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ABSTRACT
Participatory sensing enables individuals, each with limited sensing

capability, to share measurements and contribute towards devel-

oping a complete knowledge of their environment. �e success of

a participatory sensing application is o�en measured in terms of

the number of users participating. In most cases, an individual’s

eagerness to participate depends on the group of users who already

participate. For instance, when users share data with their peers in

a social network, the engagement of an individual depends on its

peers. Such engagement rules have been studied in the context of

social networks using the concept of k-core, which assumes that

participation is determined solely by network topology. However,

in participatory sensing, engagement rules must also consider user

heterogeneity, such as di�erences in sensing capabilities and physi-

cal location. To account for heterogeneity, we introduce the concept

of (r , s )-core to model the set of participating users. We formulate

the problem of maximizing the size of the (r , s )-core using 1) anchor
users, who are incentivized to participate regardless of their peers,

and by 2) assigning capabilities to users. Since these problems

are computationally challenging, we study heuristic algorithms

for solving them. Based on real-world social networks as well as

random graphs, we provide numerical results showing signi�cant

improvement compared to random selection of anchor nodes and

label assignments.
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1 INTRODUCTION
Participatory sensing enables users to share measurements of their

environment [3, 6, 15, 16], such as tra�c and parking situations [8,

9], waiting times at businesses, weather information, or disaster

scenarios [10]. �rough sharing, users can develop a knowledge of

their environment that is signi�cantly more complete than what

each individual could develop on its own, relying only on one’s

limited sensing capabilities. Since the success of a participatory-

sensing application is very o�en measured in terms of the number

of its users, incentivizing individuals to join the application is a

crucial problem for participatory sensing. For example, previous

work has proposed to use a reverse auction mechanism to preserve

participation despite various social concerns [11].

A key feature of participatory sensing is that an individual’s

bene�t from the application depends strongly on what measure-

ments are shared by the other users. Consequently, an individual’s

eagerness to participate depends on the group of users who already

participate, which results in a cascading e�ect: as the size of the user

base grows, other individuals becomemore eager to join. Hence, the

number of users can be signi�cantly increased by incentivizing a

few individuals to participate, for example, by providing them with

rewards or by reaching out to them through targeted advertisement.

Due to the cascading e�ect, incentivizing a small but strategically

selected set of individuals can lead to a very large number of users

following them and joining the participatory-sensing application.

However, for privacy reasons, many users choose to limit shar-

ing measurements to their peers, such as their friends in a social

network. As a result, an individual’s bene�t is restricted by the

structure of the social network, and they will participate only if

their peers do [17]. Such engagement rules have been studied in

the context of social networks using the concept of k-core, which
assumes that an individual will remain part of a social network

if it has at least k peers. Based on the concept of k-core, it has
been shown that participation can be signi�cantly increased by

incentivizing a few individuals, called anchors, to remain part of

the network even when they have fewer than k peers [4, 7].

A major limitation of k-core is that it assumes participation

to be determined solely by the network structure, ignoring the

heterogeneity of users. In participatory sensing, however, the het-

erogeneity of users and their measurements plays a key role. For

example, users may take measurements at di�erent geographical

locations (e.g., di�erent streets or even di�erent cities) and they

may have devices with di�erent sensing capabilities. In order to

develop a more complete knowledge of the environment, these het-

erogeneous measurements must be combined. As a consequence,

a user’s bene�t from a participatory-sensing application depends
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Figure 1: (a) Example network. (b) (5, 2)-core of the example network. (c) (5, 2)-core with an anchor node (marked green).

not only on the number of participating peers, but also on the

heterogeneous nature of the measurements shared by them.

To account for heterogeneity, we introduce the concept of (r , s )-
core, which models the set of users engaging in a participatory-

sensing application. We assume that each user has a set of a�ributes,

which capture the user’s sensing capabilities, geographical loca-

tion, etc., and that a user’s participation depends on the sets of

a�ributes possessed by its peers [1, 18]. Based on the concept of

(r , s )-core, we study the problem of increasing the number of partic-

ipating individuals (i.e., the size of the (r , s )-core) using two distinct
approaches. First, we investigate the problem of selecting a few

individuals, called anchor nodes, who are incentivized to partic-

ipate regardless of their peers. Second, we consider the problem

of changing the labels of the nodes (e.g., by incentivizing users to

change their a�ributes).

