by randomness given the smoothing
property of theadaptiveweight.

Next, we argue that (15) is suf�cient to achieve the attack
objective. We summarize the above discussion inProposition
1 and include a detailed proof in Appendix A.
Proposition 1. 3 If r a

k > 0 is selected such that8l 2 N k \ l 6=
a, 8i � i a ; kr a

k (w k;i�1 � x i )k � k l;i � w k;i�1 k, then the
compromised nodea can realize the objective(7) by using
 a;i described in(12) as the communication message withk.

Next, we discuss the convergence time of attack.Note that
as i ! 1,

lim
i!1

(1 � r a
k ) i = 0: 4

In practice, when the left side of the above equation is smaller
than a certain small value�, that is,

(1 � r a
k ) i a

c (�) � �;

we consider that theconvergence to the desired state is
achieved. Moreover, time required to reach the desired state
is denoted byi a

c (�), and is computed as

i a
c (�) =

log �
log(1 � r a

k )
: (16)

It is also worth mentioning that it is not necessary to start
the attack at the beginning of the diffusion task in order to
guarantee the convergence of the attack. In other words, the
attack can start at any time even after the diffusion algorithm
has converged to its correct target as long as the condition in
Proposition 1is satis�ed.

V. NETWORK ATTACK DESIGN

In this section, we consider the case when multiple nodes
are compromised using the attack model presented above.
Our objective is to determine the minimum set of nodes to
compromise in order to attack the entire network. For this, we
show: (1) It is not necessary for the attacker to compromise
multiple compromised nodes in order to attack a single node
and (2) it is not possible for a compromised node to in�uence
nodes, that is, make such nodes not converge to the desired
states, that are not its immediate neighbors. Therefore, the
minimum set to compromise is simply aminimum dominating
set of the network, which we explain later in the section.

A. Impact of Compromised Nodes on Normal Nodes

In this subsection, �rst we discuss the impact of multiple
compromised nodes attacking a single normal node, and then
analyze the impact of a compromised node can make beyond
its immediate neighbors.

Lemma 3. If the compromised nodes send identical message
as proposed in(12), thenmultiple compromised nodes attack-
ing one normal node is equivalent to one compromised node
attacking the normal node.

Proof. We useA to denote the set of compromised nodes
targeting at the same normal nodek. The proposed attack

3Proof can be found in the Appendix A.
4Refer to equation (26) in Appendix A and discussion after that.
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strategy results in the following condition holding as proved
in Lemma 2:

alk (i)
aak (i )

! 0; l 2 N k nA; a 2 A

(i � i a + n; subject to(1 � � k )n+1 = 0)

Given that
P

l 2N k
alk = 1, we have

alk (i ) = 0 ; aak (i ) =
1

jAj
; l 2 N k nA; a 2 A ;

where jAj denotes the number of nodes inA . Since every
compromised nodea 2 A sends the same message and is
assigned the same weight that sums up to 1, it is equivalent
to only one compromised node attacking the target node and
being assigned a weight of 1. Therefore, there is no need for
multiple compromised nodes attacking a single normal node.

The next problem to consider is if a compromised node
could indirectly impact its neighbors’ neighbors that at the
same time are not the neighbors of the attackera. To illustrate
this, we consider an attacker nodea, a normal nodel , and a
large clique5 of normal nodesCsuch that each node in a clique
is connected to botha and l , and there is no edge between
nodesa and l .

Using the proposed attack model,a is able to drive every
node in the clique to converge to its selected state. We are
interested in �nding if the normal nodel , that is connected
to the clique, is also affected by the attack. The state ofl is
obtained by

w l;i =
X

k2C

akl (i) k;i + all (i) l;i

=
X

k2C

akl (i)(w k;i�1 + � k u �
k;i [dk (i ) � u k;i w k;i�1 ])

+ all (i )(w l;i �1 + � l u �
l;i [d l (i ) � u l;i w l;i�1 ]):

