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Abstractin this paper, we study resilient distributed diffusion value throughout, can fail other agents to converge to their true
for multi-task estimation in the presence of adversaries where estimates. Resilience of diffusion-based distributed algorithms
networked agents must estimate distinct but correlated states of j, yhe presence of such xed-value Byzantine attacks has been
interest by processing streaming data. We show that in general tudied in 121 51 A | h t ¢ t h
diffusion strategies are not resilient to malicious agents that do stuaie _'n (2, 3] genera app.roac Q counteract suc
not adhere to the diffusion-based information processing ruledn ~ attacks is to allow agents to fuse information collected from
particular, by exploiting the adaptive weights used for diffusing other agents in local neighborhoodsing adaptive weights
information, we developtime-dependentattack models that drive  jnstead of xed ones. By doing so, only neighbors estimating

normal agents to converge to states selected by the attackélle 5 gimilar state will be assigned large weights so as to eliminate
show that an attacker that has complete knowledge of the system the i f d-value B i d
can always drive its targeted agents to its desired estimates. ein u_ence ora xe -vape y'zar? Ine a \{ersa}ry. .
Moreover, an attacker that does not have complete knowledge [N this paper, we consider distributed diffusion for multi-
of the system including streaming data of targeted agents or task estimation where networked agents must estimate dis-
the parameters they use in diffusion algorithms, can still be tinct, but correlated states of interest by processing streaming
successful in deploying an attack by approximating the needed o159 Agents use adaptive weights when diffusing information
information. The attack models can be used for both stationary ith neiahb . danti iahts h b full
and non-stationary state estimation.In addition, we present wi _nelg ors §|nce a.ap. ve weig .S "_’We een successiully
and analyze a resilient distributed diffusion algorithm that is applied to multi-task distributed estimation problems. How-
resilient to any data falsi cation attack in which the number ever, we are interested in understanding if adaptive weights
of compromised agents in the local neighborhood of a normal introduce vulnerabilities that can be exploited by Byzantine
agent is bounded. The proposed algorithm guarantees that all 5qyersaries. The rst problem we consider is to analyze if it is
normal agents converge to their true target states if appropriate ible ttacker t ) q d make oth
parameters are selected. We also analyze trade-off between thePOSS! _e 9r an _a acker to compromise a node, and make other
resilience of distributed diffusion and its performance in terms Nodes in its neighborhood converge to a state selected by the
of steady-state mean-square-deviation (MSD) from the correct attacker. Then, we consider a network attack and determine
estimates.Finally, we evaluate the proposed attack models and g minimum set of nodes to compromise to make all nodes
;?;{:fﬁ;rd'srg:ﬁgfte; dg:‘f;':‘;rl‘iza‘;%zwhm using stationary and non-  yithin the network converge to attacker's desired state.
y 9 ' We assume astrong attackmodel, that is, the attacker

Index Terms Resilient diffusion, multi-task estimation, net- has Comp]ete know|edge of the network topo|ogy, streaming

work topology, adaptive systems data of targeted agents and their parameters used in the
diffusion algorithm. A strong attacker can know the topology

I. INTRODUCTION by monitoring the network, streaming data of agents by
Diffusion Least-Mean Squares (DLMS) is a powerful a|go§teqlthily compromising their sensor_s/controllers and estgb—
rithm for distributed state estimation [2]. It enables networkd{pning backdoor channels, and diffusion parameters by doing
agents to interact with neighbors to process streaming data R¢F'S€ engineering. We note that having complete knowledge
diffuse information across the network to perform the estimi & Srong assumption, however, it is common to assume
tion tasks. Compared to a centralized approach, distributed @-Song attacker with complete knowledge of the system
fusion offers multiple advantagéscludingrobustness to drifts [© €xamine the resilience of distributed networks [11], [12],
in the statistical properties of the data, scalabiligliance [13]: [14], [15]. In addition to this strong attack model, we
on local data, and fast response among others. ApplicatigHg0 consider aveak attackmodel in which the attacker
of distributed diffusion include spectrum sensing in cognitivVB@S N0 knowledge of streaming data of targeted agents or
networks [3], target localization [4], distributed clustering [5]t"€!l Parameters. We show that such an attacker can also be
and biologically inspired designs for mobile networks [6]. successful in preventing normal agents from converging to true

Diffusion strategies are known to be robust to node ariptimates by approximating their states. _
link failures as well as to high noise leve, [8], [9], [10]. As a result, we show that DLMS, which was considered

However, it is possible that a single adversarial agent tH be resilient against Byzantine agents by itself (2], [S],

does not update its estimates according to the diffusion-basg: 1S in fact, not resilient. A Byzantine agent sharing
correct estimates whose values are not xed and change

information processing rules, for instance by retaining a xelff ; : . .
over time (time-dependent Byzantine attack) can manipulate
J. Li, W. Abbas and X. Koutsoukos are with the Department ofhe normal agents to converge to incorrect estimates. On the
Electrical Engineering and Computer Science at Vanderbilt Universityna hand, adaptive Weights improve the resilience of diffusion
Nashville, TN, USA, (jiani.li@vanderbilt.edu,waseem.abbas@vanderbilt.edu, . .
xenofon. koutsoukos@vanderbilt.edu) algorithms to xed-value Byzantine attacks, but on the other

A subset of the results appeared in preliminary form in [1]. hand, introduce vulnerabilities that can be exploited by time-
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dependent attacks. We analyze this issue in detail and propgsagentk has access to a scalar measurentu(t) and a
a resilient diffusion algorithm that ensures that normal agemtsgression vectou; of sizeM with zero-mean and uniform
converge to true nal estimates in the presence of any datavariance matriRyx , Efu ,; Uxig> 0, which are related
falsi cation attack. via a linear model of the following form:

The main contributions of the paper are summarized below.