2 NETWORK MODEL
We model the social network as a simple, undirected graphG (V ,E),
in which the node set V represents the set of users, and the edge

set E represents connections between users. Two nodes x ,y ∈ V are

adjacent inG if the corresponding users share measurements with

each other. Nodes that are adjacent to node x are called neighbors
of x , and the set of neighbors of node x is denoted by N (x ).

Each node of the graph has a�ributes, whichmodel the properties

of the measurements that are shared by the corresponding user,

such as geographical location, sensing capabilities, etc. We model

these a�ributes as a label set, R = {1, 2, · · · , r }, and assign a subset

of s labels to each node inG , depending on the a�ributes of the node.
As a result, we have a labeled graph that captures measurement

sharing between users with di�erent a�ributes. We denote labels

assigned to node x by `(x ), i.e.,

` : V −→ [R]s . (1)

Here, [R]s is the set of all s-subsets of R (i.e., all subsets of R that

have exactly s elements).

A user participates (or engages) in the participatory-sensing

application as long as its neighbors provide the user with all the

labels that are missing from its own label set (i.e., as long as they

provide the user with all the measurements that the user cannot

take on its own). Formally, our engagement rule says that a node x
participates in the network as long as the following condition is

satis�ed: ⋃
y∈( {x }∪N (x ))

`(y) = R. (2)

�is engagement rule models networking phenomena in which a

node participates in the network and shares its information as long

as it can acquire all missing information from its neighbors. If the

condition in (2) is not satis�ed for a node, then the node will simply

leave the network.

3 PROBLEM DESCRIPTION
A node leaving the network can have a cascading e�ect as it may

cause its neighbors to also leave the network. For instance, consider

a node x with a label a ∈ `(x ), and let y ∈ N (x ) be such that x
is the only node in {y} ∪ N (y) with the label a. �en, node x
leaving the network will also result in node y leaving. �us, the

removal of a node from a network may cause a cascading e�ect, or

unraveling, due to which nodes that initially satisfy the condition

(2) may also get removed from the network. In the end, we are le�

with a subnetwork of nodes that all satisfy the engagement rule (2).

We call the remaining subnetwork the (r , s )-core of the network.
More precisely, we de�ne (r , s )-core as follows:

De�nition 3.1 ((r , s )-Core). Given a graph G (V ,E), a set of r la-
bels, denoted by R, and an assignment ` : V → [R]s (i.e., assigning
s labels from R to each node v ∈ V ), the (r , s)-core of G, denoted by

G̃ (Ṽ , Ẽ), is the maximal subgraph in which every node satis�es⋃
y∈( {x }∪N (x ))∩Ṽ

`(y) = R, ∀x ∈ Ṽ . (3)

Note that it follows from the de�nition readily that every graph

has a unique (r , s)-core.

Example. As an example, consider the network shown in Fig-

ure 1(a). �is network has ten nodes, each of which has s = 2

labels from the set R = {1, 2, 3, 4, 5}. Initially, there are two nodes x
and y that do not satisfy the condition (2). As a result, they leave

the network, which leads to further node removals. In the end,

only three nodes remain, as shown in Figure 1(b). Each of these

nodes has all �ve labels between itself and its neighbors; thus, they

constitute the (5, 2)-core of the network.
�e (r , s )-core of a social network represents individuals that

will engage in the participatory-sensing application by sharing

measurements with their peers. To increase the participation of

individuals, we desire to increase the size of the (r , s )-core. �us,

from a design perspective, the following question arises.

