200X, 200L, 200T GaN Controller Module

Power Sequencer, Inverting Analog Input

PRODUCT FLYER July 2017

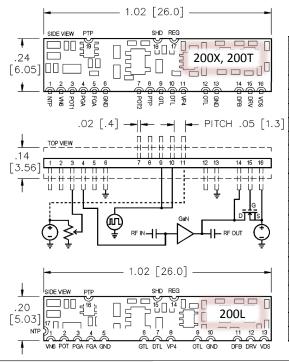
General Description

The 200 Series GaN Controller is capable of operating and protecting all depletion-mode transistors. The inverting analog input accepts positive voltage to produce buffered negative gate bias. It allows 360° board placement with little or no line crossovers in the main board. A single power supply is enough for the 200 to provide dynamic control. Little or no filtering is needed in heavy RF environments. The 200 works seamlessly with 300 and 400 Series MOS switches that have compact footprints for locating near the transistor drain choke. It comes in evaluation boards that are ideal for fast prototyping.

Typical Connection Diagram

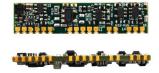
Features

- Protects GaN devices from any power sequence of voltage supplies.
- Internal Negative voltage with 30mA
 OR external supply for 100mA boost.
- Bias Voltage has Fixed Gate OR Pulsed Gate configuration.
- Simultaneous Gate-Drain sequencing OR Independent Gate/Drain control.
- TTL OR Open Drain (<300mA) output drive for MOSFET switches.
- Temp compensation from local OR remote temp sensor feedback.
- >25dB EMI/RFI Rejection at all I/O ports except from auxiliary taps.
- <500 nsec total delay from V_Logic to V_Drain with applicable switch.


PIN PIN

RoHS* Compliant

Specification Snapshot

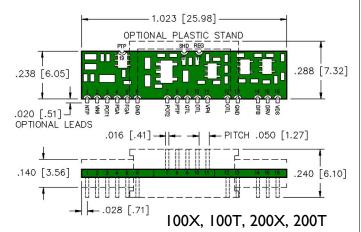

Parameter	Min	Max
Supply (+) Voltage	+20 V	+65 V
Supply (-) Voltage, Optional	-6 V	0 V
TTL Voltage Logic High	+3.6 V	+5.0 V
TTL Voltage Logic Low	0 V	+1.4 V
Internal (-) Supply V, Gate Pinchoff	-4.3 V	
Internal (-) Supply I	-30 mA	
Gate Bias Voltage Range	-4.3V	-0.5 V
Out Switch Drive, Open Drain (V)	0 V	+60 V
Out Switch Drive, Open Drain (I)		300 mA
Output ON Prop Delay (T_Delay 1)		120 ns
Output ON Fall Time (T_Fall 1)		120 ns
Output OFF Prop Delay (T_Delay 5)		80 ns
Output OFF Rise Time (T_Rise 3)		80 ns
Gate ON Prop Delay (T_Delay 3)		160 ns
Gate ON Rise Time (T_Rise 2)		60 ns
Gate OFF Prop Delay (T_Delay 4)		160 ns
Gate OFF Fall Time (T_Fall 2)		60 ns
Soldering Temp (10 sec)		+260°C
Operating Temperature	-40°C	+85°C
Storage Temperature	-65°C	+150°C

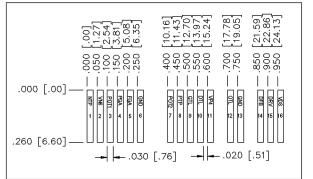
Propagation Delay is measured from 90% of TTL to 10% of Open Drain Output with pull-up resistor. Rise/Fall Times are measured at 10% and 90% of signal. Both measurements are summed for total time.

LABEL	100X 200X		DESCRIPTION
NTP	1	17	Aux Negative Voltage Tap
VN6	2	1	Optional Neg (-) Supply
POT	3	2	Gate Voltage Input Adjust
PGA	4	3	Pulsed Gate Voltage Out
FGA	5	4	Fixed Gate Voltage Out
GND	6	5	Ground
POT	7		Connected to Pin 3
PTP	8		Aux Positive Voltage Tap
GTL	9	6	Gate Pulse Logic Enable
DTL	10	7	Drain Pulse Logic Enable
VP4	11	8	Optional Logic (+) Supply
OTL	12	0	Active-Low TTL Driver
GND	13	10	Ground
DFB	14	11	MOS Drain Feedback
DRV	15	12	Open Drain MOS Driver
VDS	16	13	High Voltage Supply
REG	17	14	Aux Regulator Output
SHD	18	15	Aux Gate Threshold Adj
PTP	19	16	Aux Positive Voltage Tap