(17)
We useR k;i to denote the random variable� k u �

k;i [dk (i ) �
u k;i w k;i�1 ] for k in the clique and R l;i to denote
� l u �

l;i [d l (i ) � u l;i w l;i �1 ] for normal nodel . Suppose the com-
promised nodea could affect nodes beyond its neighborhood,
from some pointi , w k;i converges towa

k andw l;i converges
to wa

l (assume bothwa
k 6=w0

k andwa
l 6=w0

l ).
Thus, (17) turns into:

wa
l =

X

k2C

akl (i )(w a
k + R k;i ) + (1 �

X

k2C

akl (i))(w a
l + R l;i )

=
X

k2C

akl (i )(w a
k � wa

l + R k;i � R l;i ) + wa
l + R l;i :

(18)
After inserting constants and random variables, (18) can be
written as
X

k2C

akl (i)(w a
l � wa

k ) =
X

k2C

akl (i )R k;i + (1 �
X

k2C

akl (i))R l;i :

(19)
Here,(wa

k � wa
l ) is a constant andalk (i ) changes slowly and

can be considered as a constant that does not change within a

5Every node is connected to every other node in a clique.

small period of time. Then, (19) implies a constant equals to
a random variable, which does not hold except that both sides
equal to zero. For the left side, that is when

P
k2C akl (i ) ! 0

or (wa
l � wa

k ) ! 0. Consider, when(wa
l � wa

k ) ! 0, that is,
wa

l ! wa
k . In such cases,

R l;i = � l u �
l;i [d l (i ) � u l;i w l;i�1 ]

= � l u �
l;i [u l;i w0

l + v l (i ) � u l;i wa
l ]

= � l u �
l;i [u l;i (w0

l � wa
l ) + v l (i )] 6=0

So is R k;i . Therefore, equation (19) does not hold under the
condition (wa

l � wa
k ) ! 0.

The other possible solution for equation (19) is whenP
k2C akl (i) ! 0. This meansl does not assign any weight

to k 2 C and operates by itself. In such cases, equation
(19) holds when the right side of the equation is zero. SinceP

k2C akl (i) ! 0, the right side turns intoR l;i . We know
when l converges to its true objective statew0

l , R l;i is zero,
i.e.,

R l;i = � l u �
l;i [d l (i) � u l;i w l;i�1 ]

= � l u �
l;i [u l;i w0

l + v l (i) � u l;i w0
l ]

= � l u �
l;i v l (i ) ! 0

Thus, equation (19) holds under two conditions:First,P
k2C akl (i) ! 0, that is,l does not give any weight tok 2 C.

Second,R l;i ! 0, that is,l converges to its true objective state
w0

l .
We note that the above two conditions indicate thatl con-

verges to its original goal state and will not assign any weight
to its compromised neighbors under the above conditions.
Based on this discussion, we haveLemma 4.

Lemma 4. The attacker cannot change the convergence state
of the nodes that are not its immediate neighbors.

Next, we see how many compromised nodes are needed to
attack the entire network.

B. Minimum Set of Compromised Nodes to Attack the Entire
Network

Since it is not necessary to use more than one compromised
nodes to attack one single normal agent, and a compromised
node cannot affect nodes beyond its neighborhood, �nding a
minimum set of nodes to compromise in order to attack the
entire network is equivalent to �nding a minimum dominating
set of the network as de�ned below [17].
De�nition 1. (Dominating set)A dominating set of a graph
G = (V; E ) is a subsetD of V such that every vertex not in
D is adjacent to at least one member ofD .

De�nition 2. (Minimum dominating set)A minimum domi-
nating set of a graph is a dominating set of the smallest size.

An example of a minimum dominating set is shown in Fig-
ure 1. It should be noted that �nding a minimum dominating
set of a network is an NP-complete problem but approximate
solutions using greedy approaches work well in practice (for
instance, see [17]).
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Fig. 1: (a) Dominating and (b) minimum dominating set examples.

With the above discussion, we state the following:

Proposition 2. The compromised nodes need to form a dom-
inating set if the attacker wants every node in the network to
converge to its desired state.

Based on the above discussion, we observe that the above
condition is both necessary and suf�cient.

