Lie’s Invariance Condition

Example 1
dy 5 3
% =Y + Xy (1)
Lie’s invariance condition becomes
2
Yy + (Y, — Xx) (y2 + xy3> - X, <y2 + xy3> =y° X+ <2y + 3xy2> Y (2)

At this point we will assume a particular form for X and Y. We will try to find a solution

when we choose

X=A(x), Y=B(x)y+C(x) (3)

Substituting (3) into (2) and isolating coefficients with respect to y gives the following
equations

c'=0, (4a)

B'—2C =0, (4b)

—A'—=B-3xC=0, (4¢)

—xA'— A—2xB=0. (4d)

From (4a) we find that C = ¢, a constant. Substituting into (4b) and solving for B gives
B=2x+D0 (5)

where b is a second constant of integration. Substituting B and C into the two final equa-
tions of (4) gives

—~A"—5cx—b=0, (6a)
—xA’ — A — 4dcx?® — 2bx = 0. (6b)

Solving the first for A gives
A:—gcx2—bx+a (7)

where a is also constant. Substituting into the final equation in (6) and expanding gives



;cx2 —a=0. (8)

Since this must be satisfied for all values of x, then we require that a = 0 and ¢ = 0. Thus,

we obtain the infinitesimals

X=—bx, Y=by. )
Example 2
Consider . )
y 1 X
g 10
-2t xy+1 (10)
Lie’s invariance condition becomes
1 x? 1 2\’
Y. Y, — X —+—)-Xy | >
vt (= X) <x2+xy+1) y<x2+xy+1)
5 4 5, 2.0 3
_ Xy + 2x* — 2x°y élachjL x y (1)
0 (xy +1)? (xy +1)

At this point we will assume a particular form for X and Y. We will try to find a solution
when we choose

X =A(x), Y=B(x)y+C(x) (12)

Substituting (12) into (11) and isolating coefficients with respect to y gives the following
equations

B’ =0, (13a)

—xA' +2x*B' +x3C' +2A+xB =0, (13b)

—(x° +2x)A" + x?B' +2x3C" — (x* —4)A +2(x° + x)B =0, (13c)

—(x+ A +23C" —2(x* —1)A+ (x° + x)B + x°C = 0. (13d)

From (13a) we find that B = b, a constant. Substituting into (13b) and solving for C gives

A b

where c is a second constant of integration. Substituting B and C into the two final equa-

tions of (13) gives

xA' + A —2bx —cx?* = 0, (15)
xA'+A—-2bx = 0 (16)

which gives ¢ = 0 and
A =bx+ —. (17)



where a is also constant. Thus, we obtain the infinitesimals

2C1

2 2
X = =, Y= — 4+ = 18
c1x+x c1y + ” +x3 (18)

where we have chosen b = ¢; and a = c5.

Now we have the infinitesimals, our next job is to reduce the original ODE to one
that’s separable. As we have a two-parameter family of infinitesimals, we will look at
each one separately.

Caselcy=1,c0=0

2
In thiscase X = xand Y = y + - Thus, we are require to solve

2 2
xrx-l—(yﬁ—;) ry =0, xsx+<y+;> sy = 1. (19)
The solution of each is, respectively
1 1
r:R(xyj ) s:lnx—i—S(xy—z'— ) (20)
X x
where R and S are arbitrary function of their arguments. Here, we will choose simple and
choose
xy+1
r= 2 s =1Inx, (21)
or
x=¢6, y=re+e " (22)

Under this change of variables, (10) becomes

ds r
i~ AT )
This easily integrates giving
1
s:—§1n|r2—1|+c, (24)
and via (21) gives
1, (xy+1)>2
ln|x|:—§1n|T—1|—l—c, (25)
or, after some simplification
(xy+1)*
2 —x" =g, (26)

the exact solution of (10).



Case2c1 =0,c0=1

In this case X = — and Y = —. Thus, we are require to solve
x x

1 1 1 1

The solution of each is, respectively

1 1 1
r:R(xy+ ) s:—x2+5(xer ) (28)
X 2 X
where R and S are arbitrary function of their arguments. Here, we will choose simple and
choose i1 ,
xy 2
pr— p— 2
r - S=5Y (29)
or ,
x =/2s, y=r— —. (30)

V25

Under this change of variables, (10) becomes

ds

== 1
o= (31)

This easily integrates giving
s = %r2 +c, (32)

and via (29) gives exactly (26).