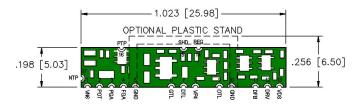
200T, Optional Pins

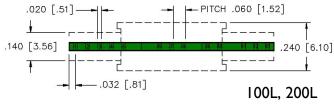
200X, Standard

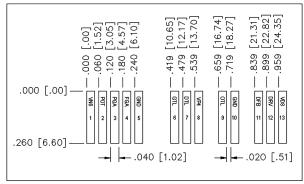

200L, Low Profile


Ordering Information

Model ^	UNIVERSAL GaN CONTROLLER:
200_02R6	POSITIVE ANALOG INPUT, SINGLE
200_02R0	DC SUPPLY, VGS SHUTDOWN AT
200 01R4	-2.6V THRU -0.8V**.
200 00R8	INDEPENDENT OR SEQUENTIAL
200_00110	SWITCHING OF DRAIN AND GATE
220 02R6	DRAIN CONTROLLER:
220 02R0	200_ WITH NO GATE SWITCHING
220 01R4	CAPABILITY
220 00R8	
_	
224_02R6	BASIC SEQUENCER:
224_02R0	200_ WITH NO GATE SWITCH-
224_01R4	ING, NO INTERNAL NEGATIVE
224_00R8	AND LOGIC (+5V) SUPPLIES


- ^ Select type X, L, or T
- ** All models have provisions for adjusting Vgs shutdown threshold to desired level. See XAN-2 app note.


Outline & Land Pattern



TOLERANCE IS +/-.005" [.13mm] UNLESS OTHERWISE SPECIFIED

TOLERANCE IS +/-.005" [.13mm] UNLESS OTHERWISE SPECIFIED

Controller I/O Pin Descriptions

- **WARNING**
- —Do not connect Outputs together unless specified to do so.
- —Do not ground unused Outputs. Leave open.
- —Familiarize with the maximum rated voltages and currents.

<u>NTP</u> has -4.3V output from a voltage inverter. Tap with >10KΩ trim-pot to establish (-) input to POT pin of the 100 Series only. Otherwise, leave open.

<u>VN6</u> input is connected to an optional negative supply of > -6V if gate current boost of 100mA is needed for saturated GaN. Internally, there's 30mA. Leave open otherwise.

<u>POT</u> input receives negative voltage for 100 Series or positive voltage for 200 Series. This unity gain buffer provides negative bias to the transistor gate. Temperature-compensation voltage is added here as well.

<u>PGA</u> output produces a square-wave triggered by TTL to pin GTL. It provides gate bias to GaN at a level set from POT pin and down to V_pinchoff established from either the voltage inverter (-4.3V) or from pin VN6.

FGA output has a fixed gate bias voltage typically used by models with NO gate switching capability. May also be used as auxiliary bias for GaN drivers.

<u>PTP</u> has +5.0V output from a voltage regulator. Tap with >10KΩ trim-pot to establish (+) input to POT pin of the 200 Series only. Otherwise, leave open.

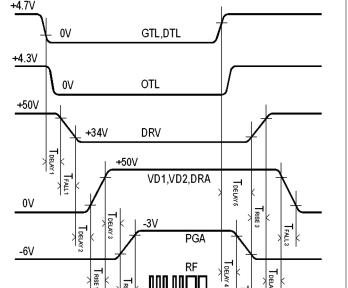
<u>GTL</u> input takes active-low, TTL signal (<4.7V) to control gate switching of the device. It is tied to DTL pin to sequence the gate and drain voltage. This is not used for sub-models. Disconnect from DTL for independent control.

<u>DTL</u> input controls the drain switching end of the transistor. When tied with GTL, the active-low TTL enable switches drain voltage ON and would remain there until gate voltage undergoes a full ON/OFF cycle. Oscillations are mitigated when device is in pinch-off during ramping Vdd up & down.

<u>VP4</u> input is connected to an optional supply of \le +5V. Leave open unless required by sub-models.

<u>OTL</u> output is an active-low TTL drive signal reserved for 300 Series Power CMOS switches. Leave pin open otherwise.

<u>**DFB**</u> input monitors the presence of drain voltage when the MOS switch is ON. Use if gate switching is desired; otherwise, leave open for sub-models.


<u>DRV</u> output connects to the gate input of MOSFET switch module. Connect to multiple switches with up to 300mA total loads.

<u>VDS</u> input receives up to +80V from the same supply that powers the GaN. <u>REG</u> is an auxiliary port of +5.7V from a voltage regulator.

<u>SHD</u> is an auxiliary port for adjusting the gate voltage shutdown threshold. From this node, connect $100 \text{K}\Omega\text{-}1\text{M}\Omega$ resistor to REG (or PTP) ports for increasing the threshold level, or to GND for decreasing said level.

Refer to Application Note XAN-2 for further details.

Typical Timing Diagrams

