
IJRECE VOL. 13 ISSUE 2 APR-JUNE 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 51 | P a g e

Design And Development Of A Machine Learning

Framework To Analyze Software Project Complexity
Sheikh Kashif Ahmed1, Lalchandra Gaund2

1Thakur Shayamnarayan Engineering College,Mumbai
2Thakur Polytechnic, Mumbai

 (sheikhkashif@tsecmumbai.in, lalchandra.co@tpoly.in)

Abstract—This report explores the use of machine learning

algorithms to analyze and predict the complexity of software

projects, addressing the limitations of traditional methods such

as COCOMO II and Function Point Analysis[1][2]. These

methods, while historically significant, struggle to adapt to

modern development paradigms like Agile and DevOps due to

their reliance on static parameters. The proposed approach

leverages machine learning techniques, specifically Random

Forest and Principal Component Analysis (PCA), to provide a

dynamic and data-driven framework for complexity analysis.

The study identifies critical research gaps, including the lack

of integration between feature importance ranking and

predictive modeling, as well as insufficient real-world

validation across diverse datasets. The methodology involves

comprehensive data preprocessing, feature selection, and

model validation using robust metrics such as precision, recall,

and Mean Absolute Error (MAE). By applying these advanced

algorithms, this research aims to enhance project planning,

risk mitigation, and resource allocation. The findings are

expected to contribute significantly to the field of software

engineering, providing a scalable solution for analyzing

project complexity and bridging the gap between traditional

estimation techniques and modern machine learning

methodologies[3]. The study also highlights limitations,

including dependency on data quality and challenges in

generalizing the model across various domains, while

proposing future directions for extending this research.

Keywords—COCOMO II, Function Point Analysis, machine

learning; software project complexity, Random Forest,

Principal Component Analysis(PCA), traditional estimation

technique, Mean Absolute Error(MAE)

I. INTRODUCTION

Software project complexity significantly impacts resource

allocation, cost estimation, and project timelines. Traditional

methods often rely on static parameters, making them

inadequate for dynamic development environments. With the

advent of Agile, DevOps, and other iterative development

methodologies, there is an urgent need for adaptive and data-

driven approaches to assess project complexity effectively[4].

Machine learning provides a promising avenue for addressing

these challenges, offering tools capable of handling large

datasets, identifying patterns, and making predictions based on

real-time inputs. This report explores how machine learning

algorithms, such as Random Forest and PCA, can be utilized

to analyze software project complexity, bridging the gap

between traditional estimation methods and modern

technological demands[5].

II. RATIONALE OF STUDY

FiThe increasing complexity of software projects stems from

factors like rapid technological advancements, shorter

development cycles, and the need to accommodate diverse user

requirements. Traditional approaches, including expert

judgment and algorithmic models like COCOMO II, are often

too rigid or subjective, failing to capture the nuances of modern

projects. By integrating machine learning algorithms, this study

aims to develop a framework that adapts to evolving

requirements, enabling accurate complexity analysis and aiding

decision-making processes in project management[6]. The

rationale also includes addressing inefficiencies in resource

allocation, risk assessment, and delivery timelines through

predictive insights.

III. NATIONAL AND INTERNATIONAL STATUS

BeGlobally, machine learning in software engineering is

gaining traction, with significant advancements in areas such

as defect prediction, cost estimation, and resource

optimization. Countries like the United States, Germany, and

China are at the forefront, leveraging AI technologies in

software development. Nationally, institutions such as the IITs

and NITs in India have contributed to research in predictive

modeling and software metrics. Despite these efforts, there is a

noticeable gap in applying machine learning to analyze

software project complexity3]. Many studies remain limited to

academic settings, with insufficient emphasis on real-world

validation or integration into industry practices.

 IV. LITERATURE REVIEW

3.1 A. Traditional Approaches

COCOMO II: Relies on static parameters and predefined

equations, making it unsuitable for modern iterative

development practices.

Function Point Analysis: Useful for estimating project size but

struggles to adapt to evolving requirements and flexible

methodologies like Agile.

