

Design of Experiments Part 3

Dr. Bob Gee Dean Scott Bonney Professor William G. Journigan American Meridian University

AMU / Bon-Tech, LLC, Journi-Tech Corporation Copyright 2015

Traditional DOE evaluates significant differences in the *average* output between levels.

good Black Belts *understand* the inputs that affect output average, but their primary goal is...

REDUCE VARIATION!

Bon-Tech

Injection Molding – Layout and Data

Three replications were run for each test combination as shown below:

					Data	Replic	cation
Factor	Die Temp	Nozzle Temp	Shot Size	Inject Temp	Repl. 1	Repl. 2	Repl. 3
1	-1	-1	-1	-1	63	59	61
2	+1	-1	-1	+1	60	63	65
3	-1	+1	-1	+1	85	81	77
4	+1	+1	-1	-1	62	60	61
5	-1	-1	+1	+1	70	69	68
6	+1	-1	+1	-1	35	39	37
7	-1	+1	+1	-1	36	35	35
8	+1	+1	+1	+1	46	47	45

Data is Part Strength in Newtons

Injection Molding – Layout and Data

Three replications were run for each test combination as shown below:

					Data	Replic	cation	Mea	sures of Va	riation
Factor	Die Temp	Nozzle Temp	Shot Size	Inject Temp	Repl. 1	Repl. 2	Repl. 3	σ	σ2	ln(σ)
1	-1	-1	-1	-1	63	59	61	2.0	4.0	0.7
2	+1	-1	-1	+1	60	63	65	2.5	6.3	0.9
3	-1	+1	-1	+1	85	81	77	4.0	16.0	1.4
4	+1	+1	-1	-1	62	60	61	1.0	1.0	0.0
5	-1	-1	+1	+1	70	69	68	1.0	1.0	0.0
6	+1	-1	+1	-1	35	39	37	2.0	4.0	0.7
7	-1	+1	+1	-1	36	35	35	0.6	0.3	-0.5
8	+1	+1	+1	+1	46	47	45	1.0	1.0	0.0

We have all the information we need to calculate variation for our DOE. What metric should we use?

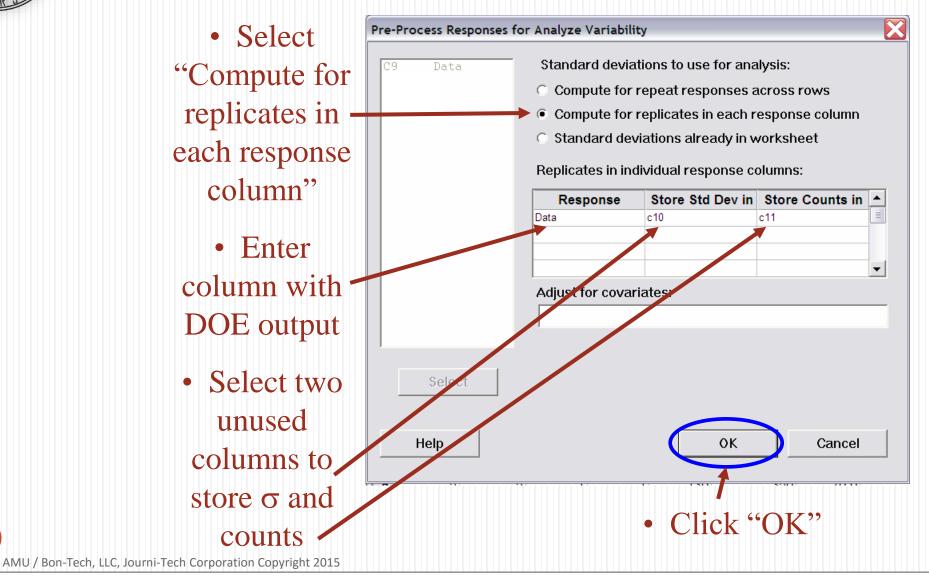
Standard deviation is not an appropriate metric for running a DOE, since σ (standard deviation of the sample) is a non-linear function. Also, using σ can produce confidence intervals that result in negative numbers– a situation that poorly represents reality.

Variance has the advantage of being linear, but also results in a skewed distribution, since it's a squared value and cannot go below zero.