For a given network G, label set R, and a positive integer s , how
can we modify or design our network so as to maximize the size of its
(r , s )-core?
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Oneway to achieve this objective is to �nd an optimal assignment
of labels to nodes, i.e., a labeling ` de�ned in (1) that maximizes

the size of the (r , s )-core. However, in some situations, the labeling

` is �xed, that is, the labels assigned to nodes are given and can-

not be changed. For example, in participatory sensing, users can

have devices with �xed sensing capabilities that cannot be easily

changed. A new approach is needed in these situations to increase

participation. In this paper, we explore the idea of signi�cantly

increasing participation by incentivizing a few selected individuals,

called anchor nodes, to engage regardless of their peers’ a�ributes.

4 INCREASING THE SIZE OF (r , s )-CORE
In this section, we �rst look at maximizing the (r , s)-core of a net-
work given that the labels of nodes cannot be changed in Section 4.1.

�en, we study maximizing (r , s )-core through relabeling nodes in

Section 4.2.

4.1 (r , s )-core with Anchors
�e departure of a node from the network might lead to the de-

parture of its neighbors, thereby causing a cascading phenomenon.

�e size of the (r , s )-core of the network can be larger if we can

prevent this cascading e�ect, in which nodes leave successively.

One way to achieve this is to incentivize some users in the network

to participate even if condition (2) is not satis�ed (e.g., by providing

them with rewards for participating). As a consequence, the depar-

ture of their neighbors can be prevented, and the unraveling of the

network can be avoided. We call such nodes anchors – nodes that

never leave the network irrespective of the labels assigned to them

or to their neighbors. Users can be made anchors by incentivizing

them, for example, by o�ering them rewards for their participation

when condition (2) is not satis�ed. We now de�ne the concept of

(r , s )-core with anchors as follows:

De�nition 4.1 ((r , s )-Core with Anchors). Given a graphG (V ,E),
a set of r labels, denoted by R, an assignment ` : V → [R]s (i.e.,
assigning s labels from R to each node v ∈ V ), and a set of anchor

nodesA ⊆ V , the (r , s )-core with anchorsA is the maximal subgraph

G̃A (ṼA, ẼA ) consisting of all anchor nodes as well as non-anchor

nodes satisfying ⋃
y∈( {x }∪N (x ))∩ṼA

`(y) = R, ∀x ∈ ṼA \A. (4)

Note that it follows from the de�nition readily that for every

graph and set of anchor nodes, the (r , s)-core with anchors exists

uniquely.

An example of (r , s )-core with an anchor node is shown in Fig-

ure 1(c). Without any anchor node, the maximum subgraph in

which each node has all �ve labels between itself and its neighbors

consists of only three nodes, that is, the size of the (5, 2)-core is
three, as shown in Figure 1(b). However, with only one anchor

node, we obtain a subgraph consisting of eight nodes in which each

non-anchor node has a complete set of �ve labels between itself

and its neighbors. �us, we see a signi�cant improvement in terms

of users participation even with a single anchor.

To obtain the (r , s )-core with anchors, we iteratively remove

those non-anchor nodes from G (V ,E) that do not satisfy condi-

tion (2). We repeat this until we are le�with a subgraph G̃A (ṼA, ẼA ),

which is the (r , s )-core with anchors. We denote this simple algo-

rithm as follows:

G̃A (ṼA, ÃA ) ← rs-anchored-core(G, `,A,R) (5)

Next, we study how to maximize the number of participating

individuals using a given number of anchors, denoted by α . For-
mally, our goal is to �nd anchors A ⊆ V such that |A| ≤ α and

the resulting (r , s )-core with anchor nodes A is of maximum size.

Unfortunately, this problem is computationally hard.

Theorem 4.2. Given a graph G (V ,E), a label set R, an integer s ,
a labeling `, a number of anchor nodes α , and a threshold core size K ,
determining if there exists a set A of at most α anchor nodes that
results in an anchored (r , s )-core whose cardinality is at least K is an
NP-hard problem.

Proof sketch. We show that the above problem is computa-

tionally hard using a reduction from a well-known NP-hard prob-

lem, the Set Cover Problem.

De�nition 4.3 (Set Cover Problem). Given a base setU , a collec-

tion C of subsets ofU , and a number k , determine if there exists a

subcollection C′ ⊆ C of at most k subsets such that every element

ofU is contained by at least one subset in C′.

