

PROBABILISTIC SIMULATION

PROBABILISTIC SIMULATION

Production Cost Analysis in WASP is performed using a **Probabilistic Simulation**

PURPOSE: To simulate the operation of electric power system units over a specified time period so that operating costs and reliability of system operation can be calculated.

PROBABILISTIC SIMULATION

- Calculates the expected value of energy generated by each generating unit in each time period.
- Calculates unit operating (production) costs on the basis of expected energy generation in each time period.
- Calculates system reliability parameters such as Lossof-Load Probability (LOLP) and Energy-Not-Served (ENS).

Representation of Generating Unit Outages in Willim Probabilistic Simulation

Two types of generating unit outages are modeled:

- scheduled maintenance, expressed in terms of days of maintenance per year or scheduled maintenance rate
- forced outages, expressed in terms of forced outage rate (FOR)

Methods of Accounting for Forced Outages in Probabilistic Simulation Derating Derated capacity = Nominal capacity * (1 - FOR)

Maintenance extension

Total unavailability rate = Scheduled outage rate + FOR

Monte Carlo method: random numbers $rn \in (0,1)$ are drawn for each unit and compared with the unit FOR:

- if $rn \leq FOR$ unit is assumed on forced outage
- if rn > FOR unit is assumed available for operation

Baleriaux-Booth Method

BALERIAUX-BOOTH METHOD

- Technique addresses unit outage probabilities in combination with system load variations.
- The capacity outage due to forced outage is treated as additional load that must be served by other units.
- The resulting curve is called the equivalent load duration curve ELDC.
- ELDC represents the original system load combined with the probabilistically determined forced outage capacities.

Baleriaux-booth Probabilistic Simulation Method in WASP

- Load Duration Curves (LDCs) used to represent system load
- Loading Order used to represent generating unit dispatch:
 - Economic loading order (provided by CONGEN)
 - User-specified loading order
- Probabilistic mathematics used to represent the random forced outages of generating units
- Above three are combined to represent the interaction of system load and outages of generating units in the form of equivalent load duration curves (ELDCs).

ELDC CONSTRUCTION

- A sequence of ELDCs is constructed by dispatching a generating unit under the ELDC to determine the unit's generation and then determining the effect of the unit forced outage rate on the ELDC.
- Each successive ELDC consists of a weighted average between the previous load curve and the same load curve displaced by the capacity of the unit being dispatched.
- The final ELDC is obtained after the convolution of all generating units is performed.

Equivalent Load Duration Curves; LOLP and ENS Calculation

ICP - Total generating capacity of the system LOLP can be calculated by measuring the ordinate at load = ICP

$$ENS = T \cdot \int_{CP}^{T} ELDC_N dx$$

where T is the length of the period (in hours) covered by the LDC.

CREATING INITIAL LOAD DURATION CURVE

Inverted Normalized LDC

Units are Loaded under LDC to Determine Unit Generation

Forced Outages of Generating Units and Probability Mathematics

EXAMPLE: A system with two generating units:

Unit	Capacity	FOR
GEN1	100 MW	0.1
GEN2	200 MW	0.2

Calculation of the available capacity distribution:

Unit status		Total capacity [MW]			
GEN1	GEN2	Available	On outage	<u>Probability</u>	
0	0	0	300	0.1 x 0.2 = 0.02	
1	0	100	200	0.9 x 0.2 = 0.18	
0	1	200	100	0.1 x 0.8 = 0.08	
1	1	300	0	0.9 x 0.8 = 0.72	
				1.00	

General Convolution Equation

Points on the ELDC are calculated using the formula:

$$L_n(x) = p_n L_{n-1}(x) + q_n L_{n-1}(x-C_n)$$

where:

 $L_n(x)$ = equivalent load duration curve (load probability function: probability that load is $\ge x$) after considering the forced outages of the first n units

- q_n = probability that unit n is on forced outage
- $p_n = probability that unit n is available for operation$

 $p_{n} + q_{n} = 1$

 C_n = capacity of the n_{th} generating unit

2nd Example - Forced Outages of Generating Units and Probability Mathematics

EXAMPLE 2: A system with two generating units:

Unit	Capacity	FOR ("q")
GEN1	100 MW	0.5
GEN2	200 MW	0.4

Calculation of the available capacity distribution:

Unit status		Total capacity [MW]			
GEN1	GEN2	Available	On outage	<u>Probability</u>	
0	0	0	300	0.5 x 0.4 = 0.20	
1	0	100	200	0.5 x 0.4 = 0.20	
0	1	200	100	0.5 x 0.6 = 0.30	
1	1	300	0	0.5 x 0.6 = 0.30	
				1 00	

Illustration of Equivalent Load

EXAMPLE: System of two generating units.

Outage state: Both units are available.

Illustration of Equivalent Load

Outage state: Unit 1 on forced outage Unit 2 available

Illustration of Equivalent Load

Outage state: Unit 1 on forced outage Unit 2 available

Convolution Process

Considering the effect of forced outages of Unit 1

Convolution Process

Considering the effect of forced outages of Unit 2

$$L_2(x) = p_2 L_1(x) + q_2 L_1(x-C_2)$$

 $L_2(x=100) = 0.6 L_1(x) + 0.4 L_1(x-200) = 1.0$ L₂(x), LDC after convoluting Unit 2 $L_2(x=300) = 0.6 L_1(x) + 0.4 L_1(x-200) = 0.4$ 1.0 $L_2(x=500) = 0.6 L_1(x) + 0.4 L_1(x-200) = 0.0$ L₁(x-200) $L_2(x)$ $L_1(x)$ X in MW 0 100 300 400 200 500 Unit 2 Unit 1 ->I∢ $C_2 = 200$ $C_1 = 100$ $q_2 = 0.4$ $q_1 = 0.5$

CALCULATION OF RELIABILITY PARAMETERS

LOLP and ENS

Thank you! Any questions?