Ln(σ) (the natural log of the sample standard deviation) is actually one of the **best measures** for evaluating the significance of variation in a DOE, representing a compromise that, while not a linear function, reasonably represents the spread of the process variation within a distribution that is often very close to normal.

Measures of Variation					
σ	σ2	Ln (σ)			
2.0	4.0	0.7			
2.5	6.3	0.9			
4.0	16.0	1.4			
1.0	1.0	0.0			
1.0	1.0	0.0			
2.0	4.0	0.7			
0.6	0.3	-0.5			
1.0	1.0	0.0			

Minitab can do this for us!


Jen-Tec

<u>Stat</u> <u>Graph</u> E <u>d</u> itor <u>T</u> ools	<u>/</u> indow <u>H</u> elp Six Sigma o
<u>B</u> asic Statistics <u>R</u> egression <u>A</u> NOVA	
<u>D</u> OE	Eactorial Create Factorial Design
<u>C</u> ontrol Charts	Response Surface 🕨 🕂 Define Custom Factorial Design
Quality Tools	Mixture PV Pre-Process Responses for Analyze Variability
Reliability/Survival	Taguchi
<u>M</u> ultivariate	Modify Design AV Analyze Variability
Time <u>S</u> eries	<u>P</u> isplay Design <u>►</u> Eactorial Plots
Tables	© Contour/Surface Plots
<u>N</u> onparametrics	
<u>E</u> DA	<u>o</u> verlaid Contour Plot
Power and Sample Size	<u> </u>

Stat > DOE > Factorial >

Pre-Process Responses for Analyze Variability...

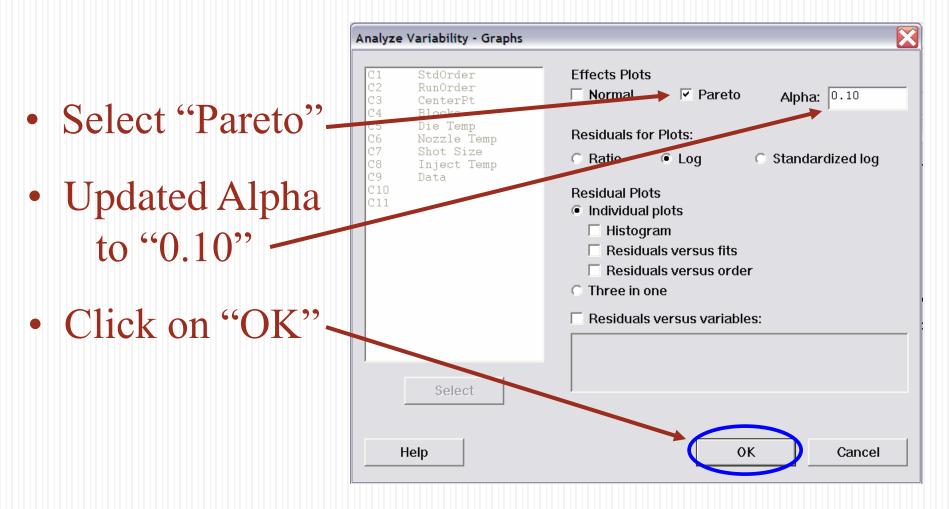
Bon-Tech

DOE for Variation Minitab generated a column of standard deviations. Now, let's use them!

<u>S</u> tat <u>G</u> raph E <u>d</u> itor <u>T</u> ools <u>W</u> indow <u>H</u> elp Six Sigma o r								
Basic Statistics	Basic Statistics 🕨 🖥 🖥 🛱 🕮 🎬 🌃 🕅 🜃 🕨 T 🗆 O 🔪 O 🖂 M							
<u>R</u> egression								
<u>A</u> NOVA								
<u>D</u> OE	Eactorial Create Factorial Design							
Control Charts	Response Surface 🔸 🛱 Define Custom Factorial Design							
Quality Tools	Mixture PV Pre-Process Responses for Analyze Variability	.						
Re <u>l</u> iability/Survival	Taguchi Analyze Factorial Design							
<u>M</u> ultivariate	Modify Design							
Time <u>S</u> eries	Bisplay Design K ^F <u>F</u> actorial Plots							
<u>T</u> ables		-						
<u>N</u> onparametrics	Contour/Surface Plots							
<u>E</u> DA	<u>⊘</u> r <u>O</u> verlaid Contour Plot							
Power and Sample Size	<u> </u>							

Stat > DOE > Factorial > Analyze Variability...