Expert Judgment: Relies on subjective assessments, often

leading to inconsistent results and biases.

mailto:sheikhkashif@tsecmumbai.in
mailto:lalchandra.co@tpoly.in

IJRECE VOL. 13 ISSUE 2 APR-JUNE 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 52 | P a g e

B. Machine Learning for Complexity

Promising studies have explored defect prediction, cost

estimation, and risk assessment using machine learning.

Techniques such as decision trees, support vector machines,

and neural networks have been employed, demonstrating

improved prediction accuracy compared to traditional

models[6].

However, these studies often focus narrowly on specific metrics

rather than providing a holistic approach to complexity

analysis.

 C. Research Gaps

Insufficient integration of feature importance ranking with

advanced predictive algorithms[7].

Limited exploration of dimensionality reduction techniques like

PCA in software project complexity analysis.

Lack of real-world validations using diverse and dynamic

datasets.

Minimal focus on addressing multicollinearity and overfitting

in predictive modeling.

 V. PROPOSED RESEARCH METHODOLOGY

A. Algorithm Selection

Random Forest is an ensemble learning technique that builds

multiple decision trees and combines their outputs for a more

accurate and stable prediction[10]. It works by leveraging two

key ideas:

Bootstrap Sampling (Bagging): Training each tree on a random

subset of data with replacement.

Feature Randomness: Considering only a random subset of

features at each split in the tree.

By aggregating the predictions of multiple trees, Random

Forest minimizes overfitting (common in individual decision

trees) and improves generalization.

Steps in Random Forest

1.Data Preparation

Split the data into training and testing datasets.

2.Bootstrap Sampling

For each tree, a random subset of the training data is selected

with replacement (some samples may appear multiple times).

3.Tree Building

At each split in the tree, only a random subset of features is

considered to find the best split. This introduces feature

diversity among the trees.

4.Aggregation (Ensemble)

Classification: Combine predictions of all trees using majority

voting.

Regression: Take the average of predictions across all trees.

Example

Suppose you are predicting whether a loan applicant is Low

Risk or High Risk using the features: Income, Age, Credit

Score, and Loan Amount.

Bootstrap Sampling:

From the training dataset of 1,000 applicants, multiple subsets

are created with replacement.

Tree 1 gets Dataset A, Tree 2 gets Dataset B, and so on.

Tree Building:

Tree 1 might split based on Age and Loan Amount.

Tree 2 might split based on Credit Score and Income.

Each tree learns patterns based on its sampled data and selected

features.

Prediction by Each Tree:

After training, each tree predicts for a new applicant:

Tree 1: Low Risk.

Tree 2: High Risk.

Tree 3: Low Risk.

Tree 4: Low Risk.

Tree 5: High Risk.

Aggregation (Ensemble Voting):

Classification Aggregation: Take a majority vote from all trees.

Predictions: [Low Risk, High Risk, Low Risk, Low Risk, High

Risk].

Majority vote → Low Risk (3 votes for Low Risk vs. 2 for

High Risk).

Regression Aggregation: Take the average prediction from all

trees.

Final Prediction:

The Random Forest outputs Low Risk as the aggregated result.

PCA is a linear transformation technique used for

dimensionality reduction. It identifies new axes (principal

components) that capture the most variance in the data,

enabling you to represent data in fewer dimensions while

preserving as much information as possible[11].

Steps in PCA:

Standardize the Data:

Convert features to have zero mean and unit variance.

Compute Covariance Matrix:

The covariance matrix measures the relationships between

features. For n features, it’s an n×n matrix.

Find Eigenvalues and Eigenvectors:

Eigenvalues indicate the amount of variance captured by each

principal component.

Eigenvectors define the direction of the principal components.

Select Principal Components:

Sort eigenvalues in descending order and select the top k

eigenvalues and their corresponding eigenvectors.

Transform Data:

Project the original data onto the selected principal

components.

Example of PCA:

Suppose you have a dataset with three features:

Height (cm)

Weight (kg)

Age (years)

Standardize the Data:

Mean-center and normalize Height, Weight, and Age.