1) By exploiting the adaptive weights, we develop attack
models that drive normal agents to converge to statééerevy(i) represents a zero-mean i.i.d. additive noise with
selected by an attacker. The attack models can be us@diance 7, andw denotes the unknowi 1 state vector
to deceive a specic node or the entire network an@f agentk.
are applicable to both stationary and non-stationary stateThe objective of each agent is to estimaif from (stream-
estimation. Although the attack models are based onirmy) datafd x(i); uxi g (k = 1; 2;::;;N;i 0). The objective
strong knowledge of the system, we also show that tiséatecan be static or dynamic and we represeasw? oer;i
attack can succeed without such knowledge. respectively. For simplicity, we use? to denote the objective
2) We propose a resilient distributed diffusion algorithm pastate in both the static and dynamic cases.
rameterized by a positive integer. We show that if there  The statav? can be computed as the the unique minimizer
are at most compromised agents in the neighborhood aff the following cost function:
a normal agent, then the algorithm guarantees that normal
agents converge to their actugbal states under any Je(w) , Efkd k(i) ui; wk’g: 1)

data falsi cation attack. If the parametér selected by ap glegant adaptive solution for determining is the least-
the normal agents is large, the resilient distributed d'ﬁ%ean—squares (LMS) lter [2], where each agéntomputes

sion algorithm degenerates to non-cooperative estimatiqfycessive estimators a without cooperation (noncooper-
Thus, we also analyze trade-off between the resilience gf, o LMS) as follows:

distributed diffusion and its performance degradation in _
terms ofthe steady-statMSD. Wii = Wii1 + kUi [de())  UkiWiiz ;

3) W% evalul?tettthekprc()jp(t)sed at_tlgckdm?qt()elfﬁ(;)ﬂ;_f?trqng where > 0 is the step size (can be identical or distinct
and weak attackand the resilientdistributed diffusion - agents).

algorithm using both stationary and non-stationary multi- . e L
g g y y Compared to noncooperative LMS, diffusion strategies in-

target localization. The simulation results are consistent d tion sten that i s mati th
with our theoretical analysis and show that the approagﬁ uce an aggregation step that incorpor ration gath-
eered from the neighboring agents into the adaptation mecha-

provides resilience to attacks while incurring performanc e . ;
degradation which depends on the assumption about m. One powerful diffusion scheme is adapt-then-combine
C) [2] which optimizes the solution in a distributed and

number of compromised agents. . . :
, ) . adaptive way using the following update:
The rest of the paper is organized as follows: Section Il

brie y introduces distributed diffusion. Section Il presents the ;i = Wki1 + kU [dk() UkiWgiz ] (adaptation) (2)

di(i) = Ui w2+ vi(Q):

attack and resilient distributed diffusion problen®ections X _ _ o
IV and V discuss single node attack and network attackVki = ak (i) i (combination) (3)
models respectively. Section VI presents and analyzes the 12N «

resilient distributed diffusion algorithm. Section VII providesvhere ay (i) represents the weight assigned to agefrom
simulation results evaluating our approaches with multi-targatjentk that is used to scale the data it receives frigrand
localization. Section VIII discusses and evaluates the attaitie weights satisfy the following constraints:

model that does not require complete knowledge of the system. _ X N o .
Section IX gives a brief overview of the related work and@k (1)~ 0i ak()=1:  a()=01if 162 N:
Section X concludes the paper. 12N « @)

Here the intermediate statey; (obtained by the adaptation
[l. PRELIMINARIES step) is shared among neighboring agents and a combination

We use normal and boldface fonts to denote determinisBE Neighbors’ intermediate states contribute to the current
and random variables respectively. The supersqrpt de- €Stimatewy; of agentk. _ .
notes complex conjugation for scalars and complex-conjugatén_ the case where agents estimate a common gl%t@.e.,
transposition for matrice€f g denotes expectation, akdk Wy is same for everyk), several xed combination rules
denotes the Euclidean norm of a vector. can be adopted such as Laplacian, Metropolis, averaging, and

Consider a network oN (static) agenfs in which an maximum-degree [16]. In the case of multiple tasks, agents are
undirected edge (or a link) between two agents indicates ttRatrsuing distinct but correlated objective§. In this case, the
they share information and are neighbors of each other. T¢Mbination rules mentioned above are not applicable because
neighborhood of an agerk, denoted byNy is the set of they simply combine the estimation of all neighbors without

neighbors ofk, including the agenk itself. At each iteration distinguishing if the neighbors are pursuing the same objective.
An agent estimating a different state will prevent its neighbors

1Wwe use the terms agent and node interchangeably. from estimating the state of interest.
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Diffusion LMS (DLMS) has been extended for multi-taskAssumption 1. A strong attacker knows the topology of
networks in [5] using the following adaptive weights: the network, the streaming data of targeted agents and the
8 diffusion algorithm parameters they use, such as

< 0] .
. k= 2Ny . . .y o
ax(i)=_ mn @) _ (5) To examine the resilience of distributed networks, it is
©0; otherwise: common to assume a strong attack with full knowledge of the
. . system, for instance, Byzantine attackers having a complete
where 2() = (1 ) 2G 1+ ki wis K Y 9 P

knowledge of the system are considered in [11], [12], [13],

anq K Is a positive step size known as the forgetting fact %4]’ [15]. However, we also consider a weak attack model
This update enables agents to continuously learn about the : . )
In"Section VIII in which an attacker has no knowledge of

neighbors agents should cooperate with. During the estimation

. . . . : ents’ parameters and has no access to their streaming data.
task, agents pursuing different objectives will continuous . N
) X . ompromised nodes are assumed to be Byzantine in the sense
assign smaller weights to each other according to (5). On

e . L
the weights become negligible, communication links betweéﬁat they can se.nd arbitrary messages o their ngnghbors, and
n also send different messages to different neighbors.

e B s s EIe Ghecve of he acker i (o rve th norma nodes 1

state cooperate, ' converge to a speci ¢ state. We assume a compromised node
DLMS with adaptive weights (DLMSAW) outperforms the? wants agenk to converge to state

noncooperative LMS as measured by the steady-state mean- a wg; for stationary estimation

square-deviation performance (MSD) [2]. For sufciently — Wki =

small step-sizes, the network performance of noncooperative

LMS is de ned as the averageteady-staté1SD levelamong This is equivalent to minimizing the objective function of the

wg + &.; for non-stationary estimation:

agents: following form:
X Moo X i ) a -
MSDncop » i,'{m N Ekw; k2 Y (ﬁ 3;k); vrpklp ”I{m Gl ) Wi 2 Dwikcs ™
’ k=1 k=1
where
wherew; , W wyi andM is the size of regression GWy;i) = kwii Wy k?;

vectoruy;; . The network MSD performance of the diffusion
network (as well as the MSD performance of a normal age"ﬁ

in the diffusion network) can be approximated by )
convergence time of the normal agent§e observe thatf

M 1 1 X ) the compromised node can make its neighbors to converge to
25 N (ﬁ vi): ®)  a selected state, it can keep changing this state before normal

k=1 neighbors converge. By doing so, normal neighbofsthe
In [2], it is shown that MSQx = NiMSDncop, which demon- attacked nodevill never converge to a xed state. Thus, the
strates arN -fold improvement of MSD performance. attacker can achieve its goal to prolong the convergence time
of normal neighbors. For that reason, we focus on the attack