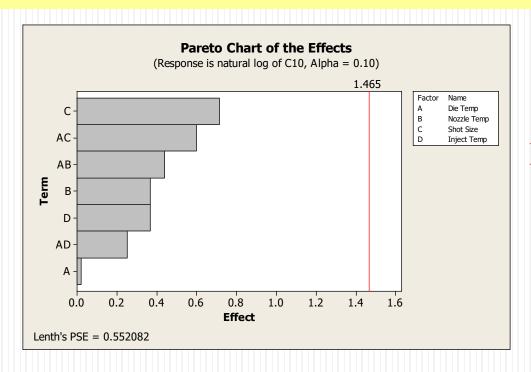
AMU / Bon-Tech, LLC, Journi-Tech Corporation Copyright 2015

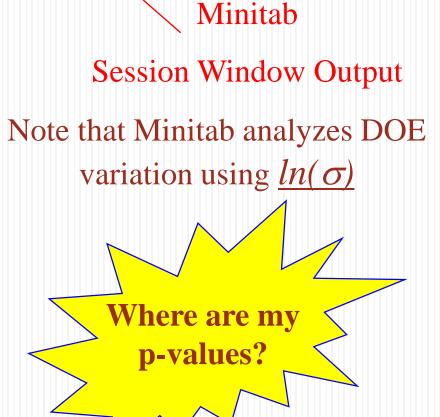

DOE for Variation • For "Response X Analyze Variability (standard Response (standard deviations) C10 deviations):"_ Number of repeats or replicates: C11 select the column Estimation method: Least squares regression with standard Maximum likelihood deviation stored Covariates... Terms... in it. Select Results... Storage ... Graphs • Next, select-0K Cancel nelp Graphs

Bon-Tec

10

DOE for Variation

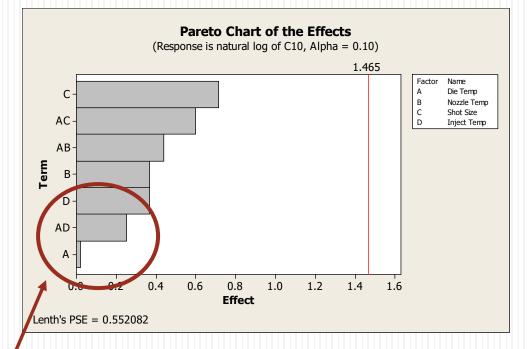

Jen-Tech



11

DOE for Variation

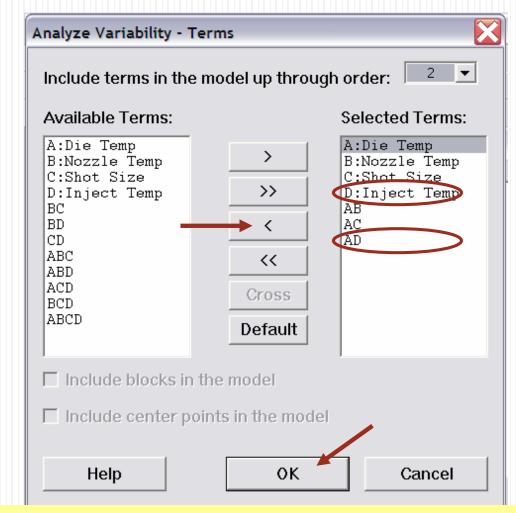
Regression Estimated Coefficients for Natural Log of C10 (uncoded units)



Bon-Teck

- We don't have enough data to be sure of our results, so p-values can't be generated.
- Let's give the computer a little more power!
- Note the bottom few effects on the pareto (those' effects least likely to be significant)

• We'll de-select A, D, & AD


Stat > DOE > Factorial > Analyze Variability...

Bon-Tech

210	Response (standard deviations): C10				
	Number of repeats or replicates: C11				
	Estimation method:				
	Least squares regression				
	Maximum likelihood				
1	Terms Covariates				
Select	Graphs Results Storage				
Help	OK Cancel				

- We'll de-select D & AD, but not A. Why?
- Minitab needs A to calculate AB, AC, etc.
- By ignoring these factors, we tighten the parameters of the calculation, "focus" the math, and squeeze more power from the data.

