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Abstract— The connection between leader-asymmetry and
controllability in controlled agreement networks provides a
topological, necessary condition for controllability. In this paper
we investigate how to produce hierarchical networks that, at
each level in the hierarchy, exhibit the leader-asymmetry prop-
erties. Graph grammars are moreover provided for assembling
the leader-asymmetric networks of any size.

I. INTRODUCTION

In this paper, we investigate how to construct network

topologies in a hierarchical manner in such a way that they

are amenable to external control. In particular, the networks

will be comprised of a collection of nodes whose cohesion

is ensured through agreement-based interaction rules. These

networks can moreover be controlled by injecting control

signals at particular input-nodes (so-called leader-nodes) in

the networks. The control of such multi agent systems has

received considerable attention during the last decade and

several results have been presented regarding the analysis

of the underlying structure and characteristics of these dis-

tributed coordination systems, e.g. [1],[2],[3],[4].

One key question when trying to design controllers for

such networks is whether or not they are even controllable

in the first place. Controllability issues in these types of net-

worked systems was first discussed in [5], where conditions

for controllability were given in terms of the eigenvectors of

the graph Laplacian. Later, a more topological exploration

of the controllability properties in such leader-follower net-

works was given in [6], presenting a sufficient condition for

a network to be uncontrollable in the case of single leader

case using graph symmetries. These concepts were extended

in [7] and through the use of equitable partitions. In [8], a

graph theoretic discussion of the controllable subspace of an

uncontrollable network was given. Some other results related

to controllability of leader-follower systems were presented

in [9].

A key concept when studying the controllability of net-

worked systems that has emerged is the notion of an

external, equitable partition. Such a partition groups to-

gether nodes into cells, and members of the same cell

have been shown to converge asymptotically to the same

subspace. As such, a necessary condition for a network

to be completely controllable is that no such cells exist

that share more than a single node. We will refer to such

networks as leader-asymmetric and this paper addresses

the construction of leader-asymmetric networks through the
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inter-connections of multiple sub-networks that are them-

selves leader-asymmetric. This process of inter-connecting

networks leads, in turn, to a hierarchical structure and the

relationship between the leader-asymmetry properties at each

stage of the hierarchy and the overall network is presented.

Moreover, these results are then used to provide graph

grammar rules for the self-assembly of individual nodes into

a leader-asymmetric network of any size with a single leader.

Also, the maximum distance of any follower node from

the leader in these resulting networks is also given. The

reason for defining graph grammars for this assembly task is

that they have been used to model self-assembly processes

involving a large number of mobile agents in a natural and

direct manner, as shown in [10],[11].

This paper has two major parts. One is related to the

hierarchical construction of leader-asymmetric, single-leader

networks and the other is related to the graph grammars for

the self assembly of such networks. Our presentation starts

with a system description in Section III. In Section IV, we

review some results regarding the controllability and leader-

asymmetry of single leader networks from graph theoretic

point of view. In Section V, we present results related

to the leader-asymmetry of interconnected and hierarchical

networks. Section VI reviews the basics of graph grammar

constructions, and Section VII presents the rule sets for self

assembly of leader-asymmetric, single-leader systems.

II. SYSTEM DESCRIPTION

In this section, we show how can we construct a large

single-leader network, by connecting together smaller single-

leader networks in a hierarchical way. The main idea is to

grow the network by connecting together individual networks

at different stages, where, smaller single leader networks

constitute the first stage of this process. At the next stage, the

leaders of these smaller subnetworks are connected together

with an external node called the super-leader. This super-

leader serves as the external input to our system. Throughout

this paper, by a graph, we mean, an undirected graph with

no loops and multiple edges between the vertices.

Consider n identical leader-follower networks, i.e. net-

works where the control input is injected at the leader-node.

Each of these networks G (i), where i ∈ {1,2, . . . ,n}, has a

single leader and m followers. The hierarchical construction

is now to connect together the leaders of all G (i) via another

leader-follower network G (l), where the leaders take on

follower roles, and a new node xls takes on the leader role.

xls is a super leader and it is also a leader node of G (l).