- . '_DROBLEM FORMULATION model based on objective (7).
Diffusion strategies have been shown to be robust to node

and link failures as well as to nodes or links with high noisg. Network Attack Model
levels[8], [9]. In this paper, we are interested in understanding If the attacker has a speci ¢ target node that she wants to

if the adaptive We!ghts introduce vglnerablhue; in the case fack and make it converge to a specic state, the attacker
subset of nodes within the network is compromised by a cyb

ttack.In this directi ¢ | £ it i iDle f En compromise any neighbor of this node to achieve the
a actt. nk IS h're;’ lon, st we _anz yze (Itdldzols p?(sm ed or objective. In the case the attacker wants to compromise the
an attacker who has compromised a n Make NOGES gniire network and drive the multi-task estimation to specic
in Ny converge to a state selected by the attacker. Seco

' work attack del which det . tes, she needs tetermine a minimum set of nodes to
we consider a network atiack model which we determine compromise such that every normal node in the network can

a minimum set of nodes to compromise to make the e.nt' % driven to an incorrect estimate. Computing such a minimum
network converge to states selected by the attacker. Fina

we formulate the resilient distributed diffusion problem thari: directly depends on the underlying structure, and can be

rgd Dwk is the domain of statevy: .
Another objective of the attacker can be to delay the

MSDx  MSDgi

. mulated asminimum dominating set problem graphs as
guarantees that normal agents are not driven to the attaa - : .
. i ) . cussed in Section V.
ers’ desired states, and continue the normal operatiith
the cooperation among neighbagpessibly with a degraded

performance C. Resilient Distributed Diffusion

Distributed diffusion is said to beesilient if
A. Single Node Attack Model
We consider false data injection attackeployed by a

strong attacker that has complete knowledge of the systefior all normal agentk in the network which ensures that all
In particular, we assume the following for the strong attackthe noncompromised nodes converge to the true state.

_'Ilim Wi = wi: (8)
1!
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We note that if agents do not cooperate or interact with eaalnere
other at all, such as in the non-cooperative diffusion, then ad- ( a

. . . Wg; for stationary estimation
versary cannot impact agents’ estimates. So, non-cooperatiye- a a al ) o
diffusion is resilient in this sense. At the same time, agents ~ Wk * ki1 * —7; — for non-stationary estimation
a_re.also unabl.e to ut|I|ze_ the mfo_rmayon from other agen a = a 2. And the diffusion estimate df is
aiming to achieve the similar objective. Consequently, the X X
steady-state MSD as result of non-cooperative diffusion can bgy, , = a(i) 1= ak (i) 1+ aa() ai:
quite large. Here, our objective is to design a resilient diffusion = |, , T 2Nna ’ ’

algorithm that guarantees convergence to the true estimates in

the presence of adversary and also results in smaller mds suf cient to achieve the attack objective (7) if the attacker

(as compared to the non-cooperative diffusion) by Ieveragir(fl%UId make the estimate di follow the gradient-descent

cooperation and information exchange between agefs. trajectory, i.e.,
assume that in the neighborhood of a normal node, there coufé ak() 1+ aw() ai = Wii1  FEWiiz W)
be at most compromised nodes [11]. Assuming bounds 0By, 1, ’ ' ' ' '

the number of adversaries is typical fihie resiliency analysis (11)
of distributed algorithms, and our resilient algorithm is als8ince ; = w; 1 + iUy [di(i)  uiiwg 1 ]is a random
based on this assumption. variable that is not controlled by the attacker, the attacker

should eliminate the inuence of |; for I 2 N;l 6=a.
IV. SINGLE NODE ATTACK DESIGN Suf cient conditions to hold (11), and thus to achieve the
We design a strong attack in which the attacker drives tlgtack objective are as follows:
targeted nodek to converge to a wrong estimatef; by

— ) a ) .
making k follow a desired trajectory de ned using stochastic ai = Wkit  NeWgin X)) (12)
gradient descent. The attacker’s goal is to ensurekthahich gng
implements adaptive-then-combine LMS, actually updates its ak()! 0; 8l 2Ny; | 6=a; (13)
estimates according to the stochastic gradient descent de ned aa () ! 1

by the attacker. Thus, the main task is to determine conditionrs] i« th K h hanai
under which adaptive-then-combine LMS &f guarantees |nat IS, the attacker uses the exchanging message as
the convergence ok's estimate tow?, . We summarize the indicated in (12) and the targeted nokleipdates its estimate

conditions below and then analyze them in detail in the rek@S€d Only on wi. i is computed given the knowledge of
of the section. Wii1 , that can be obtained by the attacker gitesmma 1.

1) An attacker needs to know the estimate of neda the Lemma 1. If a compromised noda has a knowledge of node
previous iterationLemma 1shows that an attacker cank’s streaming datefd  (i); uk; g and the parameter ., then
obtain the estimate given nodes streaming data and it can computew ;1
parameters.

2) Node k should not assign any weight to the messagé&¥00f. The message received byfromk 2 N 4 is  ; . Agent
from its non-attacked neighborsemma 2ensures this & can computevy;; from ; using
objective. o _ ; o

3) The magnitude of the stochastic gradient descent update Wiit = ki Ui (@) Ui Wi )
should be suf ciently small. Details are given Propo- from which it can computevy.i; as:

sition 1. e = ki kUi di (1)
kil 1 kuk;i Ui
A. Gradient-based Attack Design Given the knowledge of, di (i), anduy; , the valuewy1
Here, we present an attack based on gradient-descent €@ be computed exactly. O

dates, and in the next subsection, provide conditions under
which the attack is successful. For stationary estimation, the
following gradient-descent update with a suf cient small step

size 2 atthei™ iteration is suf cient to achieve the objective Next, we see thaby carefully designing »; as explained
) a;l

in (7): _ a in Lemma 2, conditions in (13) are satis ed.
Wiii = Wil kF wGWyi1 ) ©)
= Wil rE(Wii1 Wi ); Lemma 2. If the attacker sends the messagg; satisfying
wherer? = 2 2 is a non-negative step siZghat can also K ai  Wkir K K i Wiir k 8 2Ny;16=a;8i, then

be time-varying).For non-stationary estimation, the form i(13) will be true.

slightly different and it is described B
gnty y Proof. We use 4k to denotek i Wyi1 Kk, and ;i to
Wi = Wi re (Wit Xi); (10) denotek i wygi1 k, forl 2 Ny;l 6=a. Since

2See Appendix A. 2@ =(@1 W 2 1+ ko wiin K312 Ng;
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Suppose the attack startsiat then at iteratior(i 5 + n), Next, we argue that (15) is suf cient to achieve the attack
2 objective. We summarize the above discussioRioposition
a(ia* ) _ 1 and include a detailed proof in Appendix A.