Bon-Tec.

For a better statistical understanding of this concept, check out Degrees of Freedom online, in Minitab, or in your statistics book.

Regression Estimated Effects and Coefficients for Natural Log of C10 (coded units)

Bon-Tec

		Ratio					
Term	Effect	Effect	Coef	SE Coef	Т	P	
Constant			0.3933	0.1579	2.49	0.130	
Die Temp	0.0215	1.0217	0.0107	0.1579	0.07	0.952	
Nozzle Temp	-0.3681	0.6921	-0.1840	0.1579	-1.17	0.364	
Shot Size	-0.7146	0.4894	-0.3573	0.1579	-2.26	0.152	
Die Temp*Nozzle Temp	-0.4400	0.6441	-0.2200	0.1579	-1.39	0.298	
Die Temp*Shot Size	0.5997	1.8217	0.2999	0.1579	1.90	0.198	
R-Sq = 85.74% R-Sq	(adj) = 5	0.09%	Mini	tab Sessi	on Win	dow	

Cool! p-Values!

Now What?

Factor		Level	Mean	p-value	ln(s)	p-value	
A: Die Temp	-1	130° F	61.6	0.000	0.639	0.952	
A: Die Temp.	+1	170° F	51.6	0.000	0.488		
P: Nozzla Tamp	-1	350° F	57.4	0.330	0.631	0.364	
B: Nozzle Temp.	+1	370° F	55.9	0.330	0.497	0.364	
C: Shot Size	-1	6.7 grams	66.4	0.000	0.867	0.152	
C. SHUL SIZE	+1	10.0 grams	46.9	0.000	0.135	0.152	
D: Inject Tomp	-1	700° F	48.6	0.000	0.332	0.298	
D: Inject. Temp.	+1	900° F	64.6	0.000	0.756		
	-1, -1	NA	48.3		0.254		
AD: Die Temp. x	-1, +1	NA	49.0	0.007	0.916	0.832	
Inj. Press.	+1, -1	NA	75.0	0.007	0.405		
	+1, +1	NA	54.3		0.564		

Bon-Te

Not Mandatory, but a good idea!

One-stop summary of DOE for Average and Variation. Now, select your levels to minimize variation and maximize strength.

Predicting DOE Output If I set my factors at the selected levels, what output would I expect from my process?

Bon-Tec

• Minitab does NOT automatically generate an equation for us like it did with Regression.

• HOWEVER, we can generate our own equation by pulling out the coefficients that we consider to be significant.

Regression Estimated	Coefficients for	Averages (uncoded units)
Term	Coef	
Constant	-29.0081	
Die Temp	0.243642	
Inject Temp	0.117270	Minitab Session Window
Shot Size	-1.57961	
Die Temp*Inject Temp	-0.0008800	

Bon-Tech

Remember Y = mX + b?

in English: Output = (some coefficient) x (some input factor) + Constant

With more than one input factor, the equation expands: $Y = m_1X_1 + m_2X_2 + m_3X_3 + \dots + b$

Regression Estimated Coefficients for Averages (uncoded units)TermCoefConstant-29.0081Die Temp0.243642Inject Temp0.117270Shot Size-1.57961Die Temp*Inject Temp-0.0008800

First, insert your significant coefficients into an equation: $Y = 0.244X_1 + 0.117X_2 + (-1.580)X_3 + \dots + (-29.01)$

Next, insert your desired factor levels into the equation: Y = 0.244(130) + 0.117(900) - 1.580(6.7) + (-29.01)

Regression Estimated	Coefficients	for Averages	(uncoded units)
Term	Coef		
Constant	-29.0081		
Die Temp	0.243642		
Inject Temp	0.117270	Minital	Session Window
Shot Size	-1.57961		
Die Temp*Inject Temp	-0.0008800		

AMU / Bon-Tech, LLC, Journi-Tech Corporation Copyright 2015

Finally, solve your equation:

 $Y = 0.244(130) + 0.117(900) - 1.580(6.7) + \dots - 29.01$ Y = 97.4 Newtons

Note: Be sure to be consistent with your units (coded units with coded coefficients, uncoded with uncoded)

Regression Estimated	Coefficients	for Averages (uncoded units)
Term	Coef	
Constant	-29.0081	
Die Temp	0.243642	
Inject Temp	0.117270	Minitab Session Window
Shot Size	-1.57961	
Die Temp*Inject Temp	-0.0008800	

$Y = 0.244(130) + 0.117(900) - 1.580(6.7) + \dots - 29.01$ Y = 97.4 Newtons

The equation shows that if we set Die Temperature at 130°F, Injection Temperature at 900°F, and Shot Size at 6.7 grams, we should expect part strength to equal 97.4 Newtons. Great! Let's verify this!

