
IJRECE VOL. 3 ISSUE 1 JAN-MAR 2015 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 22 | P a g e

Quality Enhancement in Reusable Issues in Component –

Based Development

Lovepreet Kaur (M.Tech)

Department of Computer Science & Applications

Patiala Institute of Engineering & Technology for Women

Patiala (Punjab)-147001

Abstract - Component –based development (CBD)

advocates the acquisition, adaptation, and integration of
reusable software components to rapidly develop and deploy

complex software system with minimum engineering effort

and resource cost .Software reusability is an attribute that

refers to the expected reuse potential of a software

component. Software reuse not only improves productivity

but also has a positive impact on the quality and

maintainability of software products. The paper first discuss

CBD and its associated challenges, and later outlines the

issues concerning component reusability and its benefits in

terms of cost time-savings. Guidelines are presented to

further assist software engineers in the development of

reusable software products and to extract reusable
components from existing software. Quality and

productivity improvement activities within organisations

adopting CED can also benefit from the adoption of these

guidelines.

Keywords: Software components, component-based

development (CBD), software reuse.

I. INTRODUCTION

Component-based development (CBD) has received

considerable attention among software developers, vendors
and IT organisations. A marketplace for software

components is emerging [6].Component –based

development has evolved from previous design and

programming paradigms.CBD is both a subset as well as an

extension of current software engineering practices. The

prospect of increased product reliability and stability with

shorter development time and reduced cost continues to fuel

the on-going interest in CBD. This approach advocates the

acquisition, adaptation, and integration of reusable software

components, including commercial-off-the-shelf (COTS)

products, to rapidly develop and deploy complex software

systems with minimum engineering effort and resource cost
[12]. Although component-based development offers many

potential benefits, such as greater reuse and a commode it

oriented perspective of software, it also raises several issues

that Developers need to consider [3].

Reuse of software has been cited as the most effective

means for improvement of productivity in software

development projects [2, 9]. Reuse of software in a

development project is generally assumed to increase

productivity, improve product reliability, and Lower overall

costs. In fact, several software development projects have
reported productivity increase up to 50% with high levels of

software reuse.

Component-based software engineers intend to define

and describe the processes required to assure timely

completion of high quality, complex software systems that

are composed of a

Variety of pre-produced software components. Evidence of

the wide spread interest in CBD within industry and

academies include [11]:

 The continuing adoption of COTS software solutions to

on-going complex software development projects
across all application domains.

 The continuing push for standardisation of protocols,
frameworks, and semantics among product vendors to

support better interoperability and integration between

COTS products.

 The continuing dominance of CBD-related issues being
presented, published, and addressed at prestigious

software engineering conferences, symposia, and

workshops.

 The continuing increase in effort and improvement for
the development of better component-level design,

implementation, testing, packaging, and documentation

techniques.

Potential CBD quality attributes include: reusability,

maintainability, accuracy, clarity, replace ability,
interoperability, scalability, performance, flexibility,

adaptability, and reliability[14].Enabling technologies have

the potential to accelerate time-tomarket,

Integrate disparate applications, and ensure consistency and

connectivity across the supply chain. Although the enabling

technologies are still maturing and there are complex market

Forces at work, the state of the practice in many

organisations falls well short of realizing the potential of

these technologies [1].The adoption of component-based

development brings with it many changes. The following

are a few significant lessons learnt through past experiences
of component-based development [11].

 CBD can be based on a component reference model.

 CBD facilitates parallel development.

IJRECE VOL. 3 ISSUE 1 JAN-MAR 2015 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 23 | P a g e

 CBD requires pros and cons of reuse to be analyzed.

 CBD offers immutability of components.

 CBD adoption offers prototypes, which are quit
advantageous.

 CBD encourages a two-tier error message structure.

 Testing strategies are altered to support changes that

 CBD makes to the project life cycle.

In particular, developers of large-scale and mission-

oriented applications require many additional capabilities

including [4]:

 Re-engineer legacy applications to harvest existing

 Components reusable in other applications, or

replaceable by newer technologies.

 Find suitable components both locally and externally.

 Integrate components implemented in a variety of

different technologies.

 Validate a component’s behaviour before using it.

 Manage multiple implementations of the same

 Component in different technologies and as it evolves
over time.

This paper is structured into three remaining sections.

Section 2 provides an overview of software reusability and

discusses its pros and cons. Section 3 proposes some

reusability guidelines for CBD. Conclusions are presented

in section 4.