Given an instance of the Set Cover Problem, we construct an

instance of the anchored (r , s )-core problem as follows:

• R = {1, 2, 3}, s = 1, and α = k ;
• for every c ∈ C, there is a node c with label 1;

• for every u ∈ U , there is a node u with label 2;

• there exist three other nodes o1, o2, and o3 with labels 1, 2,

and 3, respectively;

• for every u ∈ U and c ∈ C, nodes u and c are adjacent if
and only if u ∈ c;

• every u is adjacent to o3;
• o1, o2, and o3 are adjacent to each other;

• K = α + |U | + 3.
Clearly, the above reduction can be carried out in time that is

polynomial in the size of the Set Cover Problem instance. Hence, it

remains to show that the Set Cover Problem has a solution i� the

anchored (r , s )-core problem does.

Firstly, if there exists a set cover C′, then the anchor setA = C′ is
a solution to the anchored (r , s )-core problem. To see this, consider

that every node u ∈ U is adjacent to at least one node in A, which
provides label 1. Since labels 2 and 3 are provided to every node

u ∈ U by itself and by o3, the (r , s )-core includes every node u ∈ U .

Finally, nodes o1, o2, and o3 are always part of the core since they
provide each other with every label, which means that the size of

the (r , s )-core is α + |U | + 3 (including the α anchor nodes).

Secondly, the other direction (i.e., proving that any solution A to

the anchored (r , s )-core problem is also a set cover) follows from a

similar argument. �

Since the problem of �nding the (r , s )-core maximizing set of an-

chors is computationally hard, we present two heuristic algorithms:

�rst, one based on a simple greedy heuristic, and second, one using

a noisy best response based strategy.
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Greedy Heuristic. Let graph G (V ,E), R, s, `, and the number of

anchor nodes α be given. We iteratively add nodes to the set of

anchors A one-by-one, in each iteration adding a node that maxi-

mizes the size of the resulting anchored (r , s )-core, until a set of α
anchors is reached. �e greedy heuristic is described formally in

Algorithm 1.

Algorithm 1 Greedy selection of anchors

1: Given: G (V ,E), `,R, s,α
2: Initialization: A = ∅.
3: While |A| ≤ α do
4: For All v ∈ (V \A) do
5: G̃A (ṼA, ẼA ) ← rs-anchored-core(G, `,A,R).
6: f (v ) ← |ṼA |
7: End For
8: v ′ ← argmaxv ∈(V \A) f (v )

9: A← A ∪ {v ′}
10: End While

Noisy Best Response. Let graph G (V ,E), R, s, `, and the number

of anchor nodes α be given. We start with a random set A of

α anchors, and iteratively try to improve it. In each iteration, we

remove a randomly chosen anchor node fromA and add a randomly

chosen non-anchor node, and we make this switch permanent with

a certain probability that depends on the sizes of the anchored

(r , s )-cores before and a�er the switch. �e noisy best response

heuristic is described formally in Algorithm 2.

Algorithm 2 Selecting anchors to increase the size of (r , s )-core

1: Given: G (V ,E), `,R, s,α
2: Initialization: Pick a small ϵ ∈ R+, number of iterations, and

a subset of α nodes A.
3: G̃A (ṼA, ẼA ) ← rs-anchored-core(G, `,A,R)
4: κ ← |ṼA |
5: While i ≤ number of iterations do
6: Randomly select x ∈ A and y ∈ V \A.
7: A′ ← (A \ {x }) ∪ {y}.
8: G̃A′ (ṼA′ , ẼA′ ) ← rs-anchored-core(G, `,A′,R)
9: κ ′ ← |ṼA′ |
10: Pϵ ←

ϵκ
ϵκ+ϵκ′

.

