
IJRECE VOL. 13 ISSUE 4 OCT-DEC 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 75 | P a g e

A Systematic Approach to Determine Bug Severity and

Prioritize Fixes
Radha Yadav

Department of Computer Application, Medicaps University, Indore (M.P)

radha.yadav@medicaps.ac.in

Abstract – Finding and fixing software’s bugs is a not easy

task, and a significant amount of effort is dedicated by

software developers on this issue. In the world of software

one cannot get rid of the bugs, fixes, patches etc. each of them

have a severity and priority associated to it. There is not yet

any formal relation between these components as both of

these either depends on the developer and tester and project

manager to be decided on. On one hand, the priority of a

component depends on the cost and the efforts associated

with it. While on the other, the severity depends on the efforts

required to accomplish a particular task. This work proposes

a formula that can draw a relationship among severity and

priority.

Keywords – severity; bugs; priority; test cases; effort

estimation; cost estimation;

I. INTRODUCTION

We would try to explore the extent and to derive a
reasonable relationship between severity and priority.
Currently, we do not a possess a suitable relation between the
severity and priority of task to that of severity of it the only
component. We know on which these are depended, that are
cost associated and the effort to that of severity for the task.

A. Known component

● Estimate effort is the process of predicting the effort

required to develop a software system effort based

on development, test, and deployment. All these are

the level a judgment, based on past experience. But,

now past experience depends on a formulating a

particular values.

● Cost associated estimate are critical to developer,

customer and manager. They can be used for

generating request for proposals, contract

negotiations, scheduling, monitoring and control.

B Unknown component

● Severity of bug depends on tester or manager,

project and their importance. Sometime bug’s

severity depends on effort and cost of project. It

depends on how much; it’s severely put impact on

project and estimated time to resolve.

● As priority of bug depends on developer or manager,

bug’s priority depends on effort of tester to find and

developer to resolve it and judge, how much it

impact on project’s smooth running.

However, we know that the effort can be converted to the cost

of project task or tests. Also knows the cost that particular

project would generate. So, cost can be on of the relating

coupling.

II. METHODOLOGY

A Deriving the known components

 We can derive the values of the known components by

using the following terms:

 Efforts required: Effort can be sub-classified into lower

granularity as follows [14]:

1) Development Effort

2) Testing Effort

3) Deployment Effort

 This can be estimated as:

Effort (E) = DvE+ TeE + DpE

DvE = Development Effort

TE = Test Effort

DpE = Deployment Effort

Calculation of these efforts can be further estimates as:

development efforts using PERT and Function point method,

these provide more comfort than others method in further

calculation of testing and deployment [6]. In case of testing

effort, based on test effort work, test case time, test case

development & execution time, defect time and use case point

approach estimation are used. Deployment effort is based on

calculating 10-15% of development effort and by using

practical experience of industry person.

IJRECE VOL. 13 ISSUE 4 OCT-DEC 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 76 | P a g e

1) Development Effort

First
 PERT estimating i.e. Program Evaluation and Review

Technique (PERT) which creates estimates of the weighted

average duration of tasks which is given by [13]:

PERT Equation is:

(Optimistic Estimate + (4 times Most Likely Estimate) +

Pessimistic Estimate)

 Divided by 6

Second
Function Point (FP) based on functionality of a program

[1], i.e. the total no. of function point depends on counts of

distinct in the five classes:

1) User input types data or control user input types.

2) User output types output data types to the user that

leaves the system.

3) Inquiry types interactive requiring a response.

4) Internal file types files (logical group of

information) that are used and shared inside the

system.

5) External file types files that are passed or shared

between the system and other system.

 Each of these assigned individual one of the three

complexities levels [3]:

 Simple = 1, Average = 2 & Complex = 3 & weighting

values varies from 3 (simple input) to 15 (complex internal

files).

 Unadjusted Function Point counts can be given as:

UFP = Nij W ij

Nij W ij are no. and weight of types of class i with complexity.

FP = UPF * CAF

Where CAF is complexity adjustment factor and is equal to

[0.65 +0.01 * Fi]

 Fi = (1 to 14) value adjustment factor

 Jones's first-order estimation gives an estimate for

optimal schedule months from the function point count [2].

First we must choose the appropriate exponent, j, to use, by

identifying the type of system and the general capability of

the development team.