II. SOFTWARE REUSABILITY OVERVIEW

Software reusability is an attribute that refers to the

expected reuse potential of a software component. The

software development community is gradually drifting
toward the promise of widespread software reuse, in which

any new software system can be derived virtually from the

existing code. As a result, an increasing number of

organisations are using software not just as all-inclusive

applications, as in the past, but also as component parts of

larger applications. In this new role, acquired software must

integrate with other software functionality. The move

toward reuse is becoming so widespread that it has even

changed software industry’s vocabulary. For example,

software acquired externally is described with such terms as

commercial-off-the-shelf (COTS) or third-party software,
commercial available software (CAS), and non-

developmental item (NDI). When used as parts of systems,

they are called components, component ware, and so on.

The systems themselves are known as component-based

software or systems of systems [13].There are good reasons

why the industry is moving toward large scale reuse,

including savings in time and money. The cost to Develop a

new system from scratch is significant. This has made

custom software development very expensive. Embedding

large grained software components into multiple

applications also lets one spread component development

costs across each application. This allows for a wider
variety of software systems to enter the market at lower

costs.

Reuse of software components is justifiable if the cost of

reuse is less than the cost of developing new components.

Hence one empirical attribute for reusability is the effort or

cost required to reuse a certain software component. The

amount of work needed to reuse a component in another
system of the same domain may be determined on the basis

of the scale provided in [7,8]. Similar considerations are

taken into account by Caldera and Basil [5]

Who propose a model defining three reusability factors:

 Cost of reuse

 Usefulness of reusable components

 Quality of the reusable components.

III. REUSABILITY GUIDELINES FOR CBD

Productivity and low quality are still the biggest

problems in software engineering. The fundamental cause of
“software bottleneck” is that new software systems are

usually developed from scratch [7]. However, all of the

already designed, implemented, documented, and tested

software contains very much knowledge and experience.

Remarkable benefits could be gained if useful information

from the enormous mass of existing software could be

extracted somehow. For a long time, software developers

have realised that software reuse is the way to utilise the

existing knowledge and work already done when building

new applications. Software reuse not only improves

productivity; it also has a positive impact on the quality and

maintainability of software products [7, 10].
It is generally assumed that the reuse of existing software

will enhance the reliability of a new software application.

This concept is almost universally accepted because of the

obvious fact that a product will work properly if it has

already worked before. Some general reusability guidelines,

which are quite often similar to general software quality

guidelines, include [10]:

 Ease of understanding

 Functional completeness

 Reliability

 Good error and exception handling

 Information hiding

 High cohesion and low coupling

 Portability

 Modularity

CBD lacks appropriate reusability guidelines that could

further benefit component-based development from cost-

savings, time savings, quality and productivity

improvements, reliability improvements, etc.

In order to augment the level of software reusability in

CBD, the following high-level guidelines are suggested:

 Conducting software reuse assessment

 Performing cost-benefit analysis for reuse

IJRECE VOL. 3 ISSUE 1 JAN-MAR 2015 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 24 | P a g e

 Adoption of standards for components

 Selecting pilot project(s) for wide deployment of reuse.

 Identifying reuse metrics

IV. CONDUCTING SOFTWARE REUSE ASSESSMENT

Software reuse assessment is the first step to be initiated

by a software development organisation. Software reuse

assessment is performed to measure the potential for

practicing reuse in an organisation, to determine if the

organisation is ready to embark on a reuse programme and

to define where to focus its reuse efforts in order to gain the

maximum benefit from practicing reuse. The result of reuse
assessment can be used as the basis for defining the

organisation’s reuse goals, reuse adoption strategies, the

domains in which to practice reuse and the reuse programme

implementation plan [15].

Reuse Assessment is performed to help successfully

introduce reuse into software development organisations.

The purposes of the reuse assessment are to:

 Evaluate the organisation’s current reuse strategy

and the implementation of that strategy in current
software projects and various systems groups.

 Use the results of the assessment to determine an

organisation’s reuse goals, elements of reuse

program to achieve those goals, and domains in

which to focus reuse efforts.

 Recommend actions to take to implement its reuse

strategy.

Instituting the practice of reuse across an organisation is

a large and complex task, and its success requires careful

planning, cooperation and good management practices. To
ensure success an organisation needs to determine how

ready, willing and able it is to practice a reuse-driven

development approach and what actions it needs to take to

prepare itself to accomplish its reuse objectives and goals.

The assessment should investigate technical and

management/organizational reuse issues. On the technical

side, some important issues include:

 Identifying and defining core business objects and

other kinds of reusable components

 Defining guidelines and standards for reuse

 Defining the organizational structure and
classification scheme for the reuse

On the management/organizational side, issues include:

 Defining personnel support for core business

objects/reusable component

 Establishing reuse training programs

 Establishing the reuse infrastructure (i.e. reuse

metrics and measurements, corporate reuse

 Policy, reuse incentives).