VI. RESILIENT DISTRIBUTED DIFFUSION

In this section, we propose a resilient diffusion algorithm
that guarantees convergence of normal nodes to their actual
states if the number of compromised nodes in the neighbor-
hood of a normal node is bounded. The proposed algorithm
takes a non-negative integerF as an input parameter. If
the number of compromised nodes in the neighborhood of
a normal node is at mostF , then the algorithm is resilient
to any such attack. It is obvious that selecting a largeF
value achieves a higher level of resilience, while selecting
F = 0 means that the algorithm is not resilient to any attack.
However, there exists a trade-off between the resilience and the
steady-state MSD performance of the algorithm, which we will
analyze in detail. Since the proposed algorithm is adapted from
the known DLMSAW, we call it aResilient Diffusion Least
Mean Square with Adaptive Weights (R-DLMSAW).We also
note that in contrast to the connectivity requirements needed
by resilient concensus problems [11], the resilience of the
proposed algorithm does not require the underlying network
topology to meet speci�c connectivity or robustness conditions
� since in resilient diffusion, connectivity does not affect
convergence, but only the estimation performance measured
by the steady-state MSD.

Since our algorithm can achieve resilience to up toF
compromised nodes, we assume that there can be at mostF
compromised nodes in the neighborhood of any node, which
is also referred to as theF -local model in [11]. Speci�cally,
we de�ne:

De�nition 3. (F -local model)A node satis�es theF -local
model if there is at mostF compromised nodes in its neigh-
borhood.

De�nition 4. (F -local network)A network is considered to
satisfy theF -local model if every node in the network has at
mostF compromised nodes in its neighborhood.

While the paper focuses on theF -local model, scenarios
involving bounds on the total number of compromised nodes
within the network (F-total model [11]) can also be analyzed
using a similar approach. Next, we describe our resilient
diffusion algorithm.

A. Resilient Diffusion Algorithm (R-DLMSAW)

In the context of distributed consensus, it is shown in [11]
that for Mean-Subsequence-Reduced (MSR) algorithms, that
during the state update phase, a node discards the values of
neighbors that are too far off from the node’s own value,
resilience against attacks can be achieved, that is, distributed
consensus in the presence of compromised nodes (F-local
andF -total models) is guaranteed. In distributed diffusion, we
recall that a node updates its estimate by taking a weighted
average of the estimates of all of its neighbors (3). For
resilient diffusion, we utilize a similar idea as in [11], that
is instead of considering the estimates of all neighbors during
the state update phase, only consider values from a subset of
neighbors sharing close estimates. We show that this strategy
guarantees convergence of normal nodes to true estimates.
Before outlining the resilient distributed diffusion algorithm,
we �rst explain the notion of the cost of a node.

Following (3), normal agentk follows diffusion dynamics
given by

w k;i =
X

l 2N k

alk (i ) l;i :

Thus, the cost function in (1) in thei th iteration can be
written as:

Jk (w k;i ) = Jk (
X

l 2N k

alk (i) l;i )

= Efkd k (i ) � u k;i (
X

l 2N k

alk (i ) l;i )k2g:

Since
P

l 2N k
alk (i ) = 1 , we have

dk (i) =
X

l 2N k

alk (i)d k (i):

Thus,

Jk (w k;i ) = Ef
X

l 2N k

alk (i )d k (i ) �
X

l 2N k

alk (i )u k;i  l;i k2g

= Efk
X

l 2N k

alk (i )(d k (i ) � u k;i  l;i )k2g

=
X

l 2N k

a2
lk (i )Efkd k (i) � u k;i  l;i k2g

=
X

l 2N k

a2
lk (i )J k ( l;i )

=
P

l 2N k

 �4

lk (i)J k ( l;i )
[
P

m2N k

 �2

mk (i )]2

(20)

The goal ofk is to minimize its cost at every iteration, i.e.,
to minimize Jk (w k;i ) by discardingF neighbors’ message.
Therefore, the removal setR k (i ) of sizeF should be selected
by

R k (i ) = arg min Jk (w k;i )

= arg min

P
l 2N k nR k (i) 
 �4

lk (i )J k ( l;i )

[
P

m2N k nR k ( i) 
 �2
mk (i )]2

We note that the algorithm presented here is a generalization
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of the algorithm in [1] which is resilient to a speci�c type
of Byzantine attack and has a lower computational cost. In
contrast, the algorithm proposed in this work is resilient to any
Byzantine attack, but has a higher computational cost. Thus,
there is a trade off between the computation complexity of the
algorithm and the scope of attacks to which the algorithm is
resilient.