Regression Estimated	Coefficients	for	Averages	(uncoded units)
Term	Coef			
Constant	-29.0081			
Die Temp	0.243642			
Inject Temp	0.117270		Minital	Session Window
Shot Size	-1.57961			
Die Temp*Inject Temp	-0.0008800			

AMU / Bon-Tech, LLC, Journi-Tech Corporation Copyright 2015

Remember:

- We'll have one equation to optimize the Average
- We'll have one equation to minimize the Variation
- Sometimes a single factor will have a positive impact on process average, but a *negative* impact on variation.

What do we do?

Ideally, minimize Variation first, then optimize for average

Fractional Factorials: 3-level factors

Fractional designs for factors at 3-levels have also been developed. For example, with four 3-level factors, A, B, C, D, a full factorial consists of 34 = 81 test combinations. A 1/9 fraction, 1/9 •34, consisting of nine test combinations is available.

Run	Α	В	С	D
1.	1	1	1	1
2.	1	2	2	2
1. 2. 3. 4. 5. 6. 7. 8. 9.	1 2 2 3 3 3	1 2 3 1 2 3 1 2 3	1 2 3 2 3	1 2 3 1 2 2 3 1
4.	2	1	2	3
5.	2	2		1
6.	2	3	1 3 1 2	2
7.	3	1	3	2
8.	3	2	1	3
9.	3	3	2	1

The factors will be confounded with interactions as in the 2-level fractionals, but in a more complex fashion.

Discovering Measurable Outputs

Process Description	Process Y	KPIV Critical Xs	DOE Response?
1. Accounts Payable	Time to Pay Invoice		No
		Time to Enter Data	Yes
		Data Entry Error Rate	Maybe
		Invoices not entered into System	No
2. On-site Tech Support	Cost to JCI		No
	Support Quality		No
	Number of call backs		No
		Time to get on site	Yes
		Time on site	No
		Customer Satisfaction Rating	Maybe

Bon-Tech

AMU / Bon-Tech, LLC, Journi-Tech Corporation Copyright 2015

24

25

Discovering Measurable Outputs (Continued)

	Process Description	Process Y	KPIV Critical Xs	DOE Response?
	 Predicting Energy Usage 	Dollars Paid to Customer by JCI		No
		JCI Profit		No
			Estimated Usage/Actual Usage	Yes
•	4. Training	Skills use on Job		No
			Test Scores	Vee
				Yes
			Satisfaction Ratings	Maybe
			Satisfaction	
			Satisfaction Ratings	Maybe
			Satisfaction Ratings Attendence Number of Departures	Maybe No
			Satisfaction Ratings Attendence Number of	Maybe No

Training Project Scenario

Bon-Tech

- Finalize Improvements and Implement Controls
 - Finalize an equation to turn a new Satellite Launch into a "hit" as quickly as possible.
 - Map the new Satellite Launch process, minimize waste, optimize flow, minimize labor, minimize cycle time, etc.
 - Develop clear work instructions and controls for the new process. A control plan is required as part of the submission.
 - Present the final process to the Instructors, including proof of new process capability (old vs. new quality, time, labor, etc.)
 - Be prepared to put your money where your mouth is: Shoot Off Competition!

Training Project Scenario Cost Factors

- Each Launch cost \$150 to repair
- Labor costs equals \$1 per second person from start of first launch until final Launch is completed.
- Three attempts to "hit" the Orbit target for the appropriate Launch sequence. If you miss the target in three attempts, you incur a \$1000 quality cost hit.
- If you fail to hit the target and your corrective actions do not follow the submitted control plan, \$1000 warranty cost fine for faulty work

Summary

- Objectives
 - Fastest turn-around time (lowest labor costs)
 - Getting the correct output for the appropriate motor on the fewest attempts
 - Minimize quality costs and warranty costs
 - As always, HAVE FUN!