=1 ) &Ga*tn D+ « Zuim Proposition 1. 2 If r3 > Ois selected such th&® 2 N\ | 6=
=(1 k(1 k) gk (iatn 2)+ az;k;i L0l ) a, 8i ia; krﬁ(w ki1 xij)k k L Wii1 K, then the

compromised noda can realize the objectivé7) by using

2
+ oy S
kil an ai described in(12) as the communication message wkth

=1 O™ AGa 1)

+ @ )" g;k;i o+ Ot g;k;i ™ asli\l?)it' we discuss the convergence time of attddtite that
+oH ) 2 + 20T o ; ayi
akii a+n 1 aki a+n I lim (1 rg) =0:4
i1

26 4o = n+lo2 g
ik (ia+n)=(1 k) |kn('g 1 1 In practice, when the left side of the above equation is smaller
+ k@ )" kit K" fki.+t than a certain small value that is,

2 2 :
tiit (@ ) kianr todkiaen I (1 rd)ic0 :

n+l H
Eo;ilargvik??otgkg, (1H \l;V)k-il kl i.e?. jl:ice w?k.?ssfl;:newe .consider that thq:onvergepce to the desired §tate is
i a2 0 2 (i) holds. T,hus, " R _ach|eved. Moreover, time required to reach the desired state
a’ oAk Ik : is denoted byi2(), and is computed as
a() @), (14) . log

Given the property of weights, (13) is true. L It is also worth mentioning that it is not necessary to start
the attack at the beginning of the diffusion task in order to
guarantee the convergence of the attack. In other words, the
attack can start at any time even after the diffusion algorithm
has converged to its correct target as long as the condition in

B. Suf cient Conditions and Convergence Analysis Proposition 1lis satis ed.

Here, using results from the previous subsection, we present
conditions that guarantee a successful attack. A direct conse- V. NETWORK ATTACK DESIGN
guence ofLemma 2is that we could replace the condition in

In this section, we consider the case when multiple nodes
are compromised using the attack model presented above.
Our objective is to determine the minimum set of nodes to

K ai Wit k= krigwiiz Xk compromise in order to attack the entire network. For this, we
show: (1) It is not necessary for the attacker to compromise
Therefore, a suf cient condition to achieve the attack Obje%u|tip|e compromised nodes in order to attack a single node

(13) by k ai  wkit k ki Wiir K8l 2 Ny;l 6=
a; 8i. At the same time, from (12), we get

tive can be rewritten as and (2) it is not possible for a compromised node to in uence
ai = Wit TeWiiz  Xi); nodes, that is, make such nodes not converge to the desired
st krEwiis XDk k1 w1 k (19 states, that are not its immediate neighbors. Therefore, the

minimum set to compromise is simplyninimum dominating

Thus, the attacker has to selecsuf ciently small value ofr¢  setof the network, which we explain later in the section.
to make (15) true. Note that even though= 0 is suf cient

for (15), it renders the gradient of (9) zero and as a result no _
progress is made towards convergencevgp. Also note that A. Impact of Compromised Nodes on Normal Nodes

to use (1), it is assumed that the communication messagen this subsection, rst we discuss the impact of multiple
i from everyl 2 Ny is known by the attacker, which compromised nodes attacking a single normal node, and then

can be achieved bintercepting the message. In practice, gnalyze the impact of a compromised node can make beyond
suf ciently small value ofr§ guarantees that the conditionits immediate neighbors.

holds. The attacker can select a snrglland observe if the ) _ _

attack succeeds; if not, decreasg to nd an appropriate Lemma 3. If fche compromls_ed nodes sen_d identical message
value. It is also worth noting that for a xed value of@s proposed ir{12), thenmultiple compromised nodes attack-
rd, (15) may not hold for some iteration because of the ing one normal node is equivalent to one compromised node
randomness of variables. Yet we can alwaysréet 0 for attacking the normal node.

such iterations (no progress at the current point). Howevelpoof. We useA to denote the set of compromised nodes

in practice, the attack succeeds by using a small xed value f?;{rgeting at the same normal nodle The proposed attack
rg > 0 since estimation is robust to infrequent small values of

K i Wgi1 k caused by randomness given the smoothingspoof can be found in the Appendix A.
property of theadaptiveweight. “4Refer to equation (26) in Appendix A and discussion after that.
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strategy results in the following condition holding as provesmall period of time. Then, (19) implies a constant equals to

in Lemma 2: a random variable, which does not hold gxcept that both sides
an (i) equal to zero. For the left side, that is when,c a (i) ! 0
0 1o I2NknA;a2 A or (W wg2)! 0. Consider, wherfw?® wg2)! O, thatis,
a | a
(i i.+n subjectto(l )™ =0) wi I wg. In such cases,
Given that |,y , ak =1, we have Rii = Uy [di0) . Ui Wiia ]
1 = U fugwe + v ug wil
ax(i)=0;ax()= —; | 2NgnA;a2A; = quyfug W2 wp)+ vi(i)] 6=0

A
wherejAj denotes the number of nodes A Since every So isRy; . Therefore, equation (19) does not hold under the
ondition(wi®  wg) ! 0.

compromised node 2 A sends the same message and g . . .
assigned the same weight that sums up to 1, it is e(:1uival(§h{rhe other p053|bl_e solution for eq“a“of‘ (19) is yvhen
to only one compromised node attacking the target node anck2c aq (i) ! 0. This meanst_ does not assign any we|gh_t
being assigned a weight of 1. Therefore, there is no need for 2 C and operates bY itself. In SUCh. cases, equation
multiple compromised nodes attacking a single normal no .9) hoId; when the ng_ht S'd.e of the equation Is zero. Since
O koc & (i) !0, the right side turns intdr; . We know
when| converges to its true objective statg, Ry, is zero,

The next problem to consider is if a compromised nodee.,

could indirectly impact its neighbors’ neighbors that at the . _ . R
. . . RI;| Iu|;| [dl(l) Ui Wii1 ]
same time are not the neighbors of the attaekero illustrate )
: ; Up [u wl+ vi)  ug wll
this, we consider an attacker nodea normal nodd, and a P LR ' i ¥
large cliqué of normal node< such that each node in a clique = quvi@)! 0

is connected to botla andl, and there is no edge betweerEhus, equation (19) holds under two conditionBirst,

node§a andl. ) , ay (i) ! 0, thatis,| does not give any weight o2 C.
Using the proposed attack modal,is able to drive every k2C . . L
. : ! SecondR; ! O, thatis| converges to its true objective state
node in the clique to converge to its selected state. We ge

interested in nding if the normal nodg that is connected

v
. X ; We note that the above two conditions indicate thabn-
to the clique, is also affected by the attack. The staté isf

verges to its original goal state and will not assign any weight

obtalned)kgy to its compromised neighbors under the above conditions.
Wy = aq() i +an@) u Based on this discussion, we havemma 4.
kec Lemma 4. The attacker cannot change the convergence state
= A (YW ki1 + kUi [de()  UkiWiiz 1) of the nodes that are not its immediate neighbors.
k2C

Next, we see how many compromised nodes are needed to

FarWia + U [di() g wis D) 17) attack the entire network.