To compute the costJk ( l;i ) = Ekdk (i ) � u k;i  l;i k2, agent
k has to store all the streaming data. Alternatively, we can
approximateJk ( l;i ) using a moving average based on the
previous iterations.

Next, we outline the basic idea of the proposed resilient
distributed diffusion algorithm below, and present the details
of R-DLMSAWin Algorithm 1.

1) If F � jN k j, agentk updates its current statew k;i using
only its own k;i , which degenerates distributed diffusion
to non-cooperative LMS.

2) If F < jN k j, at each iterationi , agentk computes
� jN k j

F

�

possible removal sets, and selects the one by removing
which Jk ( l;i ) is minimized. Then, the agent updates
its current weightalk (i) and statew k;i without using
information from nodes inR k (i ).

We note that forF = 0, DLMSAW and R-DLMSAW are
essentially identical.

Algorithm 1: Resilient distributed diffusion underF -local
bounds (R-DLMSAW)
Input: 
 2

lk (�1) = 0 , maintainn � 1 matrix D k;i = 0n�1 and
n � M matrix Uk;i = 0n�M for all k = 1 ; 2; :::; N , and
l 2 N k

1 for k = 1; 2; :::; N; i � 0 do
2 ek (i) = dk (i) � u k;i w k;i�1
3  k;i = w k;i�1 + � k u �

k;i ek (i)
4 if F � jN k j then
5 w k;i =  k;i

6 else
7 
 2

lk (i) = (1 � � k )
 2
lk (i � 1) + � k k l;i � w k;i�1 k2

8 UpdateD k;i andUk;i by addingdk (i) andu k;i and
removingdk (i � n) andu k;i�n

9 Jk ( l;i ) = EkD k;i � Uk;i  l;i k2

10 Compute all possible discarded setR k (i) 1 , R k (i) 2 ,
: : :, R k (i) ( jN k j

F )
11 Jmin = 1
12 for j = 1 ; 2; : : : ;

� jN k j
F

�
do

13 J =
P

l2N k nR k (i) j 
 �4
lk ( i) J k (  l;i )

[
P

m2N k nR k (i) j 
 �2
mk ( i)] 2

14 if J < J min then
15 R k (i) = R k (i) j

16 Jmin = J

17 alk (i) = 
 �2
lk ( i)

P
m2N k nR k (i) 
 �2

mk ( i)
; l 2 N k nR k (i)

18 w k;i =
P

l2N k nR k ( i) alk (i) l;i

19 return w k;i

Proposition 3. If the network is aF -local network, then R-
DLMSAW is resilient to any message falsi�cation attack.

Proof. Given the F -local model, we assume that there are
n � F compromised nodes in the neighborhood of a normal

nodek. In the case ofF � jN k j, k updates its state without us-
ing information from neighbors. Next, consider the case when
F < jN k j. To deploy the attack, the attacker must try to make
the message it sends to the normal nodes not being discarded
by the normal nodes. This can only be achieved if the cost of
keeping the attacker’s message is smaller than keeping some
normal agents’ message (discarding the attacker’s message).
Therefore, any attack message not being discarded actually
results in a cost smaller than the normal case. Therefore, R-
DLMSAW is resilient to any message falsi�cation attack. From
the attacker’s perspective, since its goal is to maximize cost
Jk (w k;i ), the optimal strategy for the attacker is not to make
this cost even smaller. As a result, the information from the
attacker will be discarded.

Thus,
w k;i =

X

l 2N k nR k (i)

alk (i ) l;i

meaning the algorithm performs the diffusion adaptationstep
as if there were no compromised nodein its neighborhood.
Note that messages from normal neighbors mayalso be
discarded sinceF may be greater than the number of compro-
mised neighbors. However, the distributed diffusion algorithm
is robust to node and link failures[8], and it converges to the
true state despite the links to some or all of its neighbors fail.
Finally, the algorithm will converge and equation (8) holds,
showing the resilience of R-DLMSAW.

B. Trade-off Between Resilience and MSD Performance

An important aspect of R-DLMSAW is the selection of
parameterF by each normal node. On the one hand, selection
of a large F degrades the performance of the diffusion
algorithm as measured by the steady-state MSD, but on the
other hand, a smallerF might result in an algorithm that is
not resilient against attacks.In the following, we summarize
the trade-off betweenthe steady-stateMSD performance and
resilience.

