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Vector Consensus

Consensus No Consensus due to adversaries 

How can we design a resilient vector consensus algorithm?

A network of agents modeled by an undirected 
graph   G = (V,E).

State of agent i at time t is           ,          
where .   

Applications

• Control of moving vehicles (UAVs)

• Information processing in sensor networks

• Design of distributed optimization algorithms

• Parameter estimation etc.



Resilient Vector Consensus

Blue         normal

Red adversary 

Agents’ initial positions

The state of agent i at time t is                         ,  where                 .   



Resilient Vector Consensus

Safety:

At all times, every normal agent should remain
inside the convex hull of all normal agents’ initial
positions.

Agreement:

All normal agents should eventually converge at a
common point.

agreement

Blue         normal

Red adversary 

Convex hull of normal agents’ 
initial positions

The state of agent i at time t is                         ,  where                 .   



Can We Use Resilient Scalar Consensus?

1H. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient asymptotic consensus in robust networks,” IEEE J Sel. Areas Comm., 2013.

First Approach:

Implement scalar resilient consensus algorithm in each dimension separately.

There are well studied resilient scalar consensus ( ) algorithms.1



Can We Use Resilient Scalar Consensus?

1H. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient asymptotic consensus in robust networks,” IEEE J Sel. Areas Comm., 2013.

Normal agents can end up converging
outside of the convex hull of their initial
positions.

Implementing multiple instances 
of scalar resilient consensus 

does not work.
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First Approach:

Implement scalar resilient consensus algorithm in each dimension separately.

There are well studied resilient scalar consensus ( ) algorithms.1



Approximate Distributed Robust Convergence (ADRC)

ADRC is resilient vector consensus algorithm proposed by Park and Hutchinson.2

2H. Park and S. Hutchinson, “Fault-tolerant rendezvous of multirobot systems,” IEEE Trans. Robotics, 2017.

1. In each iteration t, a normal agent i finds a point si(t) that lies in the convex hull of
its normal neighbors’ states.

2. Agent i updates its state by moving towards si(t).

i



Approximate Distributed Robust Convergence (ADRC)

ADRC is resilient vector consensus algorithm proposed by Park and Hutchinson.2

2H. Park and S. Hutchinson, “Fault-tolerant rendezvous of multirobot systems,” IEEE Trans. Robotics, 2017.

1. In each iteration t, a normal agent i finds a point si(t) that lies in the convex hull of
its normal neighbors’ states.

2. Agent i updates its state by moving towards si(t).

Challenge:

A normal agent doesn’t know who is normal/adversary
in its neighborhood.

i
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F – Safe Points

F – Safe Point:

Given a set of N points in Rd, of which any of the F points can be adversarial
(corresponding to adversarial agents).

Then, a point that is guaranteed to lie in the convex hull of (N – F) normal points is an
F – Safe point.

N = 6, d = 2,       F = 1

region of 1 – safe points



F – Safe Points

N = 6, d = 2,       F = 1

normal

adversary

1 – safe region (yellow) always lies in the convex hull 
(blue) of normal nodes, regardless of the selection of 
the adversary node.

F – Safe Point:

Given a set of N points in Rd, of which any of the F points can be adversarial
(corresponding to adversarial agents).

Then, a point that is guaranteed to lie in the convex hull of (N – F) normal points is an
F – Safe point.



F – Safe Points

N = 6, d = 2,       F = 1

Challenges:

• When can we guarantee existence of an F – safe
point?

• How can we find it?

region of 1 – safe points

F – Safe Point:

Given a set of N points in Rd, of which any of the F points can be adversarial
(corresponding to adversarial agents).

Then, a point that is guaranteed to lie in the convex hull of (N – F) normal points is an
F – Safe point.



Safe Point Using Tverberg Partition (TP)

Park and Hutchinson1 used Tverberg partitions (TP)2 to compute safe points.

1H. Park and S. Hutchinson, “Fault-tolerant rendezvous of multirobot systems,” IEEE Trans. Robotics, 2017.
2H. Tverberg, “A generalization of Radon's theorem,” J. of the London Math. Society, 1966.

Let, 
S  =  no. of subsets in the partition
F  =  no. of adversary nodes.

F    S – 1 
implies that the intersection contains F – safe 
points.

To compute a safe point, find a point in the 
intersection.

Basic Idea of TP:

Partition points into subsets such that their convex hulls have a non-empty intersection.



Safe Point Using Tverberg Partition (TP)

Let, 
d =    dimension of state
Ni =    total no. of nodes in the neighborhood of agent i
Fi =    no. of adversary agents in the neighborhood of i.