V. PERFORMING COST-BENEFIT ANALYSIS FOR REUSE

Cost-benefit analysis of software reuse provides valuable
information that helps organizations decide whether or not

reuse is a worthwhile investment. Such an analysis can be

conducted using well-established economic techniques.

Cost-benefit analysis alone should not serve as the sole

criterion in deciding whether or not to pursue reuse.

The net cost savings for reuse can be estimated as [17]

below in equation (1):

Csave = Cs - Cr – Cd (1)

Where Cs is the cost of the project developed from scratch,
Cr is the overhead costs associated with reuse, and Cd is the

actual cost of the software as delivered.

Cs can be determined by applying one of the many cost

estimation models. The overhead costs associated with Cr

include:

 Domain analysis

 Increased documentation to facilitate reuse

 Maintenance and enhancement of reuse artefacts
(documents and components)

 Royalties and licenses for externally acquired
components

 Creation (or acquisition) and operation of a reuse

repository

 Training of personnel in design for reuse and
design with reuse.

The actual cost of the software, Cd , will include project-

related reuse costs, such as the adaptation and integration of
reuse artefacts.

A cost-benefit analysis can also be viewed from two

perspectives [17]:

 That of the producer, a creator of reusable
components, and

 That of the consumer, a user of these components
in the creation of other software.

It is possible for a component to be economically

feasible for the consumer but not for the producer. Producer

costs include those incurred from creating and maintaining a

reuse program and reusable components. In the case where
the producer does not Explicitly charge for its components

or services, its benefits are simply those that are enjoyed by

its consumers, namely, reduced costs, avoided costs, and in

some cases, increased profits.

The Net Present Value (NPV) technique is a well-

established and popular method for conducting a cost–

benefit analysis [17]. The NPV method determines the

present value of a stream of cash flows that result from

creating a component or establishing a reuse program. The

technique can be used to determine the attractiveness of

IJRECE VOL. 3 ISSUE 1 JAN-MAR 2015 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 25 | P a g e

reuse as an investment compared with other software

development strategies.

Here, costs refer to total life cycle costs, or those

incurred from investigating, designing, coding, testing,

debugging and maintaining the components. Similarly,

benefits include total life cycle costs saved. Benefits also
include additional profits resulting from earlier completion

of the product.

In many organizations, a software developer may have

both consumer and producer roles. This distinction between

producers and consumers is important because the costs and

benefits of each may differ. Thus, it is possible that reuse is

economically feasible for the consumer but not for the

producer.

Consumers incur the costs of locating, understanding,

adapting and integrating reusable components into their

software. Benefits can be derived in two ways:

 From the reduction and avoidance of costs that
accrue from not having to create and maintain all

the equivalent functionality provided by the

components and

 From increased profit in completing the product
and delivering it to the market earlier.

For producers, the costs consist of start-up and on-going

expenses. Start-up costs include the expense of creating a

reusable components or making an existing component

reusable, standardisation costs, and the cost of setting up a

library.

For reuse to be economically feasible, total benefits

should exceed total costs:

Producer Costs < Consumer Benefits

In monetary terms,

Cash outflow < Cash inflow

Cash outflows will typically include one-time start-up

costs (e.g. library, guideline component creation) and

ongoing costs (e.g. library and component maintenance).

Cash inflows result from reduced costs, avoided costs and

increased profits. Reduced costs result when the cost to

develop and maintain software, using reuse is less than that
using the current method. Reuse may lead to a shortened

time to market and thus, additional revenues and profits that

the organisation might not have received otherwise.

VI. ADOPTION OF STANDARDS FOR COMPONENTS

Reusability requires a set of software standards so as to

facilitate a better and fast understanding of a component,

and faster integration into a system. Different levels of

standards for components can be identified.

The cost of standardizing a component must be taken

into account when performing a cost-benefit analysis of

reuse. To determine whether or not a component is a
standard, both interface and functionality should be taken

into account. A component without an interface will cost

adaptation and integration of the components.

Software standards mainly include standardizing the

interface of software components. While the interface for

higher-level components is simply a protocol for concepts

with a low degree of formalization, it becomes more

important as the level of abstraction of the component

decreases and the component itself is used mostly.
Software managers hesitate to use software reuse being a

cost intensive investment. Therefore, it is necessary to

understand the cost impact of software reuse. Other factors

that can affect the success of reuse are the design and

realization of the components likely to be reused, and

particularly their adequate standardization.

VII. SELECTING PILOT PROJECT(S) FOR WIDE

DEPLOYMENT OF REUSE

Pilot project(s) are necessary to implement and

demonstrate the viability of reuse for its wider deployment

[16]. The choice of pilot project(s) is important because it:

 Serves as a test site for proposed reuse practices

 Upon completion, may serve as a showcase for

wide deployment of reuse throughout the
organisation

 May determine the scope and extent of allocated
resources for reuse

The following considerations may be helpful in selecting

pilot project(s):

 Identify the success factors for reuse.

