SMARTS – a spectrometer for strain measurement in engineering materials

M.A.M. Bourke^{1*}, D.C. Dunand², E. Ustundag³

¹ Los Alamos National Laboratory TS^a

² Northwestern University TS^a

Received: 11 July 2001/Revised version: 9 January 2002 - © Springer-Verlag 2002

Abstract. A new spectrometer called SMARTS (spectrometer for materials research at temperature and stress) will enter commissioning at the Los Alamos neutron-scattering center in July 2001 c.b. Its design maximizes capability and throughput for measurements of (a) residual macrostrain in engineering components and (b) *in situ* loading. This paper describes some aspects of the instrument.

PACS: 61.12Ex; 62.20Fe; 62.20Hg

Measurements of strain in engineering materials place demands on neutron diffraction spectrometers that differ from instruments designed for conventional crystallography. Notably the range in shape and size of engineering specimens requires more spacious access to the sample position than is typically found on conventional diffractometers. Moreover efficient and accurate measurements require precise optical alignment (of samples with irregular shapes) with respect to the beam - which imposes limitations on shielding and lineof-sight access to the sample. Over the last few years these limitations have led to adaptation of old instruments and new instruments being designed for engineering strain measurements [1,2]. SMARTS is the first instrument at a pulsed source to be designed from a "green field" site for engineering strain measurements. A similar instrument called ENGIN-X is expected to enter commissioning at ISIS in the summer of 2002.

1 Incident beam transport

The incident beam transport comprises; a water moderator, a series of scrapers (in the bulk shield), a straight super mirror guide (with Ni58 and 2θ vertical and horizontal surfaces respectively), and a t-zero chopper. The source to sample flight path is 30.75 m, neutrons pass from the moderator through the scrapers to the entrance of the neutron guide approximately 5 m from the moderator. A T-zero chopper is located

*Corresponding author. Fax: +1-505/665-2676, E-mail: bourke@lanl.gov

at a break in the guide 10 m from the moderator where there is also space for a frame-definition chopper (not currently used). Beyond the T_0 chopper the neutron guide extends to the entrance of the cave terminating approximately 3 m from the sample. Two aperture sets (located between the exit of the guide and the sample) permit the beam cross section to be defined continuously in shape and area between 1 and $100\,\text{mm}^2$ (Fig. 1). The guide was purchased from and installed by CILASTM (see Fig. 2) and is noteworthy because a $10\,\text{m}$ section had to be installed through a pipe approximately 1 m in diameter. The transition through the pipe was effected by pre-aligning guide sections on an I-beam and then sliding the beam into the pipe and aligning the whole beam.

Fig. 1. Incident collimation (prior to installation)

2 Detectors and data acquisition

Two detectors comprising a total of 384 single ended 3 He tubes are mounted on either side of the incident beam with a secondary flight path of 1.5 m to the center tube(s) at $\pm 90^{\circ}$.

Please provide complete address.

CE^b This date has now passed! Amendment to the wording is necessary.

19 August 2002 16:46 CET

³ California Institute of Technology Ts^a

Fig. 2. Neutron guide in ER-2

The detectors are connected to TOF modules that reside in VXI crates, each of which holds a VME processor into which instrument specific software can be downloaded. The majority of instrument parameters including tube high voltage settings and discriminator values are defined in a Microsoft Access database. A data acquisition server contains all of the information needed to configure the instrument including time compression and how channels are related to physical parameters. Final data files will be written using the NeXus file format [3].

3 Cave, translator, and radial collimators

A cutaway of the experimental cave is shown in Fig. 3. For spatially resolved measurements definition of the gauge volume (typically a few mm in representative dimension) is performed by combining an adjustable incident aperture with

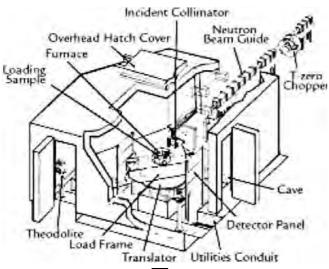


Fig. 3. Cutaway Schematic of cave TS^c

a radial collimator supported between the incident beam and the detector (Fig. 4). By varying the specification of the radial collimator the spatial resolution along the beam can be varied. For SMARTS the detector solid angle is $6 \times$ larger than on the instrument currently used at Lujan thus the size and extent of the radial collimators is commensurately larger. A suite of 5 pairs of radial collimators have been purchased from JJ X-rayTM, providing spatial resolution of 0.5, 1, 2, 3, 4 mm along the incident beam. Each radial collimator subtends 20° in the horizontal plane and comprises 100 mylar blades coated with gadolinium oxide. The angular separation between adjacent blades is 0.2° . For ease of installation, the positioning and support of the radial collimators are mechanically decoupled.