 Jones's first order estimate formula uses the exponent, j,

from the above table to compute schedule months, s, from

function points, f. Schedule months do not include the

requirements analysis phase, because this must have been

completed to get the design needed for the function point

count.

s = fj

 Above calculates effort in man-month from function point.

The following formula converts function point into total man-

months.

 m=f3*j/27
A spreadsheet could be used to compute this which calculates

effort in man-day from function point.

TABLE I. CALCULATE SCHEDULE FROM FUCTION POINT

Kind of Software
Best in

Class
Average

Worst in

Class

Systems 0.43 0.45 0.48

Business 0.41 0.43 0.46

Shrink-wrap 0.39 0.42 0.45

 Value of m divided by 8 (as 8 considered as total working

hour per day)

 DvE= m /8

2) Test Effort

 Elements of Test Estimation Process
[11]

1) Break sizing into smaller and easier to estimate tasks.

a. Decompose the test project into phases:

i. System Test ii. Unit Test

b. Decompose each phase into constituent

activities:

i. System Test Planning ii. Test Execution

c. Decompose each activity into tasks and subtasks

until each task or subtask at the lowest level of

composition:

i. Executing a test scenario

ii. Writing a defect

1) Taking risk priority into account

2) Set up dependencies

a. Dependent tasks internal to the test sub project.

b. Document dependencies, resources, and tasks

external to the test subproject (i.e., those that

involve collaborative processes)

● Consider type of code (complex, reused, etc.)

● Augment professional judgment and gut instinct

with previous project data, industry metrics, and

so forth.

● Identify and, if possible, resolve discrepancies

between the test subproject schedule and the project

schedule.

● Use the work-breakdown-structure and schedule to

develop a budget. Extract from your work-

breakdown-structure a complete list of resources.

IJRECE VOL. 13 ISSUE 4 OCT-DEC 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 77 | P a g e

For each resource, determine the first and last day of

assignment to the project.

● If you have resources shared across multiple test

projects within a given time period, understand the

percentage allocation of each resource’s assignment

to each project during various time periods.

● Revisit the Estimation continuously in order to

reflect any change in the Project Requirements or

Schedule

● Be Repeatable preferably Automat

Now, we study various methods helps to calculate the

test effort [12]:

First
 Total Effort = Test case time + Defect time

Test Case Time = Test Case Development time + Test Case

Execution Time

Test Case Development Time = (Hours/Test case

development* #Test cases)

Test Case Execution Time = (Hours/Test case Execution *

#Test Cases)

Defect Time = (Hours/Defect * # Defects)

Second
 Use Case Points Estimation using UCP [Use Case

Points], is rapidly gaining a faithful response. The approach

for estimation using UCP only needs slight modification in

order to be useful to estimate test efforts
[10]

.

1) Determine the number of actors in the system. This

will give us the UAW – the unadjusted actor weights. Actors

are external to the system and interface with it. Examples are

end-users, other programs, data stores etc. Actors come in

three types: simple, average and complex. Actor

classification for test effort estimation differs from that of

development estimation. End users are simple actors. In the

context of testing [4], end-user actions can be captured easily

using automated tool scripts. Average actors interact with the

system through some protocols etc. or they could be Data

stores. They qualify as average since the results of test case

runs would need to be verified manually by running SQL

statements on the store etc. Complex users are separate

systems that interact with the SUT through an API. The test

cases for these users can only be written at the unit level and

involves a significant amount of internal system behavioral

knowledge [15].

The sum of these products gives the total unadjusted actor

weights. [UAW] as shown in table II below.

2) Determine the number of use cases in the system. Get

UUCW.

The use cases are assigned weights depending on the

number of transactions / scenarios.

TABLE II. ACTOR WEIGHT

Actor Type

Description Factor

Simple GUI 1

Average Interactive or
protocol-driver

Interface

2

Complex API / low-level

Interaction

3

TABLE III. USE CASE WEIGHT

Use Case Type

Description Factor

Simple

<=3 1

Average

4-7 2

Complex >7 3

The sum of these products gives the total unadjusted actor

weights. [UAW]

3) UUCP = UAW + UUCW

The calculation of the unadjusted UCP is done by adding

the unadjusted actor weight and the unadjusted use case

weights determined in the previous steps.

4) Compute technical and environmental factors

The technical and environmental factors for a test project

are listed in the table number IV below.