It is rather obvious that if a normal node selectsF smaller
than the number of compromised nodes in its neighborhood,
then the messages from the compromised nodes might not
be discarded entirely during the state update phase of R-
DLMSAW. As a result, the algorithm might not be resilient
against the attack, and the normal node might eventually
converge to the attacker’s desired state. However, ifF is
selected too large, then in the worst case, normal agents
discard all the information from their neighbors. The al-
gorithm becomes a non-cooperative diffusion algorithm and
incurs anN -fold MSD performance deterioration. Thus, the
performance of R-DLMSAW lies somewhere in-between the
cooperative diffusion and non-cooperative diffusion depending
on the choice ofF selected.

Consider a connected network withN normal agents run-
ning R-DLMSAW. Let � 2

v;k = f� 2
v;1; : : : ; � 2

v;N g be the noise
variance.Suppose by selecting someF the network is resilient,
but is no longer a connected graph and is decomposed into
n connected sub-networks, each of which is denoted bySj
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where j 2 f1; � � � ; ng. Using (6), thesteady-stateMSD for
each sub-network is

MSDSj �
�M

2
�

1
(jS j j)2

X

k2S j

� 2
v;k ;

where jSj j is the number of nodes inj th sub-network. The
steady-state MSD for the overall network (consisting of sub-
networks) after running R-DLMSAW is the weighted average
of the steady-state MSD of the sub-networks, that is

MSDafter =
1
N

nX

j =1

MSDSj � jSj j �
�M
2N

�
nX

j =1

1
jSj j

X

k2S j

� 2
v;k :

At the same time, thesteady-stateMSD for the (original)
connected network before running R-DLMSAW is

MSDbefore �
�M

2
�

1
N 2

NX

k=1

� 2
v;k �

�M
2N

�
nX

j =1

1
N

X

k2S j

� 2
v;k

The difference between the two is

MSDafter � MSDbefore =
�M
2N

�
nX

j =1

(
1

jSj j
�

1
N

)
X

k2S j

� 2
v;k

We know thatjsj j � N . Therefore, 1
jS j j � 1

N � 0, meaning the
steady-state MSD of the network after running R-DLMSAW
is worse than the steady-state MSD of the original network,
and as the network is decomposed into more sub-networks,P n

j =1 ( 1
jS j j � 1

N ) and MSDafter becomes larger.
Therefore, it is crucial to select an appropriateF , that is

a value with which the algorithm is resilient against com-
promised nodes and at the same time useful links between
nodes are preserved. To this end, a simple way to selectF
is to �rst estimatewncop;k;i by a non-cooperative diffusion
and computeJk (w ncop;k;i ). Then, starting with a smallF , for
instanceF = 0 , perform cooperative diffusion and compute
Jk (w coop;k;i ). If Jk (w coop;k;i ) > J k (w ncop;k;i ), it means that
a compromised node is able to effect the estimation, and
therefore increaseF by 1. We keep repeating this as long
asJk (w coop;k;i ) > J k (w ncop;k;i ) is true.

VII. E VALUATION

In this section, we evaluate three algorithms,non-
cooperative diffusion,DLMSAW, andR-DLMSAW; and com-
pare their performance forno-attackandattackscenarios. We
evaluate the proposed attack model and resilient algorithms
using the application of multi-target localization[16], [18] for
both stationary and non-stationary targets.

We consider a network ofN = 100 agents, in which each
agent’s objective is to estimate the unknown location of its
target of interest by the noisy observations of both the distance
and the direction vector towards the target. These agents and
targets are distributed in a plane. The location of agentk is
denoted by the two-dimensional vectorpk = [x k ; yk ]> , and
similarly the location of target is represented by the vector
w0

k = [x 0
k ; y0

k ]> . Figure 2 illustrates how an agent estimates
the location of the target.

target

agentk

r 0
k

u0
k

[xk ; yk ]>

[x0
k ; y0

k ]>

Fig. 2: Illustration of target localization.