We useRy; to denote the random variablgu,; [dk (i)
UkiWkiz | for k in the cligue andR;; to denote

1 [di(i)  ugi w1 ] for normal nodd. Suppose the com- B, Minimum Set of Compromised Nodes to Attack the Entire
promised node could affect nodes beyond its neighborhoodyetwork
from some point, wy; converges tavi andw;; converges
to w? (assume bothvg 6=w? andw? 6=wP).

Thus),( (17) turns into:

Since it is not necessary to use more than one compromised
nodes to attack one single normal agent, and a compromised
X node cannot affect nodes beyond its neighborhood, nding a
Wi = a (W2 + Ri)+(1 ay ())(w 2+ Ry;)  minimum set of nodes to compromise in order to attack the
k2C k2C entire network is equivalent to nding a minimum dominating
- aq (W2 WA+ R Rij)+ Wi+ Ry set o.f'the network as gle ned below ['17].'
K2C ' ’ ’ De nition 1. (Dominating set)A dominating set of a graph
(18) G =(V;E) is a subseD of V such that every vertex not in
After inserting constants and random variables, (18) can Beis adjacent to at least one member f

\)/(vntten as De nition 2. (Minimum dominating set)A minimum domi-

X X
ag(wi wi)= aq ()R +(1 ay ()R 1 : nating set of a graph is a dominating set of the smallest size.

kac kac kac (19) An example of a minimum dominating set is shown in Fig-

can be considered as a constant that does not change withfigkof & network is an NP-complete problem but approximate
solutions using greedy approaches work well in practice (for

SEvery node is connected to every other node in a clique. instance, see [17]).
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A. Resilient Diffusion Algorithm (R-DLMSAW)
In the context of distributed consensus, it is shown in [11]
that for Mean-Subsequence-Reduced (MSR) algorithms, that

during the state update phase, a node discards the values of
neighbors that are too far off from the node’'s own value,
Fig. 1: (a) Dominating and (b) minimum dominating set examplegesilience against attacks can be achieved, that is, distributed
consensus in the presence of compromised nodekd&
andF -total models) is guaranteed. In distributed diffusion, we
With the above discussion, we state the following: recall that a node updates its estimate by taking a weighted

p tion 2. Th ised nod diof q average of the estimates of all of its neighbors (3). For
roposition 2. The compromised nodes neéed 10 1orm a doMagiiant diffusion, we utilize a similar idea as in [11], that

nating set |f.the att.acker wants every node in the network 1 instead of considering the estimates of all neighbors during
converge to its desired state.

the state update phase, only consider values from a subset of

Based on the above discussion, we observe that the abbgéghbors sharing close estimates. We show that this strategy
condition is both necessary and suf cient. guarantees convergence of normal nodes to true estimates.
Before outlining the resilient distributed diffusion algorithm,
we rst explain the notion of the cost of a node.

Following (3), normal agenk follows diffusion dynamics
In this section, we propose a resilient diffusion algorithrgiven py X

that guarantees convergence of normal nodes to their actual Wi = a () i
states if the number of compromised nodes in the neighbor- ' '
hood of a normal node is bounded. The proposed algorithm
takes a non-negative integéf as an input parameter. If Thus, the cost function in (1) in the" iteration can be
the number of compromised nodes in the neighborhood \fitten as: X
a normal node is at most, then the algorithm is resilient JeWii ) = Ji( a@) 1)
to any such attack. It is obvious that selecting a laFge
value achieves a higher level of resilience, while selecting
F =0 means that the algorithm is not resilient to any attack.
However, there exists a trade-off between the resilience and the
steady-state MSD performance of the algorithm, which we wilince |,y , ak (i) =1, we have
analyze in detail. Since the proposed algorithm is adapted from ) X ] ]
the known DLMSAW, we call it aResilient Diffusion Least dk (i) = a (d k (i):
Mean Square with Adaptive Weights (R-DLMSAWE also 12N «
note that in contrast to the connectivity requirements need&hus, X X
by resilient concensus problems [11], the resilience of the . _ .
proposed algorithm does not require the underlying network”x(Wki) = Ef 2 (1)d (i) ak (ui 13 K°g
topology to meet speci ¢ connectivity or robustness conditions 12N 12N

since in resilient diffusion, connectivity does not affect Efk ak () u 1i)Kg
convergence, but only the estimation performance measured x N«
by the steady-state MSD. aﬁ( (Efkd (i) Uk kg

Since our algorithm can achieve resilience to upRo 12N

VI. RESILIENT DISTRIBUTED DIFFUSION

12N

12N ¢ X
= Efkd (i) Ui ( aw(i) 1i)K%g:

12N &

compromised nodes, we assume that there can be atFnost - 22 M 1)
compromised nodes in the neighborhood of any node, which o 1k i

is also referred to as thE-local model in [11]. Speci cally, P 4,

we de ne: o AN K (OGNS

2 (V]2
i
De nition 3. (F-local model)A node satis es the -local [ omen i ()]

. . : L . 20
model if there is at moE compromised nodes in its neigh- (20)
borhood. The goal ofk is to minimize its cost at every iteration, i.e.,
to minimize Jx(Wy;; ) by discardingF neighbors’ message.