A sufficient condition for the existence of an Fi – safe point is

𝐹𝑖 ≤
𝑁𝑖

𝑑 + 1
− 1

A normal agent can compute an Fi – safe point using TP in 
dO(1)Ni time if

𝐹𝑖 ≤
𝑁𝑖
2𝑑

− 1

d =  2,     Ni =  9,    Fi =  2

𝑑 ≤ 8

Questions

• Necessary condition?

• Can we improve the 
(practical) resilience bound?

• What if d > 8?



Safe Point Using Centerpoint (CP)

N = 6, d = 2

We utilize the notion of centerpoint from discrete geometry. 

Centerpoint: For any set S of N points in Rd, a centerpoint c of the set S is a
point (not necessarily in S) such that each halfspace containing c contains at

least
𝑁

𝑑+1
points of S.



Safe Point Using Centerpoint (CP)

• CP can be viewed as a generalization of 
median in higher dimensions.

• CP always exists (CP Theorem).

• CP is not unique (CP region).

N = 6, d = 2

We utilize the notion of centerpoint from discrete geometry. 

Centerpoint: For any set S of N points in Rd, a centerpoint c of the set S is a
point (not necessarily in S) such that each halfspace containing c contains at

least
𝑁

𝑑+1
points of S.



Safe Point Using Centerpoint (CP)

Theorem: For a set of N points in Rd and  𝐹 =
𝑁

𝑑+1
− 1, the region of 

F – safe points is same as the centerpoint region.

N = 6, d = 2,      F = 1

(a point is F – safe if and only if it is a centerpoint)

1 – safe region   centerpoint region

Centerpoint provides a complete 
characterization of F-safe points, whereas 

Tverberg partitions do not.

Tverberg points region    (not unique)



Safe Point Using Centerpoint (CP)

For a set of N points in Rd (general positions) and 𝐹 ≥
𝑁

𝑑+1
, there exist 

general examples in which an F – safe point does not exist.

N = 6, d = 2,      F = 2

There is no 2 – safe point.

(Why? There are two sets with 4 points each such that their 
convex hulls have an empty intersection.)



Safe Point Using Centerpoint (CP)

There is no 2 – safe point.

(Why? There are two sets with 4 points each such that their 
convex hulls have an empty intersection.)

A necessary condition for the existence of an 
F – safe point is

(Previously, we only had a sufficient condition.)

𝐹 ≤
𝑁

𝑑 + 1
− 1

N = 6, d = 2,      F = 2

For a set of N points in Rd (general positions) and 𝐹 ≥
𝑁

𝑑+1
, there exist 

general examples in which an F – safe point does not exist.



Safe Point Computation Using (CP)

Using known results for the centerpoint computation, we can compute 
an F – safe point if

d = 2 , 3 : 𝐹 ≤
𝑁

𝑑+1
− 1

d  > 3 : 𝐹 = 
𝑁

𝑑
𝑟

𝑟−1

for any integer r.

Moreover, the time complexity of computing an F – safe point in 

− d = 2   is 𝑂(𝑁), 

− d = 3   is   𝑂(𝑁2), and 

− d > 3   is   𝑂 𝑁𝑐log 𝑑(𝑟𝑑)𝑑 for any integer r.

These bounds are better than the ones obtained by using Tverberg partition.

𝐹 ≤
𝑁

2𝑑
− 1



ADRC Using Centerpoint

Using centerpoints improve the resilience of ADRC algorithm as compared 
to Tverberg partition.

d   =    2,  3

CP achieves the theoretical bound, that is, ADRC is resilient to 
𝑵𝒊

𝒅+𝟏
− 𝟏 Byzantine 

adversaries in the neighborhood of agent i.

d   >  3

Centerpoint:              resilient to 
𝑵𝒊

𝒅𝟐
Byzantine adversaries in the neighborhood of i.

Tverberg: resilient to 
𝑵𝒊

𝟐𝒅
Byzantine adversaries in the neighborhood of i.

(Ni = total no. of agents in the neighborhood of a normal agent i.)



Simulations
45 robots in a plane (d = 2), 

5 robots are adversarial

normal

normal robots having   
𝑁𝑖

4
− 1 < 𝐹𝑖 ≤

𝑁𝑖

3
− 1 adversaries in their neighborhoods.

Initial positions 

More adversaries than allowed by the Tverberg-based bound

Final positions (Tverberg based  algo) Final positions (Centerpoint based  algo)

No Consensus Consensus



Conclusions

Resilient vector consensus 
using Centerpoint

Complete characterization 
of F – safe points

Necessary & sufficient 
conditions

Improvement in 
resilience (practically)

Generalization
d  8

Extension

Thank You