Motion of engineering samples or ancillary equipment with respect to the neutron beam is achieved using a translator fabricated by ADCTM (who also made the incident collimation

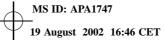


Fig. 4. Radial collimator

Fig. 5. Translator (prior to install)

rs^c Please check quality of Fig. 3. If not o.k. please send new data.

equipment) with a capacity of 1500 Kg and positioning accuracy of better than 0.1 mm (Fig. 5). Sample, aperture and collimator alignment is achieved using two Leica theodolites, mounted in corners of the experimental cave, and interfaced to a workstation. By triangulation the theodolites can locate points to an accuracy of $10\,\mu m$.

4 Load frame furnace

To satisfy the need to monitor mechanical properties at a microstructural level under a range of conditions a unique load frame and furnace suite has been constructed by InstronTM and MRFTM respectively (Fig. 6). Its capabilities include: (i) in situ uniaxial loading up to 250 KN, ii) fatigue rating to 100 KN and iii) a simultaneous temperature capability up to 1500 °C. The loading axis is in the horizontal plane (as is the norm for measurements on neutron spectrometers) with a maximum adjustable distance between the actuator and load cell of 1.2 m. This distance both accommodates the vacuum furnace and provides flexibility for a range of sample geometries and gripping requirements. The vacuum furnace has a maximum "standalone" operating temperature of 1800 °C and operating pressures between 5×10^{-6} torr and 2 PSIG. It can operate in air, oxidizing, inert, corrosive (namely hydrogen-rich) and reducing atmospheres. It comprises a water-cooled, double wall chamber with aluminum neutron windows. Bellows (over the pullrods) seal the hotzone when it is used in conjunction with the load frame. A high temperature extensometer can be mounted above the hotzone. When the furnace is used in conjunction with the radial collimators spatial resolution can be achieved inside a hot loaded sample.

Fig. 6. Load frame with furnace mounted

5 Conclusions

SMARTS is scheduled to enter commissioning in the summer of 2001 and to enter the Lujan center user program in 2002. Its principle areas of research will include; residual stress in fabricated components, in situ loading in new materials and process monitoring. Design parameters are listed in Table 1.

Table 1. SMARTS Specifications

Performance ♦ Moderator Resolution at 90° (wavelength dependent) • d-spacing range ♦ Nominal time for 1 cm³ under load at temperature ♦ Nominal time for 1 mm³ in 10-mm-thick Fe plate	$ \begin{array}{l} \text{Chilled H}_2\text{O},\\ \text{high resolution}\\ \sim 0.4\%\\ \sim 0.54~\text{Å}\\ \sim 10~\text{minutes}\\ \sim 60~\text{minutes} \end{array} $
Primary Flight Path	\sim 31.75 m 1–100 mm ²
Secondary Flight Path \diamond Sample to 90° \diamond 2 θ subtended (each 90° bank)	~ 1.5 m ~ 30°
Load Frame-Furnace ◇ Maximum uniaxial force (compression or tension) ◇ Actuator motion ◇ Furnace maximum temperature ◇ Furnace maximum temperature - under load ◇ Furnace atmosphere ◇ Specimen geometries (alternates on request)	250 KN 0.15 m 1800 °C 1500 °C Vacuum or inert atmosphere Tension (threaded/flat) Compression (flat/cylinder)
Translator ♦ Capacity ♦ Range of travel	1500 kg X = 0.3 m Y = 0.3 m Z = 0.6 m $R = 370^{\circ}$
Radial Collimators $\diamond 2\theta$ angle subtended \diamond Spatial resolution parallel to beam	20° 1, 2, 3, 4, 5 mm

6 Manufacturers

Furnace Materials research furnaces inc., Suncook business park , Suite#2 Rt.28 Suncook NH 03275

Load frame Instron corporation, 100 Royall st. Canton, MA02021-1089

Radial collimators JJ-Xray, Liselundsalle 10, DK-3360, Liseleje, Denmark

Translator and incident collimation Advanced design consulting, 126 Ridge Rd, P.O. Box 187, Lansing, NY 14882 Theodolites Leica geosystems, 3155 Medlock bridge rd, Norcross, GA 30071

Acknowledgements. The SMARTS instrument is the product of a multifaceted spectrometer development team comprising academia, national laboratories, and industry. Funding for SMARTS and for operation of the Lujan Scattering Center, a national user facility, is provided by the United States Department of Energy, Office of Basic Energy Sciences – Materials Science, under Contract No. W-7405-ENG-36 with the University of California

References

- X.L. Wang: "Conceptual design of the SNS engineering diffractometer" SNS Report No. IS-1.1.8.2-6035-RE-A-00
- M.W. Johnson, L. Edwards, P.J. Withers: Physica B: Condens. Matter 234–236, 1141 (1997)
- 3. http://www.neutron.anl.gov/NeXus