1. Use the tape diagram to complete the statements. The tape diagram represents 1 .
 $\frac{1}{5}$ of 5 sixths is \qquad sixth.

$$
\frac{1}{5} \times \frac{5}{6}=-\frac{}{6}
$$

Fill in the blanks.
2. $\frac{1}{4}$ of 4 is \qquad .
$\frac{1}{4}$ of 4 fifths is \qquad fifth. $\quad \frac{1}{4} \times \frac{4}{5}=$ \qquad
3. $\frac{1}{3}$ of 6 is \qquad . $\frac{1}{3}$ of 6 eighths is \qquad eighths. $\quad \frac{1}{3} \times \frac{6}{8}=$ \qquad

Make a simpler problem by using a known product or by using unit language. Show your thinking. Then multiply.
4. $\frac{1}{5} \times \frac{10}{8}=$ \qquad 5. $\frac{1}{3} \times \frac{6}{9}=$ \qquad

REMEMBER

6. Adesh and Blake both correctly solved $\frac{42}{49}-\frac{5}{7}$. Look at their work. Which method would you use? Explain why.

$$
\begin{gathered}
\text { Adesh's Way } \\
\frac{42 \div 7}{49 \div 7}-\frac{5}{7}=\frac{6}{7}-\frac{5}{7}=\frac{1}{7}
\end{gathered}
$$

Blake's Way

$$
\frac{42}{49}-\frac{5 \times 7}{7 \times 7}=\frac{42}{49}-\frac{35}{49}=\frac{7}{49}
$$

7. Make like units. Then subtract.

$$
\begin{aligned}
& \frac{7}{8}-\frac{5}{6}= \\
&= \\
&= \\
&
\end{aligned}
$$