Compute Covariance Matrix:

IJRECE VOL. 13 ISSUE 2 APR-JUNE 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 53 | P a g e

A 3x3 matrix showing how features vary together:

Eigenvalues and Eigenvectors:

Eigenvalues: [2.8, 1.1, 0.1] → Variance captured by each

component.

Eigenvectors: Directions of principal components.

Select Top-k Components:

Retain the first 2 components (with the largest eigenvalues) to

reduce dimensionality.

Project Data:

Transform the data onto the 2 principal components.

Result: A 2D representation of your data, combining Height

and Weight into one component while retaining most of the

variance.

Combined Example: Random Forest + PCA

Suppose you have a dataset with 50 features to predict credit

default risk.

Apply PCA:

Reduce 50 features to the top 10 principal components that

capture 95% of the variance.

This step reduces redundancy and noise.

Train Random Forest:

Use the reduced 10-component dataset to train a Random

Forest model.

Random Forest will build diverse trees based on these

components and output predictions.

Make Predictions:

Use the Random Forest ensemble to predict credit risk with

high accuracy and less computational cost.

VI. IMPLEMENTATION PLAN

Phase 1: Literature Review and Dataset Preparation

Conduct an extensive review of existing literature. Identify and

preprocess datasets for machine learning.

Phase 2: Model Development

Implement Random Forest for feature selection.Apply PCA for

dimensionality reduction.

Phase 3: Validation and Testing

Validate the model using real-world datasets. Compare results

with traditional methods.

Phase 4: Documentation and Publication

Document findings and submit to peer-reviewed journals.

VII. EXPECTED RESEARCH OUTCOMES

1.Enhanced Predictions Improved accuracy in predicting

software project complexity compared to traditional methods.

2.Better Project Management Effective resource allocation,

risk assessment, and timeline management.

3.Contributions to the Field Development of a replicable

framework for complexity analysis in software engineering,

bridging the gap between traditional estimation techniques and

modern machine learning methodologies.

REFERENCES

[1] Moløkken, K., & Jørgensen, M. (2003). On the sensitivity of COCOMO
II software cost estimation model. International Conference on Software
Engineering.

[2] Dubey, S. S., & Rana, A. (2018). Limitations of Function Point for Agile
Software Environment: A Case Study. International Journal of
Computer Science and Technology.

[3] Dubey, S. K., Rana, A., & Singh, R. K. (2023). Software Complexity
Prediction Model: A Combined Machine Learning Approach. Advances
in Intelligent Systems and Computing.

[4] Khan, M. A., Khan, S. U., & Anjum, A. (2024). Hybrid Feature
Selection Method for Predicting Software Defect. Journal of
Engineering and Applied Science.

[5] Chen, H., Xu, B., & Zhong, K. (2024). Enhancing Software Effort
Estimation through Reinforcement Learning-Based Feature Selection.
arXiv preprint arXiv:2403.16749.

[6] Osman, H., Ghafari, M., & Nierstrasz, O. (2018). The Impact of Feature
Selection on Predicting the Number of Bugs. arXiv preprint
arXiv:1807.04486.

[7] Tran, N., Tran, T., & Nguyen, N. (2024). Leveraging AI for Enhanced
Software Effort Estimation: A Comprehensive Study and Framework
Proposal. arXiv preprint arXiv:2402.05484.

[8] Uc-Cetina, V. (2023). Recent Advances in Software Effort Estimation
using Machine Learning. arXiv preprint arXiv:2303.03482.

[9] Singh, A., Singh, R., & Agrawal, S. (2022). Machine Learning for
Predicting Software Project Complexity. Journal of Software
Engineering Research and Development.

[10] Gupta, M., & Sharma, P. (2021). Evaluating the Effectiveness of PCA in
Software Cost Estimation Models. International Journal of Advanced
Computer Science and Applications.

[11] Kumar, S., & Mehta, R. (2023). AI-Driven Solutions for Modern
Software Development Challenges. IEEE Transactions on Software
Engineering.

Mtech(CSE), Assistant Professor at TCET, Mumbai with 18+ year of
teaching experience.

ME(pursuing), Lecturer at TPoly, Mumbai with 5+ years of experience.

