Math 2371 Calc III Sample Test 3

1.(i) Show the following vector field conservative

$$\vec{F} = \langle yz + 3, xz + 4y, xy + 3z^2 \rangle$$
.

Using the potential ϕ , evaluate

$$\int_{c} (yz+3)dx + (xz+4y)dy + (xy+3z^{2})dz$$

where c is any path from (0,0,0) to (1,2,3).

1. (ii) Show the following vector field conservative

$$\vec{F} = <2xy, x^2 + z^2, 2yz > .$$

Using the potential ϕ , evaluate

$$\int\limits_{C} 2xydx + (x^2 + z^2)dy + 2yzdz$$

where c is any path from (0,0,0) to (1,2,3).

- 2. Evaluate the following line integral $\int_{c}^{c} xy \, ds$ where c is counterclockwise direction around a circle of radius 1 from (1,0) to (0,1).
- 3. Green's Theorem is

$$\int\limits_C P \, dx + Q \, dy = \iint\limits_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA.$$

Verify Green's Theorem where $\vec{F} = \langle y^2, x^2 + 2xy \rangle$ and R is the region bound by the curves $y = x^2$, y = 1 and x = 0 in Q1.

- 4. Evaluate $\iint_S z \, dS$ where S is the surface of the paraboloid $z = 1 x^2 y^2, z \ge 0$.
- 5. Find the flux $\iint_S \vec{F} \cdot \vec{N} dS$ of the vector field $\vec{F} = \langle 2x, y, z \rangle$ through the surface of the plane x + y + z = 1 in the first quadrant.