To calculate one needs to assign weights and multiply them

with the assigned values to give the final values. The products

are all added up to give the TEF multiplier. The TEF

multiplier is then used in the next step.

5) Compute adjusted UCP.

We use the same formula as in the UCP method for

development.

AUCP =UUCP *[0.65 + (0.01*TEF)]

6) Arrive at final effort.

We now have to simply multiply the adjusted UCP with a

conversion factor. This conversion factor denotes the man-

hours in test effort required for a language/technology

combination. The organization will have to determine the

conversion factors for various such combinations.

E.g. Effort = AUCP * 20

IJRECE VOL. 13 ISSUE 4 OCT-DEC 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 78 | P a g e

 Where 20 man-hours and which is divided be 8 for man-

day are required to plan, write and execute tests on one UCP.

TABLE IV. TECHNICAL COMPLEXITY FACTOR

Factor Description Assigned

Value

T1 Test Tools 5

T2 Documented inputs 5

T3 Development Environnent

2

T4 Test Environnent 3

T5 Test-ware reuses 3

T6 Distributed system 4

T7 Performance objective 2

T8 Security Features 4

T9 Complex interfacing 5

3) Deployment Effort

First
 Based on estimated test efforts as per the industry

standard which is taken as 10% of total development efforts

(Man Days)

This standard used in many company as well as programming

language (application of asp .net & biz talk development).

Second
 Basically based on experience, in this process we strongly

need at least person whose experience on deployment.

Procedure or steps of deployment takes time, each of code

copy to execution and acceptance testing to documentation.

 DpE= Execution time of application + Installation Time

on server (code copy+ code run) + Documentation time +

time taken by accepting testing.

 After using above all methods we calculate effort, now

second thing cost factor that is important for further

calculation
[6]:

Let the Cost per person hours = CpH

Estimated Cost of Project

Ce = E * CpH
Now the Cost Generated from the

Project be = Cg

Total Revenue of the Project

Cr = Cg – Ce
Percentage Revenue of the

Project = (Cr * 100)/Cg

 So, we have devised a formula that relates the task to the

cost of it
[7]

.

Relating the Known Components to the Unknown

Components:

 Here, we know that the priority of a task depends on the

cost it generates. If there are two tasks, on of which generates

higher cost has obvious priority to the other. Also, the

severity of a task depends on the components it involves and

also the components it impacts

Therefore,

1) Priority ∞ Cost generated (∞ => directly

proportional)

2) Severity ∞ No of components Involved + No of

components impacted.

Deriving the Constants
 Now, to convert the above relation into a formula we

would derive few constants. Let’s scale the priority and

severity on the scale of ten points. We assume the following:

TABLE V. PRIORITY LIST (5 LEVELS]

We have derived the ten point scale by dividing 10 by the
number of levels. We get 2 so each class would have a
difference of 2.

We can create a constants chart for our reference as follows:

From the below table, we can derive a fair estimate of the

severity and priority. Since, we have 1-100 values. We need

to derive the cost on the scale of hundred, i.e., the percent

value which is known to us. We would assume higher value

in as discrepancy about the selection.

Example 1
 Follow all the process one be one

Development Effort by PERT
1) At best, need 24 person-hours

2) Most likely need 36 person-hours

S. No. Priority Level On Ten Point Scale

1 A 2

2 B 4

3 C 6

4 D 8

5 E 10

Priority↓/

Severity→

Low(2) Mediu

m(5)

High

(7)

Critical

(10)

A(2) 4 10 14 20

B(4) 8 20 28 40

C(6) 12 30 42 60

D(8) 16 40 56 80

E(10) 20 50 70 100

S No Priority Level On Ten Point Scale

1 Low 2

2 Medium 5

3 High 7

4 Critical 10

IJRECE VOL. 13 ISSUE 4 OCT-DEC 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 79 | P a g e

3) And if everything goes wrong, you need 51 person

hours

 Now we convert man per days

36.5/8 = 4.5 person-days = 5 person-days

Test Effort Calculation
Test Case Development Time = 0.16*10 = 16

Test Case Execution Time = 0.083 * 10 = 8.3

Defect Time = 0.16 * 10 = 1.6 hour

Test Case Time = 16 + 8.3 = 24.5 hour

Test Effort work = 24.5 +1.6 = 26person-hour

Now we convert man per days

26/8= 3.5 person-days = 4 person-days

Deployment Effort
10-15% of development effort so 1 person-day

Total Effort
E = 5 + 4 + 1 = 10 person-days

Effort per day = 8 hours

Estimated Effort hours: 80 hours

Cost per person hours: 12$

Total Cost: 960 $

Cost Generated from Project: 1200$

Revenue Cost = 1200 – 960 = 240$

The ration of profit to cost generated:

= 240 / 1200 * 100 = 20.
The nearest values are B-Medium, A-Critical and E-Low.

