
Facets of Volatility Investment Opportunities

E-1

Appendix E

Pragmatic C/C++

We choose to go to the moon in this decade and do the other things, not because they are easy, but

because they are hard,…

John F. Kennedy

Python is slow.

https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/

When someone says: 'I want a programming language in which I need only say what I wish done', give

him a lollipop.

Alan J. Perlis

Why C/C++?

In arguing for other computer languages over C/C++ a commentator wrote that the reason to

learn C/C++ were limited to the following[1]

• You absolutely need to eke out every bit of performance possible out of your software and you would like to

do that with a language that will support Object-Oriented abstractions.

• You are writing code which will directly interface with raw hardware.

• Memory control and timing is of absolute importance, so you must have completely deterministic behavior

in your system and the ability to manually manage memory.

Far from persuading me to use some new ultra high-level “scripting-language,” this pitch

reminded me why I use C/C++ in the design and execution of my option investment strategies.

• For each tradable security or reference index in an options strategy there are thousands of options

of different strikes and maturities. Decision making is a high-dimensional problem with

computationally dense “inner-loops” that require memory and processing speed for effectiveness.

• Trading systems certainly “must have completely deterministic behavior,” and have no use for a

dynamically typed interpreted language that is notoriously intrinsically inefficient[2].

• Hedge optimization for options under real-world scenarios is a variational problem. The

computational intensity of that, in addition to elicitation of the fat-tailed-asymmetric residual risks

is in part the reason for the proliferation of risk-neutral option hedge theories that have disastrous

practical consequences. Why should I handicap myself with an inherently slower language or one

that is inefficient in utilizing computer memory?

Now that is not to say there are not approaches that could match and are perhaps more efficient

than using C/C++. They involve using their precursor high-level languages (e.g., Fortran) and/or

directly using machine language. The reason that C/C++ and Ada are currently used for mission

critical military applications (e.g., aircraft/spacecraft and missile guidance) are efficiency,

performance, and the need to have “completely deterministic behavior,” and that they have

https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/

Appendix E. Pragmatic C/C++

E-2

minimal layers in between them and the hardware. These considerations are also applicable to

medical imaging and geophysical imaging to aid real-time decision making.

The Avogadro Number is 6.022140857 × 1023 and it represents the number of units in one mole

of a substance. The earth’s surface is estimated as 510.1 Trillion squared meters – with a

Trillion being 1012. The number of neurons in the human brain is estimated to be of the order

1011, which is the same order of magnitude of the number of stars in the Milky Way. This gives

some idea of the large-scales that need to be fathomed for computers to be applied to understand

fundamentals of materials, global climate, the human brain, and cosmological mysteries. In the

real-world, real-time decision-making challenges are high-dimensional. Relative to these

challenging problems computers are still puny and slow and do not offer the luxury of

inefficient1 implementations to indulge the whim and fancy of any programing fad.

The purpose of this Appendix is to provide a display of the key C/C++ constructs used to

perform the analysis in the main sections, and build portfolio monitoring and trading systems to

execute the associated strategies. The sample code shown here provides a concise example

based introduction to C/C++ which when supplemented by a book (or three)[4],[5],[6] can provide

the reader, be they trader, quant, portfolio manager, risk-manager, an ability to implement the

analysis shown in the main chapters. The purpose is also to show that C/C++ can arm you with

relatively cheap computation power so that you are not held back by the notoriously ineffectual

centralized information technology bureaucracies (or outright corrupt/inept outsourcing firms or

the latest naïve computer science fad) to implement any ideas of yours that require significant

computation. By taking matters into your own hands you gain immunity from snake charmers

that offer you easy pain-free perfect solutions!

1 Memory utilization and processing speed are the two critical limiting elements of efficiency over and above an
understanding of the phenomenon being represented in a computational machine.

Figure E1. Next time you are pitched an easy information

technology solution that can to solve all problems and has a

short development time due to the utilization of a newfangled

scripting language – think! Terseness is no substitution for

completeness and false short-cuts do not empower the

purported beneficiary[3].

Effective solutions require hard work to effectively articulate a

viable design – irrespective of the implementation computer

language. C/C++ offer implementation frameworks biased

toward efficiency of processing time and memory, and minimal

layers between you and your machine.

Facets of Volatility Investment Opportunities

E-3

Getting Started

The sample code provided here was written on Visual Studio 2017, which implements the

C++17. The coverage here provides “solved examples” that can transition a determined novice

into using C/C++ for problem solving. The vastness of the combined C/C++ scope should not

deter one from working with a subset that is sufficient to address one’s interests, and learning

more at a slower pace or on a need to know basis. There is value in knowing the rationale for the

computational problem and crafting the solution oneself, using useful subsets of C/C++.