11: If rand(0, 1) ≤ Pϵ
12: A← A′, κ ← κ ′

13: End If
14: i ← i + 1
15: End While

4.2 Increasing (r , s )-Core by Node Relabeling
�e size of the (r , s )-core depends on both the structure of the net-

work and the assignment ` of labels to nodes. For a �xed network

structure, the size of the (r , s )-core can be signi�cantly increased by

�nding a suitable `. In practice, re-assigning labels can be achieved

by incentivizing users to change their sensing a�ributes, for exam-

ple, incentivizing them to share measurements at di�erent locations

or times. In this subsection, we present and discuss the performance

of a heuristic algorithm that re-assigns labels to nodes with the

goal of maximizing the size of the (r , s )-core.
First, we present our heuristic for re-assigning labels to nodes

to increase the size of the (r , s )-core. For this, we �rst need to

quantify the usefulness of the labels that are assigned to a node x .
For instance, if x is the only node providing the labels `(x ) to its

neighbors N (x ), then the departure of x will surely lead to the

departure of its neighbors. �us, the labels assigned to x are of

great value to the neighbors of x . On the other hand, if for each

y ∈ N (x ), the labels `(x ) are also available from nodes in N (y) \ x ,
then the departure of x has no e�ect on whether y ∈ N (x ) remains

in the network or leaves it.

In light of this, for each y ∈ N (x ), we quantify the value (or

usefulness) of the labels assigned to x by counting the number

of labels in `(x ) that are not assigned to any node in N (y) \ {x }.
�e overall value of the labels assigned to x , called the score, is
simply the sum of the usefulness values for all nodes in N (x ). More

formally, the score of `(x ) can be computed using Algorithm 3

below. Here, `(V \ x ) simply denotes the assignment of labels to

all nodes other than x .

Algorithm 3 Finding the score Score(x , `(x ), `(V \ x )) of labels
assigned to x

1: Given: x , `(x ), `(V \ x )
2: σ = 0

3: For All y ∈ N (x ) do

4: βy ←


⋃
z∈(N (y )\{x })

`(z)

∪ `(y).

5: σ ← σ + |`(x ) \ βy |
6: End For
7: Score(x , `(x ), `(V \ x )) ← σ

For an illustration, consider the example in Figure 2. Here, node

x has three neighbors, y1,y2, and y3. Note that for y1, x is the only

node in N (y1) with label 2. Similarly, for both y2 and y3, x is the

only node with labels {1, 2} in N (y2) and N (y3), respectively. As a
result, the overall score of `(x ) is 1 + 2 + 2 = 5.

1,2

xy1

y2

y3

3,4

4,5

1,5

3,4

3,5

4,5· · · · · ·

Figure 2: �e score of labels assigned to node x is 5.

Next, we present our heuristic algorithm, which employs a noisy

best-response strategy. �e idea is to choose a node at random,

and then select a subset of s labels randomly from the label set R.
�e labels of the node are replaced with the randomly selected set

with high probability if the replacement results in a be�er score.

�e occasional selection of suboptimal labels for a node depends

on a parameter ϵ , commonly referred to as the temperature, and
prevents the search from ge�ing stuck in a local optimum. We note

that this heuristic belongs to a class of learning algorithms, known
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Figure 3: (a) Example network. (b) (6, 2)-core with initial label assignment. (c) (6, 2)-core with re-assigned labels.

as log-linear learning [5, 14], which are known to converge to an

optimal solution (asymptotically) if the problem can be formulated

as a potential game. In [2], we showed that the problem of assign-

ing labels to nodes such that the number of labels missing from

the neighborhood of nodes is minimized can be formulated as a

potential game. In Algorithm 4, we formally describe our heuristic

for relabeling nodes to increase the size of the (r , s )-core.

Algorithm 4 Relabeling to increase the size of (r , s )-core

1: Given: G (V ,E), `,R, s
2: Initialization: Pick a small ϵ ∈ R+ and number of iterations.

3: While i ≤ number of iterations do
4: Randomly select a node x ∈ V .

5: Randomly select s labels for x , i.e, `′(x ) ∈ [R]s .
6: σ ← Score(x , `(x ), `(V \ x ))
7: σ ′ ← Score(x , `′(x ), `(V \ x ))

8: Pϵ ←
ϵσ

ϵσ ′+ϵσ
.

9: With probability Pϵ , set `(x ) ← `
′(x ).