De nition 4. (F-local network)A network is considered to Therefore, the removal s&(i) of sizeF should be selected

satisfy theF -local model if every node in the network has
mostF compromised nodes in its neighborhood.
Rk (i) =argmin %(Wk;i )

While the paper focuses on the-local model, scenarios 4,
12N (R () Ik (I i)

involving bounds on the total number of compromised nodes = argmin

within the network (Ftotal model [11]) can also be analyzed [ mon wnR () 2 ()12
using a similar approach. Next, we describe our resilient
diffusion algorithm. We note that the algorithm presented here is a generalization
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of the algorithm in [1] which is resilient to a specic typenodek. Inthe case oF N j, k updates its state without us-
of Byzantine attack and has a lower computational cost. img information from neighbors. Next, consider the case when
contrast, the algorithm proposed in this work is resilient to arfy < jNj. To deploy the attack, the attacker must try to make
Byzantine attack, but has a higher computational cost. Thilse message it sends to the normal nodes not being discarded
there is a trade off between the computation complexity of thy the normal nodes. This can only be achieved if the cost of
algorithm and the scope of attacks to which the algorithm keeping the attacker’s message is smaller than keeping some
resilient. normal agents’ message (discarding the attacker’s message).
To compute the costc( ;) = Ekdk(i) uki i k% agent Therefore, any attack message not being discarded actually
k has to store all the streaming data. Alternatively, we camsults in a cost smaller than the normal case. Therefore, R-
approximateJi( ) using a moving average based on thBLMSAW is resilient to any message falsi cation attack. From
previous iterations. the attacker’s perspective, since its goal is to maximize cost
Next, we outline the basic idea of the proposed resiliegf (w; ), the optimal strategy for the attacker is not to make
distributed diffusion algorithm below, and present the detaithis cost even smaller. As a result, the information from the
of R-DLMSAWiIn Algorithm 1. attacker will be discarded.

1) If F jN j, agentk updates its current statey.; using Thus, X
only its own ;; , which degenerates distributed diffusion Wi = ax (i) i
to non-cooperative LMS. I2N  nR (i)

< Nk . ) e ,
2) It F . IN\J, at each iteration, agentk computes T meaning the algorithm performs the diffusion adaptastep
possible removal sets, and selects the one by removing; . o i
. . o as if there were no compromised notheits neighborhood.
which Ji( ;) is minimized. Then, the agent updates

. . . " . Note that messages from normal neighbors naso be
!ts currgnt weightay. (i) 'and 'statewk;. without using discarded sinc& may be greater than the number of compro-
information from nodes iR (i).

mised neighbors. However, the distributed diffusion algorithm
we r_10te _that TO": = 0, DLMSAW and R-DLMSAW are is robust to node and link failurg8], and it converges to the
essentially identical. true state despite the links to some or all of its neighbors fail.
Finally, the algorithm will converge and equation (8) holds,
showing the resilience of R-DLMSAW. O

Algorithm 1: Resilient distributed diffusion undeF -local
bounds (R-DLMSAW)

Input:  2(1)=0 , maintainn 1 matrixDy; = On1 and
n M matrixUy; = 0O,m forallk=1;2;:::;N, and
2Ny B. Trade-off Between Resilience and MSD Performance
1 for k :_1; 2;:::;_N;i 0 do
2 | e()= di() UkiWkia An important aspect of R-DLMSAW is the selection of
Sl k= Wi+ kU ec() parameteF by each normal node. On the one hand, selection
4 if F jN «j then . .
5 | Whi = of a large F degrades the performance of the diffusion
' ' algorithm as measured by the steady-state MSD, but on the
else ; . . .
; 20 =@ )2 D+ kk u war K other hand, a smallgF might result in an algorithm that is
8 UpdateDy; andUy; by addingdi () anduy; and not resilient against attackf the following, we summarize
removingdk (i n) anduxin the trade-off betweethe steady-stattSD performance and
9 Ji( )= EKDki  Ugi 1 K2 resilience.
i i 1 i 2 . . .
10 Compute all possible discarded k(i) ~, Ri ()", It is rather obvious that if a normal node seleEtsmaller
1z, Ri(i) CF) than the number of compromised nodes in its neighborhood,
1 Jmin = 1_ ..... N then the messages from the compromised nodes might not
12 forj =120 7 5‘0(_)3 Co be discarded entirely during the state update phase of R-
S i i . . ™
s 3= |[2Fry KR @) L k(i)]; DLMSAW. As a result, the algorithm might not be resilient
, mA KR O ) mk against the attack, and the normal node might eventually
14 |f J<J min then , . .
15 Ri() = Rk()] converge to the attacker’'s desired state. Howevel ifis
16 L min = selected too large, then in the worst case, normal agents
, discard all the information from their neighbors. The al-
17 ak ()= » I ('_) 7 112 NgnR (i) gorithm becomes a non-cooperative diffusion algorithm and
. Wi = P meN R 'f(')alkm(ki) ’ incurs anN -fold MSD performance deterioration. Thus, the
e PN R ) ' performance of R-DLMSAW lies somewhere in-between the
19 urn W;

Proposition 3. If the network is aF -local network, then R-

DLMSAW is resilient to any message falsi cation attack.

cooperative diffusion and non-cooperative diffusion depending
on the choice of selected.

Consider a connected network with normal agents run-
ning R-DLMSAW. Let 2, =f Z,;:::; 2 g be the noise
variance Suppose by selecting sorfethe network is resilient,

Proof. Given the F-local model, we assume that there arbut is no longer a connected graph and is decomposed into
F compromised nodes in the neighborhood of a normal connected sub-networks, each of which is denotedSpy

n
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wherej 2 f1; ;ng. Using (6), thesteady-stateMSD for
each sub-network is
1 X 2 .

MSDS 5 a2 vik 1
J 2 (Si)) k2s,

wherejS;j is the number of nodes i sub-network. The
steady-state MSD for the overall network (consisting of sub-
networks) after running R-DLMSAW is the weighted average

of the steady-state MSD of the sub-networks, that is
1 X .. M X X
MSDater = W__ MSDS,- ISj] N - JST vik -
j=1 j=1 k2S;
At the same time, thesteady-stateMSD for the (original)
connected network before running R-DLMSAW is

M1 X, M XX

L
2 N? 2N N

2

MSDbefore vik

k2S
The difference between the two is
M X 1 1 X

MSDaﬂer Ar T~ N
2N ISi

MSDgefore =
k2S;

1 1

We know thafisjj N. Thereforeg Y
steady-state MSD of the networ
gnd as the

n 1 1

i=1 (m &) and MSDyer becomes larger.

Therefore, it is crucial to select an appropridte that is

a value with which the algorithm is resilient against co
promised nodes and at the same time useful links betw
nodes are preserved. To this end, a simple way to sélec
iS to rst estimatewncopk;; Dy a non-cooperative diffusion

and computely (W ncop:k;i ). Then, starting with a smak, for

instanceF = 0, perform cooperative diffusion and compute
Jk(Wcoop;k;i)- If Jk(Wcoop;k;i) >J k(Wncop;k;i)1 it means that
a compromised node is able to effect the estimation, and

= 0, meaning the

agentk
[Xic; Y

Fig. 2: lllustration of target localization.