Now, from the profit generated we know that the number of

components is 6. Therefore, the severity is medium. Hence,

it the severity is medium and priority is B.

Example 2

Development Effort by FP
For an average case

No of external i/p files - 24 4 = 96

No of external o/p files- 16 5 = 80

No of external inquires- 22 4 = 88

No of internal logical files- 04 10 = 40

No of external interface files- 02 07 = 14

UPF = 318

CAF =. [0.65 +0.01 * Fi where, Fi = (1 to 14)

 = [0.65 + 0.01 * (14*3)

 = 1.07

FP = 318 * 1.07 = 341

M = 341 3*0.43 (average)

 = (341 ^ 1.35)/ 27 = 97.24

Here we can divide no of days 22 or 30

97.24 / 22 = 4.42 = 5 person-days

97.24 / 30 = 3.24 =4 person-days

Test Effort Calculation by UCP
UUCP = UAW + UUCW

 = 10+10 = 20

AUCP =UUCP*[0.65+ (0.01*TCE)]

 = 20*[0.65+0.01*33]

 = 19.6

Effort = 19.6*2

 = 39.2 person-hour

Now converting into = 39.2/8

 = 5 person-days

Deployment Effort
DpV = 1 hr + 1.5 hr + 2.5 hr + 3 hr

 = 8 hr = 1 person-day

Total Effort
E = 4 + 5 + 1 = 10 person-days

Hence, the severity and priority can be calculated as same in

the above quoted example1.

ACKNOWLEDGMENT

We would like to thank the all faculty members of the

institute, Prof. Ritesh Shah who helped us lot in calculating

the facts and figures related to my paper. I would also like to

thank the anonymous reviewers who provided helpful

feedback on my manuscript

REFERENCES

[1]. C. R. Symons, “Function Point Analysis: Difficulties and

Improvements”, IEEE Transactions on Software Engineering,

Volume 14, Issue 1, January 1988

[2]. Graham C. Low, D. R. Jeffery, “Function Points in the

Estimation and Evaluation of the Software Process”, IEEE

Transactions on Software Engineering, Volume 16, Issue 1,

January 1990

[3]. IEEE Standards Collection: Software Engineering, IEEE

Standard

[4]. J. E. Matson, B. E. Barrett, J. M. Mellichamp, “Software

Development Cost Estimation Using Function Points”, IEEE

Transactions on Software Engineering, Volume 20, Issue 4,

April 1994

[5]. Hill P.R. (ISBSG) - Software Project Estimation, A Workbook

for Macro-Estimation of Software Development Effort and

Duration - March, 1999 - Chapter 3

IJRECE VOL. 13 ISSUE 4 OCT-DEC 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 80 | P a g e

[6]. Johnson K. - Software Size Estimation - Dept. Of Computer

Science, University of Calgary, January, 1998

[7]. Londeix B. - Three Points Techniques in Software Project

Estimation – SE1ER - April, 1997Inc.

[8]. Capers,John 1996, Applied Software Measurement, Mc Graw-

Hill.

[9]. Dekkers Ton, 1999, Test point Analysis Estimation About The

Formula.htm

[10]. Cockburn, A Writing Effective Use Cases. Addison Wesley,

2000

[11]. Prof.Torky Sultan, DEVELOPMENT AND EVALUATION

OF A DEFECT TRACKING MODEL FOR CLASSIFYING

THE INSERTED DEFECT DATA, European Scientific

Journal April 2013 edition vol.9, No.12 ISSN: 1857 – 7881

[12]. Aman Kumar Sharma, Comparative Study of the Bug Tracking

Tools, International Journal of Advanced Research in

Computer Science and Software Engineering, Volume 5, Issue

3, March 2015 ISSN: 2277 128X

[13]. Varun Mittala, Recent Developments in the Field Of Bug

Fixing, (ICCC-2014), Bhubaneswar, Odisha, India