In Figure 2, the distance between agentk and the target
is denoted byr 0

k = kw0
k � pk k, and the unit direction vector

from agentk to the target isu0
k = (w 0

k �p k )>

kw 0
k �p k k . Therefore, the

relationship holds such thatr 0
k = u0

k (w0
k � pk ). Since agents

have only noisy observationsfr k (i ); u k;i g of the distance and
direction vector at every iterationi, we get the following:

r k (i ) = u k;i (w0
k � pk ) + vk (i ):

If we use the adjusted signaldk (i ), such that

dk (i) = r k (i ) + u k;i pk ;

then we derive the following linear model for variables
fd k (i); u k;i g in order to estimate the targetw0

k :

dk (i) = u k;i w0
k + vk (i ):

As a result, agents can rely on DLMSAW algorithm for the
multi-target localization problem. Figure 3a shows the network
topology before the application of diffusion algorithms. For
better readability, we only illustrate the network topology of
agents without showing targets.

For stationary target localization, the location of the two
stationary targets are given by

w0
k =

(
[0:1;0:1]> ; for k depicted in blue
[0:9;0:9]> ; for k depicted in green

Non-stationary targets are given by

w 0
k;i =

8
>>><

>>>:

�
0:1 + 0:1 cos(2�!i )
0:1 + 0:1 sin(2�!i )

�
; for k depicted in blue

�
0:9 + 0:1 cos(2�!i )
0:9 + 0:1 sin(2�!i )

�
; for k depicted in green

where! = 1
2000 .

Regression data is white Gaussian with diagonal covariance
matricesRu;k = � 2

u;k I M with M = 2, � 2
u;k 2 [0:8;1:2] and

noise variance� 2
k 2 [0:15;0:2]. The step size of� k = 0:01

and the forgetting factor� k = 0:01 are set uniformly across
the network. Note that we adopt a signal-to-noise ratio (SNR)
of 5 � 10 dB in our setup. However, the same results are
generated if we choose low SNR values.

A. Strong Attacks
We consider the strong attack model discussed in Sec-

tions IV and V. The attacker aims at making the nor-
mal agents estimate a speci�c location selected by the
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attacker. In this evaluation, we select the attacker’s tar-
geted location to bewa

k = [0:5; 0:5]> , and the attack
parameters are selected uniformly across the compromised
agents asr a

k = 0:002. For non-stationary estimation, we
select � a

k;i = [0:1 cos(2�! a i ); 0:1 sin(2�! a i )]> , �� a
k;i =

[�0:2�! a sin(2�! a i ); 0:2�! a cos(2�! a i )]> , where ! a =
1

2000 . Figure 3b shows the network topology at the end of the
simulation using DLMSAW with no attack for both stationary
and non-stationary tasks. If the weights between agentsk
and l are such thatalk (i ) < 0:01 and akl (i) < 0:01, then
we remove the link between such nodes from the network.
We observe that only the links between agents estimating
the same target are kept, that is green nodes are connected
with green nodes only, and blue nodes are connected with
only blue ones, thus, illustrating the robustness of DLMSAW
in multi-task networks. Figure 4a and Figure 4b shows the
estimation dynamics by DLMSAW for the targets’ locations
w k;i (1) and w k;i (2) for every agentk and iterationi from
0 to 5000under no attack. Herew k;i (1) andw k;i (2) are the
�rst and second element of the estimate respectively, that is
w k;i = [ w k;i (1); w k;i (2)]> . It is shown that the two groups
of nodes converge to their goal state.

Figure 3c shows the initial network topology with compro-
mised nodes.There are four compromised nodes (red nodes
with yellow centres) in the network. Figure 3d shows the
network topology at the end of DLMSAW in the case ofa
strong attack.All red nodes are the normal agents converging
to wa

k . We observe that neighbors of a compromised node
communicate only with the compromised node, and not with
any other node in the network. As a result, compromised nodes
successfully drive all of their neighbors to desired stateswa

k
as discussed in Section V. Figure 4c and Figure 4d shows the
estimation dynamics by DLMSAW for the targets’ location
w k;i (1) andw k;i (2) for every agentk and iteration from 0 to
5000under attack. The attacked nodes in the �gure refer to the
immediate neighbors of the compromised nodes. It is shown
that all the immediate neighbors of compromised nodes are
driven to converge towa

k whereas all the other normal nodes
converge to their original goal states.