10: i ← i + 1
11: End While
12: G̃ (Ṽ , Ẽ) ← rs-core(G, `,R)

An example is shown in Figure 3. With the initial assignment

of two labels to each node from the label set R = {1, 2, · · · , 6}
(see Figure 3(a)), the (6, 2)-core of the network has no node (see

Figure 3(b)). �e nodes are re-labeled using Algorithm 4 by selecting

ϵ = 0.01 and performing 500 iterations. As a result, we achieve a

labeling with which the (6, 2)-core consists of the whole network
(see Figure 3(c)).

5 NUMERICAL RESULTS
We evaluate our results on two di�erent types of networks, includ-

ing a real-world social network of 4,039 Facebook users [12, 13]

and randomly-generated preferential a�achment networks. Each

preferential a�achment network consists of 500 nodes, and it is

obtained by adding nodes to the network one at a time. Each new

node is connected to three existing nodes, which are chosen with

probabilities proportional to the degrees (i.e., number of neighbors)

of the nodes. In all of our simulations, labels from the label set are

initially assigned uniformly at random to the nodes.

In the case of our sample Facebook network, we �rst illustrate

the size of the (r , s )-core as a function of s , which is the number

of labels assigned to each node (Figure 4). As expected, the size

of the (r , s )-core increases as the ratio s/r increases. In Figure 5,

we illustrate the size of anchored (r , s )-core as a function of the

number of anchors selected using Algorithms 1 and 2. We consider

the label set R = {1, 2, · · · , 15}, assigning a single label to each node

randomly. In Algorithm 2, we perform 5,000 iterations.
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Similarly, for the preferential a�achment networks, we plot the

size of anchored (r , s )-core as a function of the number of anchors

chosen by Algorithms 1 and 2 in Figure 6. Here, we consider r
and s to be 6 and 2 respectively. We also note that each point in

Figure 6 is an average of 25 randomly generated instances. For

Algorithm 2, we perform 2,500 iterations while selecting ϵ to be

0.08. �e �gure shows that the greedy algorithm performs slightly

be�er than Algorithm 2. We also note that the greedy algorithm

makesO ( |A| · |V |) calls to the rs-anchored-core routine, whereas
Algorithm 2 makes O (iter ) such calls. Here, iter is the number of

iterations performed in the Algorithm 2. �e results obtained from
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Algorithm 2 can be re�ned further by performing more iterations.

A sample plot illustrating the size of (r , s )-core as a function of the

number of iterations in Algorithm 2 is shown in Figure 7.

From both Figures 5 and 6, we see that by adding few anchors,

we can signi�cantly increase user participation within the network.
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Figure 6: Size of anchored (6, 2)-core as a function of the
number of anchors selected using Algorithms 1 and 2.
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Figure 7: Size of anchored (6, 2)-core as a function of the
number of iterations in Algorithm 2 for the preferential at-
tachment network with 500 nodes.

6 CONCLUSIONS AND FUTURE DIRECTIONS
In participatory sensing, an individual’s intent to participate by

sharing information also depends on what information and mea-

surements are shared by others. In a social network, a user’s par-

ticipation depends not only on the number of peers but also on the

types of peers participating, which may be di�erent in terms of

their sensing capabilities, resources, information etc. To model such

engagement rules among heterogeneous nodes within a network,

we introduced the notion of (r , s )-core. To maximize the number of

users participating within a network, we proposed two approaches.

In the �rst approach, we proposed that few individuals, called an-

chors, be incentivized to participate regardless of their peers. In the

second approach, we proposed to re-assign capabilities to users. To

select anchors, we proposed a greedy and a noisy response based

heuristics. Similarly, we presented a heuristic to re-assign labels to

individuals to maximize the number of participating users within a

network. Finally, we demonstrated the e�cacy of our approaches

through simulation results.

In future work, we aim to develop a generalized solution by

combining two approaches – re-assigning labels and selecting an-

chors – to maximize the number of users participating within the

network. We would also like to consider an adversarial se�ing in

which a competitor tries to minimize the size of the (r , s )-core by
manipulating a small group of users.
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