 Identify the inhibitors to reuse and the way these
can be overcome.

 Determine what makes reuse an appropriate
strategy for an organization

VIII. DENTIFYING REUSE METRICS

Appropriate reuse metrics should be developed and

identified. Several software metrics have been developed for

measuring code reuse and the benefits of reuse. The benefit
associated with reuse within a system S can be expressed as

a ratio [17] below in equation (2):

Rb(S) = [Cno_reuse - C reuse]/Cno_reuse (2)

Where

Cno_reuse is the cost of developing S with no reuse,

And Creuse is the cost of developing S with reuse.

It follows that Rb(S) can be expressed as a non-dimensional

value in the range

0 <= Rb(S) <= 1.

It has been suggested [18] that

1. Rb(S) is affected by the design of a system, and

IJRECE VOL. 3 ISSUE 1 JAN-MAR 2015 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 26 | P a g e

2. Since Rb(S) is affected by design, Rb(S) may be used to

assess design alternatives.

A general measure of reuse in object-oriented systems,

termed reuse leverage [19] is defined as:

Rlev = OBJreused/OBJbuilt

Where

OBJ reused is the number of objects reused in a system

OBJbuilt is the number of objects built for a system

It follows (hopefully) that as Rlev increases, Rb also

increases. As for code reuse metrics, several attributes can

be selected, they are reuse level (RL), reuse frequency (RF),

and reuse density (RD) and each of them is defined as

follows [17]:

 RL, reuse level, in a repository is the percentage of
different items coming from a given source.

 RF, reuse frequency, in a repository is the percentage
of reference to items coming from a given source.

 RD, reuse density, in a repository is the normalized
number of items coming from a given source.

IX. CONCLUSIONS

Software reuse not only improves productivity but also

has a positive impact on the quality and maintainability of

software products. This paper represents an attempt to

highlight the relevant issues related to software reusability

for component based development. Challenges related to

reusability issues in CBD have been outlined. Considering

the important issues related to software reusability, some

high-level reusability guidelines have been suggested, which
will further help in enhancing quality and productivity

activities within organisations adopting CBD.

X. REFERENCES

[1] Allen Paul (2001): The State of the Practice. In Component
Development Strategies Journal, March 2001, Vol. XI, No. 3.
pp. 1-16.

[2] Boehm B.W., Pendo M., Pyster A., Stuckle E.D., and William
R.D. (1984): An Environment for Improving Software
Productivity. In IEEE Computer, June 1984.

[3] Brereton, B. and Budgen, D. (2000): Component-Based
Systems: A Classification of Issues. In IEEE Computer,
November 2000, pp. 54-62.

[4] Brown Alan (1998): From Component Infrastructure to
Component-Based Development. In

http://www.sei.cmu.edu/cbs/icse98/ papers/p21.html.
[5] Caldiera G. and Basili V.R. (1991): Identifying and

Qualifying Reusable Software Components. In IEEE
Computer, February 1991, pp. 61-70.

[6] Councill Bill and Heineman George T. (2000): Component-
Based Software Engineering and the Issue of Trust. In
Proceedings of International Conference on Software
Engineering (ICSE 2000), pp. 661-664.

[7] Itkonen Juha: Measuring Object-Oriented Software
Reusability. In
http://www.soberit.hut.fi/~tony/seminaari/reports/juho_anttila
.doc.

[8] Mao Y., Sahraui H.A., and Lounis H. (1998):

ReusabilityHypothesis Verification Using Machine Learning
Techniques: ACase Study. In Proceedings of the 13th IEEE
International Conference on Automated Software
Engineering, 13-16 October, 1998, pp. 84-93.

[9] Paul R.A (1995): Metric-Guided Reuse. In proceedings of 7th
International Conference on tools with artificial Intelligence
(TAI’95), 5-8 November, 1995, pp. 120-127.

[10] Poulin Jeffrey S. (1994): Measuring Software Reusability. In

proceedings of 3rd International Conference on Software
Reuse, Brazil, 1-4 November 1994, pp. 126-138.

[11] Sparling Michael (2000): Lessons Learned – Through Six
Years of Component-Based Development”, Communications
of the ACM Journal, Vol. 43 No. 10, October 2000, pp. 47-
53.

[12] Tran Vu N. and Liu Dar-Biau. Application of CBSE to
Projects with Evolving Requirements – A Lesson-learned.

http://www.computer.org/proceedings/apsec/0509/0509toc.ht
m.

[13] Voas Jeffrey M. (1998): The Challenges of Using COTS
Software in Component-Based Development. In IEEE
Computer.