Listing1. Demonstration of File/Console Input/Output & String

File input/output is facilitated by #include<fstream>. The three rows in the inputfile.csv listed

below is stored in string1, string2, and string3, line by line.

Appendix E. Pragmatic C/C++

E-4

This program then produces a console that uses string1 to prompt the user to input their name

which is stored in the string variable name. An output message is composed by concatenating

string2, name, and string3, and is output to the console and the output file that is in the

identical location as the input file.

The console waits for the user to enter any key. The input and output stream cin and cout are

directly available as we preceeded int main() with #include<iostream> and using namespace

std;. We are able to store words and sentences in our declared string as we have #include

<string>.

I have found it useful to be able to perform file input/output using C/C++. When done with

carefully designed data-structures and controlled read/write functions it can be used as the basis

for a de-facto database (that is most likely faster than the one built by the centralized information

technology bureaucracy), without the overhead of a database administrator! It has bought me

White Elephant Insurance in more than one instance!

Facets of Volatility Investment Opportunities

E-5

http://en.wikipedia.org/wiki/White_elephant

Figure E2. “A white elephant is a possession which

its owner cannot dispose of and whose cost,

particularly that of maintenance, is out of

proportion to its usefulness. The term derives from

the story that the kings of Siam, now Thailand,

were accustomed to make a present of one of these

animals to courtiers who had rendered themselves

obnoxious in order to ruin the recipient by the cost

of its maintenance. In modern usage, it is an object,

scheme, business venture, facility, etc., considered

without use or value.”

Crunch Some Numbers

Computations are about inputs and processes that turn them into outputs. If the processes are

organized in named functions – individually tested – it goes a long way to avoiding “spaghetti

code” that is hard to re-use by the author, let alone another team member. For instance, the code

in Listing 1 would be better organized by having one function to read the inputs, another

function to compose the output message, and another function to perform the output.

Having chastised myself for potentially “spaghetti code,” I will clean up my act in the code

listing to follow. However, let’s not forget that brevity for the sake of brevity in code may not be

worth pursuing religiously. Instead of pursuing brevity for showing off I recommend being

content with clarity for oneself and one’s colleagues. For the goal is solving the problem at

hand, reliably and repeatedly, and opening the door for solving harder problems thereafter.

Terse code using a computationally inefficient “scripting-language” is of no use if it takes twice

the memory and/or is 3 to 30 times slower for the task at hand – so much so that its proponents

resort to “wrapping” computationally efficient C code to be called from it and flaunt that as its

claim to fame!! What is the point of introducing lazy and inefficient code to wrap around

efficient one - to win a false battle of brevity– for that precludes an evolutionary jump to solving

the next level complex real problem, as the lazy language code will provide the bottle-neck.

I am not alone in recognizing this performance chasm between C/C++ and the recent breed of

scripting languages. Work is underway to remedy this in newer languages that are higher level

than C/C++ in their distance from the machine. Here is a performance comparison available on

one such new language website:

http://en.wikipedia.org/wiki/White_elephant
http://en.wikipedia.org/wiki/Thailand
http://en.wikipedia.org/wiki/Courtier

Appendix E. Pragmatic C/C++

E-6

Table E1. Performance comparison from http://julialang.org/

Gods of performance seem to have not been kind to some currently fashionable ultra-high-level

languages being passed off as a panacea to the uninformed! Might they represent the building of

a tower of Babel too high? After seeing such performance comparisons the question arises: Is

C/C++ that hard to learn that there is a need for new languages that can at most match C/C++ in

performance? Is not any language hard to learn initially? What if you want to solve a

computationally intense problem? Which language is worth my learning time? I do not think

C/C++ is as hard as the new language salesman would have you believe! Do I want a

programmer building my trading system that finds C/C++ too hard? Not!

In Listing 2 a time series is read and its mean, standard deviation, and autocorrelation is

computed. The autocorrelation is computed using “brute-force,” although for a latency critical

real-time application I recommend using the Fast Fourier Transform (FFT). A function reads the

time series – which happens to be daily data in two columns in a .csv file. The second-order

statistics are calculated and output in a .csv file that the user can inspect. This mode of operation

mimics a research function.

The starting point is a specific format data file that contains the data that needs to be read. Of

course the data format has to be known a-priori for it to be successfully read. This data is in the

file data.csv and has dates and the return separated by a ‘,’ and a ‘\n’ after the end of each row.

The first row is a header that described the columns. The data length is not explicitly specified –

a snippet is shown here. Treating this to be daily data we simply seek to extract the daily return

to perform a statistical analysis on it, without any particular significance of the specific dates.