In Figure 2, the distance between agéntind the target
is denoted by = kw? pgk, and the unit direction vector

>

0
from agentk to the target i = WiP k) Therefore, the

kw? p «
relationship holds such thaf = uE(WkE pk). Since agents

have only noisy observatioris i (i); uk; g of the distance and
direction vector at every iteratioin we get the following:

Px) + V(i)
If we use the adjusted signdk (i), such that

re@) = ugi (wy

d () = ri(i)+ Ui pk;

then we derive the following linear model for variables

After running R-DLMSA\/\];d k(i); Uki g in order to estimate the target’:
is worse than the steady-state MSD of the original network,
network is decomposed into more sub-networks,

di (i) = Ui W2 + vie(i):

As a result, agents can rely on DLMSAW algorithm for the
multi-target localization problem. Figure 3a shows the network

mtppology before the application of diffusion algorithms. For
&(ﬁtter readability, we only illustrate the network topology of
{agents without showing targets.

For stationary target localization, the location of the two
stationary tar?ets are given by
[0:1;0:1F;
[0:9;0:9F;

for k depicted in blue

wg = o
for k depicted in green

therefore increas& by 1. We keep repeating this as long Non-stgtionary targets are given by

aSJk(W coop;k;i) >J k(W ncop;k;i) is true.

VIl. EVALUATION

In this section, we evaluate three algorithmapn-

cooperative diffusionDLMSAW, andR-DLMSAW and com-
pare their performance faro-attackandattack scenarios. We matricesR . =

0:1+0:1cos(2i )

01+01sinRi ) ; for k depicted in blue

E

0
Wi, =
0:9+0:1 2 1i . :
3 0:9+0:1g?n82(2 !il g ; for k depicted in green
where! = 4.

Regression data is white Gaussian with diagonal covariance
Zelm withM =2, 2, 2 [0:8;1:2] and

evaluate the proposed attack model and resilient algorithmsise variance 2 2 [0:15;0:2]. The step size of, = 0:01

using the application of multi-target localizati¢h6], [18] for
both stationary and non-stationary targets.

We consider a network dll = 100 agents, in which each of 5

and the forgetting factory = 0:01 are set uniformly across
the network. Note that we adopt a signal-to-noise ratio (SNR)
10 dB in our setup. However, the same results are

agent's objective is to estimate the unknown location of ifgenerated if we choose low SNR values.
target of interest by the noisy observations of both the distance
and the direction vector towards the target. These agents and

targets are distributed in a plane. The location of adert
denoted by the two-dimensional vector = [xk;yk]”, and

A. Strong Attacks

similarly the location of target is represented by the vector We consider the strong attack model discussed in Sec-
w =[x 0;yPT” . Figure 2 illustrates how an agent estimateons IV and V. The attacker aims at making the nor-

the location of the target.

mal agents estimate a specic location selected by the
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attacker. In this evaluation, we select the attacker’s tar-Figure 6 shows the steady-state MSD performance of DLM-
geted location to bew? = [0:5;0:5F, and the attack SAW and non-cooperative LMS. We observe that under no
parameters are selected uniformly across the compromisgthck, cooperation indeed improves the steady-state MSD per-
agents asry = 0:002. For non-stationary estimation, weformance of DLMSAW. However, in the case of an attack, the
select ?; = [0:1cos(2! ai); O:1sin(2! 4i)]”, gi = steady-state MSD level of DLMSAW is quite high, whereas,
[0:21 Lsin(2! 4i); 0:2! ;cos(2! ,i)]”, where!, = the steady-state MSD level of non-cooperative LMS is barely
5550 - Figure 3b shows the network topology at the end of traffected by the attack.

simulation using DLMSAW with no attack for both stationary

and non-stationary tasks. If the weights between ag&ntsB. Resilient Diffusion for Strong Attacks

and| are such thaﬁm (i) < 0:01 anday (i) < 0:01, then To evaluate R-DLMSAW, we compute the codt( i)
we remove the link betweer) such nodes from the n(.atwo.ru ing the streaming data from the latest 100 iterations. We
We observe that only the I|nk§ between agents estimating ot uniformF for every normal agent but it can be distinct
the same target are kept, that is green nodes are connegfed, ., agent. R-DLMSAW behaves identicaityDLMSAW
with green nodes onl_y, and_blue nodes are connected ngone extreme, that is whéh = 0, and on the other extreme
pnly bll.Je ones, thus, |IIus.trat|ng the robu_stness of DLMSAViY behaves like a non-cooperative LMS algorithm, that is for
in multi-task networks. Figure 4a and Figure 4b shows thg,o \we consider the same initial network as in Figure 3a
estimation dynamics by DLMSAW for the .targe.ts .Iocatlon%md consider an attack consisting of four compromised nodes
Wi (1) andwy; (2) for every agentk and iterationi from oo oreviously. Note that there is at most one compromised
0 to 5000under no attack. Here/; (1) andwi; (2) are the ,,q4q i the neighborhood of a normal agent. Figure 7 shows
rst and second element of the estimate respectively, that d&twork topologies after executing R-DLMSAW for various
Wici = [Wii (1); Wi (2)]7 . It is shown that the two groups 5,65 ofF . Since there is at most one compromised node in
of n.odes converge to th.e'lr. goal state. , the neighborhood of a normal agent, the selectiorfr of 1
.Flgure 3¢ shows the initial network t.opology with COMPrOghayId be suf cient to guarantee that none of the normal nodes
mised nodesThere are four compromised nodes (red nOd%%nverge to attacker’s desired states, which is indeed the case

with yT‘(HOW clentres) ihn thedneftwork. Figur_e 3hd shows ]fhgs indicated by the removal of all links between normal and
network topology at the end of DLMSAW in the case @ compromised nodes in Figure 7a. As we increlaseesilience

stronag rwackbAll red nﬁdes a_rethe norfmal agents CF’“Vderg'“ ainst attack is certainly achieved, but at the same time the
to wy. We observe that neighbors of a compromised NOQ& .ok hecomes sparser as illustrated in Figures 7b and 7c.

commﬁnicatz o_nlthith the Ckoxpromiseld node, a”‘_’ ngt W‘H the case of non-stationary state estimation, the resulting
any other no e_mt € networ_ -Asaresu L cOMPromised NOGESyork topologies are similar, and hence, are not presented.
successfully drive all of their neighbors to desired statés Figure 8 shows the estimation dynamics by R-DLMSAW
astglsctgsse(;j n S?Ct'obn VDI[:I\I/?;L?N‘l? ant(:] F|§]ure t4d IShOVt‘{S ?la? the targets’ locatiorw.; (1) andw. (2) for every agent
estimation dynamics by or the targets localion: 4nq iterationi from 0 to 5000 under attack. The attacked
Wi;i (1) andw;; (2) for every agenk and iteration from O to nodes in the gure refer to the immediate neighbors of the