Figure 5a shows the convergence of nodes under attack
(stationary targets). We note at around 3000 iterations, the
difference between the average state of nodes under attack
and the attacker’s desired statewa

k becomes almost zero. This
observation is also consistent with the result in (16), as for
i = 3000 andr a

k = 0:002, the value of� turns out to be0:0025,
which is indeed quite small and indicates the convergence of
node’s estimate towa

k .
Figure 5b shows the average state dynamics of nodes under

attack for non-stationary targets. Since states are changing over
time, we illustrate the dynamics of average states’ changing
with respect to the dynamics of attacker’s selected state,
instead of a convergence plot like 5a. Here, theX -coordinate
denotes the �rst element of the estimation vector, i.e.,w k;i (1),
andY -coordinate denotes the second, i.e.,w k;i (2). At iteration
0, the average statewk;i of the nodes under attack is different
than the attacker’s desired statewa

k;i . As the attack proceeds,
wk;i gradually converges towardswa

k;i , which shows the
effectiveness of attack for non-stationary state estimation.

Figure 6 shows the steady-state MSD performance of DLM-
SAW and non-cooperative LMS. We observe that under no
attack, cooperation indeed improves the steady-state MSD per-
formance of DLMSAW. However, in the case of an attack, the
steady-state MSD level of DLMSAW is quite high, whereas,
the steady-state MSD level of non-cooperative LMS is barely
affected by the attack.

B. Resilient Diffusion for Strong Attacks

To evaluate R-DLMSAW, we compute the costJk ( l;i )
using the streaming data from the latest 100 iterations. We
adopt uniformF for every normal agent but it can be distinct
for each agent. R-DLMSAW behaves identicallyto DLMSAW
at one extreme, that is whenF = 0, and on the other extreme
it behaves like a non-cooperative LMS algorithm, that is for
largeF . We consider the same initial network as in Figure 3a
and consider an attack consisting of four compromised nodes
as previously. Note that there is at most one compromised
node in the neighborhood of a normal agent. Figure 7 shows
network topologies after executing R-DLMSAW for various
values ofF . Since there is at most one compromised node in
the neighborhood of a normal agent, the selection ofF = 1
should be suf�cient to guarantee that none of the normal nodes
converge to attacker’s desired states, which is indeed the case
as indicated by the removal of all links between normal and
compromised nodes in Figure 7a. As we increaseF , resilience
against attack is certainly achieved, but at the same time the
network becomes sparser as illustrated in Figures 7b and 7c.
In the case of non-stationary state estimation, the resulting
network topologies are similar, and hence, are not presented.

Figure 8 shows the estimation dynamics by R-DLMSAW
for the targets’ locationw k;i (1) and w k;i (2) for every agent
k and iterationi from 0 to 5000 under attack. The attacked
nodes in the �gure refer to the immediate neighbors of the
compromised nodes. Since there is at most one compromised
node in a normal node’s neighborhood, settingF � 1 will
make R-DLMSAW algorithm resilient to attacks, which is
demonstrated by the results from the �gure. We also observe
that by setting a smallerF value, which is suf�cient to to
make the algorithm resilient, we achieve better estimation
performance (F= 1 has less noise than that ofF = 5).

Figure 9 shows thesteady-stateMSD level of the net-
work for the three algorithms, that is, non-cooperative LMS,
DLMSAW, and R-DLMSAW. The simulation results validate
claims in Section VI. We observe that in the presence of
compromised nodes, DLMSAW performs the worst and has
the highest steady-state MSD. Since there is at most one
compromised node in the neighborhood of any normal node,
the most appropriate value ofF for R-DLMSAW is 1. We
note that the steady-state MSD is indeed minimum forF = 1.
As we increaseF , the steady-state MSD also increases. In
fact, for F = 5 , the performance of R-DLMSAW and non-
cooperative LMS is almost the same as we expect.

VIII. W EAK ATTACKS

Though it is common to assume a strong attacker with
complete knowledge when examining the resilience of a
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(a) Initial network topology (no
compromised nodes)

(b) At the end of DLMSAW with no
attack

(c) Initial network topology (with
compromised nodes)

(d) At the end of DLMSAW under
strong attack

Fig. 3: Network topologies in the case of DLMSAW algorithm.