The function that performs our desired task is listed right next to the data.

http://julialang.org/

Facets of Volatility Investment Opportunities

E-7

Listing 2a Sample Data and Function to Read File

It is a good idea to check whether one is indeed extracting the data as planned – by simply writng

the data out in a file that can be visually inspected. By creating output at different junctures of a

program one can build confidence in one’s system. A portion of the check_data.csv file and

the function that create it are listed here:

Listing 2b Sample Data and Function to Write File

Date Return

1/4/1950 0.01134002

1/5/1950 0.004736539

1/6/1950 0.002948985

1/9/1950 0.005872007

1/10/1950 -0.002931694

1/11/1950 0.003517002

1/12/1950 -0.019498402

1/13/1950 -0.005384398

1/16/1950 0.002994911

1/17/1950 0.008338345

1/18/1950 -0.000593296

1/19/1950 0.00118624

1/20/1950 0.001776725

1/23/1950 0.001182732

1/24/1950 -0.003552402

1/25/1950 -0.007142888

1/26/1950 -0.00059755

1/27/1950 0.00536514

1/30/1950 0.011820469

1/31/1950 0.001761081

data

0.01134

0.004737

0.002949

0.005872

-0.00293

0.003517

-0.0195

-0.00538

0.002995

0.008338

-0.00059

0.001186

0.001777

0.001183

-0.00355

-0.00714

-0.0006

0.005365

0.011821

0.001761

Appendix E. Pragmatic C/C++

E-8

The mean and standard deviation of the data are a subset of the second order statistics. The

function to assess them is listed here:

Listing 2c Function to compute mean and standard deviation of data.

The second order statistics also include how the data is correlated with itself at different lags.

This ‘asynchronous correlation” of data with itself is assessed using the following function:

Listing 2d Function to compute autocorrelation of time series.

Facets of Volatility Investment Opportunities

E-9

Listing 2d Function to write second order statistics of time series and sample output.

The different modules that are used to solve the problem of computing the second order statistics

are shown above. These functions are easy to read and can be tested on a stand-alone basis.

They are assembled in the main program that sequentially orchestrates these functions:

lag autocorr mean: 0.000293 stdev: 0.00971

0 1

1 0.028597

2 -0.04012

3 0.002085

4 -0.0071

5 -0.0119

6 -0.00561

7 -0.01874

8 0.009866

9 -0.00611

10 0.011997

Appendix E. Pragmatic C/C++

E-10

Listing 2e Main program to compute second order statistics of time-series. This listing

demonstrates data types int and double, the vector container, and use of functions and passing

data by reference and values to functions. The use of the for loop and nested loops are also

shown, as is the parsing of .csv files.

The main program is quite succinct, as are each of the functions included in the main. Only one

‘computation’ is done in the main – assessing the maximum lag of autocorrelation to be the

integer near 100th of the number of data point. Perhaps a function could be usefully written for

that too and maxLag could be an exogenous user input (via console or file). To prevent the

console application from quickly scrolling and terminating the user is prompted for a keyboard

input.

In a real application the data could be real-time and/or sourced from an EMS or Bloomberg and

the computed second order statistics could be converted into a trading signal and linked to a

portfolio management tool that perhaps has a trade generator. In those applications some other

function may take in the second order statistics as parameters, instead of or in addition to a file

output, which might still be used to provide a record of the second order statistics being used to

make a decision.

Facets of Volatility Investment Opportunities

E-11

Monte-Carlo Simulation

We saw some random looking data in the last example and found its mean, standard deviation

and correlation with itself over different time-lags. The correlation seemed to die sharply. These

quick observations – juxtaposed with beliefs about efficient markets - serve as the basis for

random-walk model of an asset – where the returns are assumed to be independent over distinct

time-steps. In the main section we show that this is an unsatisfactory framework for describing

asset returns and understanding risk-return opportunities in options. Here we simply

demonstrate an implementation of the random-walk model. The implementation framework can

then be extended to more realistic models of an asset – like the one made in the main section.

In the random walk model the mean and standard deviation of the return characterize the Normal

distribution of the returns that are assumed to be independent over the different time steps. A

sequence of identically and independently distributed random Normal random variates yields a

time-series. The notion of an ensemble is central to Monte-Carlo simulation. The return time

series describes one possible outcome (sometimes referred to as ‘path’) among the ensemble. In

certain applications it is useful to assess the uncertainty over the ensemble – driven from the

uncertainty in random returns. So we will demonstrate generating an ensemble of return time-

series. We will employ a canned random number generator [7] and specify the length of the time

series as well as the number of realizations needed. We will implement assessments of simulated

statistics via the statistics of one time series or that of the ensemble at different time steps. This

problem is mathematically simple – however it has sufficient complexity to illustrate the power

of C/C++ and the utility of user defined objects via classes.