5000under attack. The attacked nodes in the gure refer to ﬂ?:%mpromised nodes. Since there is at most one compromised
immediate neighbors of the compromised nodes. It is sho de in a normal node's neighborhood, settiig 1 will

thgt all the immediate neighbors of compromised nodes dake R-DLMSAW algorithm resilient to attacks, which is
driven to c;orl\éer.ge t(wf(‘ \1vhere|as£ ?” the other normal nodegye o nstrated by the results from the gure. We also observe
converge 1o their original goal states. that by setting a smalleF value, which is suf cient to to

F|gure o4 shows the convergence of nodes_ und_er att% ke the algorithm resilient, we achieve better estimation
(stationary targets). We note at around 3000 iterations, tQS

. formance (F= 1 has less noise than that Bf = 5).
difference between the average state of nodes under attack.
; . . igure 9 shows thesteady-stateMSD level of the net-
and the attacker’s desired stat@ becomes almost zero. This
observation is also consistent with the result in (16), as f
i = 3000 andr = 0:002, the value of turns out to bé:0025,

work for the three algorithms, that is, non-cooperative LMS,
BVLMSAW, and R-DLMSAW. The simulation results validate
o . L claims in Section VI. We observe that in the presence of
which is indeed quite small and indicates the convergence o .
, : a compromised nodes, DLMSAW performs the worst and has
node’s estimate tov;. : : .
. . the highest steady-state MSD. Since there is at most one
Figure 5b shows the average state dynamics of nodes under . ; .
) . ~ —campromised node in the neighborhood of any normal node,
attack for non-stationary targets. Since states are changing yer

. . : , thé most appropriate value & for R-DLMSAW is 1. We
time, we illustrate the dynamics of average states’ changin . -

. . . te that the steady-state MSD is indeed minimumMHor 1.
with respect to the dynamics of attacker's selected sta

instead of a convergence plot like 5a. Here, ¥neoordinate S we increaser, the steady-state MSD also increases. In

T . fact, for F = 5, the performance of R-DLMSAW and non-
denotes the rst element of the estimation vector, e (1), cooperative LMS is almost the same as we expect
andY -coordinate denotes the second, e, (2). At iteration ’
0, the average statg; of the nodes under attack is different
than the attacker's desired statg,; . As the attack proceeds,
Wk;i gradually converges towardssg,, which shows the  Though it is common to assume a strong attacker with
effectiveness of attack for non-stationary state estimation. complete knowledge when examining the resilience of a

VIII. W EAK ATTACKS
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(a) Initial network topology (no (b) Atthe end of DLMSAW with no (c) Initial network topology (with (d) At the end of DLMSAW under
compromised nodes) attack compromised nodes) strong attack

Fig. 3: Network topologies in the case of DLMSAW algorithm.

(a) Wi (1) (under no attack) (b) Wi (2) (under no attack) (€) Wi (1) (under strong attack) (d) wi;i (2) (under strong attack)

Fig. 4. Estimation dynamics for stationary target localization by DLMSAW.

0.04 0.65 0 0
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|02 3 a | A —— DLMSAW (under attack)
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State wy;(1)
(b) Non-stationary targets

Iteration 4
(a) Stationary targets

Fig. 5: Average state dynamics of compromised nodes neighbors

(under strong attack).

Iteration 4
(a) Stationary targets

Iteration 7
(b) Non-stationary targets

Fig. 6: Steady-state MSD levels in non-cooperative LMS
and DLMSAW (under strong attack).
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Fig. 7: Network topologies at the end of R-DLMSAW under strong attack (stationary targets) for various vakies of
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Fig. 8: Estimation dynamics for stationary target localization by R-DLMSAW under strong attack.

(a) Stationary targets (b) Non-stationary targets
Fig. 9: A comparison of MSD performance of non-cooperative LMS, DLMSAW, and R-DLMSAW under strong attack.

distributed system, it is interesting to examine what an attacles,
can do in practise if all the information is not available. In
this section, we analyze how the attack can still be deployed
on a normal agenk without the assumption of a strongwherer ,; = kUi (dic (D) Uki Wki1 )» ki1 IS an
knowledge by the attacker (streaming data and parametgigj M matrix iz =[ i1 1;8l 2 Nk. Thus,

used byk). We assume that an attacker has access only to i

the intermediate estimates shared by agents with others in Fei = ki Al 1) kit s

their neighborhood. For instance, lif2 N then agentk gnd therefore,

receives ; from | and attacker also has an access to it. _ _

We show that the other knowledge needed by the attacker cafim Efkr ; k?g = Im Btk i Akl 1) wia k*g:
actually be approximated in an alternative way, and the success ” )

of the attack relies on how accurate this information can bancelimu  Efkr i k°g = 0, the value ofAx(i) can be
approximated. We refer to such an attack in which attackBPProximated by assigning a cost function

ki = Wit + 0 = Al 1) kit +0 ki

can only gather intermediate estimates and not the other data Ax@), Efk wisr Acli) «iK3g;
(including streaming data and agent parameters) asvédak ' ’
attack. whereA(i) is the global minimizer of(A ¢ (i)) asi ! 1.

Next, we compute the successive estimators of the weight

The strong attack in (10) relies essentially on the knowledé‘éamx based on stochastic gradient descent method as follows:
of w1 , that is the estimated state of agektin the A ()= A 1) or A (Ax( 1)
last iteration. If the attacker has complete knowledge, it can - A . A o
computewyi; exactly asLemma lindicates. However, = Al D+ oA ki (i U k?'l(%'l)
without such knowledgew.i; can only be approximately where 5 = 1 0

computed. We note that approximating.i; is equivalent to 2 Ar

approximating the weight mafriAi (i) = [ aw (i)]; 81 2 N. Also recall weight matrixA (i) has to satisfy the condition
This is true becaus@/y; = |5y, ak(i) i, and i is (4). Thus, to make the adaptive approximation of weight ma-
received by the attackex from . trix hold condition (4), we introduce two more steps following

(21), that is the clip step and the normalization step. In the clip
Next, we discuss how to compute the approximated weigsiep, the negative weights are clipped and are set to zero; and
matrix Ac(i 1) using only the information ;8 2 Nk. theinthe normalization step, weights are divided by their sum.
Note that the adaptation step (2) of diffusion can be writtefhe operation for approximating weight matrix of a normal

2373-776X (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.igee.org/publications_standards/publications/rights/index.html for more information.