(a) w k;i (1) (under no attack) (b) w k;i (2) (under no attack) (c) w k;i (1) (under strong attack) (d) w k;i (2) (under strong attack)
Fig. 4: Estimation dynamics for stationary target localization by DLMSAW.

(a) Stationary targets (b) Non-stationary targets
Fig. 5: Average state dynamics of compromised nodes neighbors

(under strong attack).

(a) Stationary targets (b) Non-stationary targets
Fig. 6: Steady-state MSD levels in non-cooperative LMS

and DLMSAW (under strong attack).

(a) F = 1 (b) F = 3 (c) F = 5
Fig. 7: Network topologies at the end of R-DLMSAW under strong attack (stationary targets) for various values ofF .
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(a) w k;i (1) (F = 1 ) (b) w k;i (2) (F = 1 ) (c) w k;i (1) (F = 5 ) (d) w k;i (2) (F = 5 )
Fig. 8: Estimation dynamics for stationary target localization by R-DLMSAW under strong attack.

(a) Stationary targets (b) Non-stationary targets
Fig. 9: A comparison of MSD performance of non-cooperative LMS, DLMSAW, and R-DLMSAW under strong attack.

distributed system, it is interesting to examine what an attacker
can do in practise if all the information is not available. In
this section, we analyze how the attack can still be deployed
on a normal agentk without the assumption of a strong
knowledge by the attacker (streaming data and parameters
used byk). We assume that an attacker has access only to
the intermediate estimates shared by agents with others in
their neighborhood. For instance, ifl 2 N k then agentk
receives l;i from l and attacker also has an access to it.
We show that the other knowledge needed by the attacker can
actually be approximated in an alternative way, and the success
of the attack relies on how accurate this information can be
approximated. We refer to such an attack in which attacker
can only gather intermediate estimates and not the other data
(including streaming data and agent parameters) as theweak
attack.

The strong attack in (10) relies essentially on the knowledge
of w k;i�1 , that is the estimated state of agentk in the
last iteration. If the attacker has complete knowledge, it can
compute w k;i�1 exactly as Lemma 1 indicates. However,
without such knowledge,w k;i�1 can only be approximately
computed. We note that approximatingw k;i�1 is equivalent to
approximating the weight matrixAk (i) = [ alk (i )]; 8l 2 N k .
This is true becausew k;i =

P
l 2N k

alk (i ) l;i , and  l;i is
received by the attackera from l .

Next, we discuss how to compute the approximated weight
matrix Âk (i � 1) using only the information l;i ; 8l 2 N k .
Note that the adaptation step (2) of diffusion can be written

as,

 k;i = w k;i�1 + r k;i = Ak (i � 1)	 k;i�1 + r k;i :

where r k;i = � k u �
k;i (d k (i) � u k;i w k;i�1 ), 	 k;i�1 is an

jN k j � M matrix 	 k;i�1 = [  l;i�1 ]; 8l 2 N k . Thus,

r k;i =  k;i � Ak (i � 1)	 k;i�1 ;

and therefore,

lim
i!1

Efkr k;i k2g = lim
i!1

Efk k;i � Ak (i � 1)	 k;i�1 k2g:

Since lim i!1 Efkr k;i k2g = 0 , the value ofAk (i) can be
approximated by assigning a cost function

‘(A k (i )) , Efk k;i+1 � Ak (i )	 k;i k2g;

whereAk (i ) is the global minimizer of‘(A k (i)) as i ! 1.
Next, we compute the successive estimators of the weight
matrix based on stochastic gradient descent method as follows:

Âk (i) = Âk (i � 1) � � 0
A r A ‘( Âk (i � 1))

= Âk (i � 1) + � A 	 k;i�1 ( k;i � Âk (i � 1)	 k;i�1 );
(21)

where� A = 1
2 � 0

A .

Also recall weight matrixAk (i ) has to satisfy the condition
(4). Thus, to make the adaptive approximation of weight ma-
trix hold condition (4), we introduce two more steps following
(21), that is the clip step and the normalization step. In the clip
step, the negative weights are clipped and are set to zero; and
the in the normalization step, weights are divided by their sum.
The operation for approximating weight matrix of a normal