Let us call this class whitenoise. We can instantiate a whitenoise object with a name of our

choice – say mywhitenoise. We need to specify how many time steps we had in mind, and how

many random paths we need to perform some statistical analysis. The simulated process is

characterized by a Normal Density that in turn is characterized by its mean and standard

deviation. This provides an example of how a concept creates an ecosystem that is usefully

recognized as a user-defined type – an object of a user-defined class. This facilitates a higher-

level language that can be used to marshal complex objects. This is useful to some extent – as

long as one does not forget the building blocks – and waste memory and processing time.

Appendix E. Pragmatic C/C++

E-12

Listing3a. Class Declaration for “whitenoise.”

Facets of Volatility Investment Opportunities

E-13

Listing3b. Class Implementation for “whitenoise.”

Appendix E. Pragmatic C/C++

E-14

Listing3c. Class Implementation for “whitenoise.”

Facets of Volatility Investment Opportunities

E-15

Listing3d. Class Implementation for “whitenoise.”

Appendix E. Pragmatic C/C++

E-16

Listing3e. Main demonstrating “whitenoise.”

Facets of Volatility Investment Opportunities

E-17

How to Chew More Gum While Chewing Gum

Often accomplishing a task requires performing independent computations and assembling their

results. These independent computations could involve overlapping inputs, or can be non-

overlapping inputs.

An example of an embarrassingly parallel computation problem is simulating a large number of

random numbers. Since we will be making console output to monitor performance and storing

the random numbers in a vector, we make the following inclusions:

The rather simple operation, that we would like to perform lots of, is encapsulated in a function.

Admittedly the case for multi-threading becomes stronger if the function were more time-

consuming and complex.

The problem is introduced using a single thread:

This is followed by the multithreaded example that employs 8 threads and tasks each one of them

with 1/8th the work.

Appendix E. Pragmatic C/C++

E-18

The listing shows how to create threads and wait for them to be done before proceeding ahead.

The computation time is measured to provide a tool to examine if multi-threading is indeed

helping you. There is overhead of creating threads and also of assembling the results of each

thread into an overall data structure. That is why the processing time is not inversely related to

number of threads.

Speed Writing and Reading

In certain applications we might be required to write large quantities of data into files and read

the files. Here we present a specific example of reading and writing uniformly distributed

Facets of Volatility Investment Opportunities

E-19

random numbers. To store these numbers in a vector and create files and subsequently read from

them we include some basic utilities:

A vector of random numbers is created for our demonstration of binary files and comparison

with .csv files.

Writing this vector in a ‘csv file (single column so no comma needed!) was described here

earlier. It simply is as follows:

Instead of directly writing the number we can point a char pointer to the double and write them

in a binary file:

The reading of a csv file described before involved converting the read string into a floating

point

Appendix E. Pragmatic C/C++

E-20

The reading of the binary file involves slicing the buffer by an amount required to store a double

The time taken for these distinct methods can be compared using the clock. At the start and end

of the tasks we log the time and output the difference:

We have all the parts to demonstrate the efficiency of binary files versus .csv files. In the

example problem above I/O using a csv file is 200% more time consuming than I/O using a

binary file.

Afterword

The samples here covered a selective journey through C/C++. Nevertheless, if you can follow

and replicate the examples provided here, then you are capable of harnessing the power of

C/C++ to implement the analysis shown in other sections. You are also prepared to see other

vistas and use C/C++ to solve problems of your choice.

Facets of Volatility Investment Opportunities

E-21

References

[1] http://simpleprogrammer.com/2012/12/01/why-c-is-not-back/

[2] https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/

[3] Straight Talk In the Debate Over Ebonics by Clyde Haberman New York Times Dec 31

1996. https://www.nytimes.com/1996/12/31/nyregion/straight-talk-in-the-debate-over-ebonics.html

[4] The C Programming Language, 2nd edition, Brian W. Kernighian and Dennis M. Ritchie,

Prentice Hall 1988.

[5] The C++ Programming Language, 4th edition, Bjarne Stroustrup, Addison Wesley, 2013.

[6] Professional C++4th edition, Marc Gregoire, John Wiley & Sons 2018.

[7] Numerical Recipes in C++: The Art of Scientific Computing, 2nd edition, William H. Press,

Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Cambridge University Press,

2002.

http://simpleprogrammer.com/2012/12/01/why-c-is-not-back/
https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/
https://www.nytimes.com/by/clyde-haberman
https://www.nytimes.com/1996/12/31/nyregion/straight-talk-in-the-debate-over-ebonics.html