Now, the overall network G that is obtained by connecting

G (1),G (2), ...,G (n) together via their leaders to an external



node xls , is also a leader-follower network with a single

leader xls and all other nodes being followers. This construc-

tion is illustrated in Fig. 1
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Fig. 1. G (i) is a leader-follower network with a single leader x
(i)
l and m= 3

followers. n = 3 such networks are connected together via their leaders

through another leader-follower network G (l) where an external node xls

takes on a leader role. The resulting inter-connected network G is also
a leader-follower network with xls as a leader and all other nodes being
followers.

What we would like to understand is how certain key

properties associated with the controllability of the individual

networks are inherited by the new inter-connected network

G . This is the topic of the next sections that start with a

discussion of what the key topological properties are.

III. EQUITABLE PARTITIONS AND

LEADER-ASYMMETRIC, SINGLE LEADER NETWORKS.

In this section we will review the scope of equitable

partitions in examining the controllability of single leader

networks and state some results from [7],[8] and [9]. These

results will connect the study of leader-asymmetry with that

of controllability (or at least with uncontrollability), which is

a connection that will be pursued throughout the remainder

of this paper.

Definition 3.1: (External Equitable Partition): A partition

π of nodes X of a graph G , with cells C1,C2, · · · ,Cr is said

to be an external equitable partition if each node in Ci has the

same number of neighbors in C j, for all i, j ∈{1,2, · · · ,r}, i 6=
j, with r =| π |, which denotes the cardinality of partition.

Definition 3.2: (Non-Trivial External, Equitable Parti-

tion): An external equitable partition in which at least one

cell has more than one nodes is a non-trivial external,

equitable partition.

Definition 3.3: (Leader-Invariant External, Equitable Par-

tition (LEP)): The LEP is a partition πM = πF

⋃

πL, where

πF = {CM
1 ,CM

2 , · · · ,CM
s } is the external equitable partition of

the follower nodes such that the cardinality of πF is minimal

(i.e. has the fewest cells), and the leader L belongs to the

singleton cell CM
s+1 = {L} of the partition πL = {CM

s+1}.

Fact 1: Every leader follower network has a unique LEP

[9].

Definition 3.4: (Leader-Asymmetric Single-Leader Net-

work): A leader-follower network is said to be a leader-

asymmetric if its LEP is trivial i.e. every cell in its LEP

is a singleton cell.

Fact 2: A single leader network executing the controlled

agreement dynamics is completely controllable only if it is

leader-asymmetric [9]. (see Fig. 2)

In light of the second fact, we will shift our focus

from controllability to the leader-asymmetry throughout the

remainder of this paper. The reason for this shift is that the

leader-asymmetry is a purely topological condition, while

controllability is not. It should be noted that it is just a

necessary condition for controllability and no topological

necessary and sufficient condition has, as of yet, been found

for the single-leader, controlled agreement dynamics.
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Fig. 2. G (1) has a trivial LEP, so it is leader-asymmetric, single leader

network. It is also completely controllable with x
(1)
l as its leader. G (2) is

not leader-asymmetric as it has a non trivial LEP. G (3) has a trivial LEP, so

it is leader-asymmetric but it is not completely controllable with x
(3)
l as its

leader.

IV. HIERARCHICAL LEADER-ASYMMETRIC, SINGLE

LEADER NETWORKS.

Definition 4.1: (Connection Network and Interconnected

Network) Consider n leader-follower networks

G (1),G (2), ...,G (n), each with a single leader x
(1)
l ,x

(2)
l , ...,x

(n)
l

respectively1, then G is a network obtained by connecting

G (1),G (2), ...,G (n) together via their leaders only to an

external node called super leader xls , through a connection

network G (l), as discussed in the Section II. The resulting

G is said to be an interconnected network, which is also

a leader-follower network with a single leader xls and all

other nodes being followers.

One question one might ask is whether or not this type

of construction preserves certain desirable properties. In this

paper, we will focus on the issue of leader-asymmetry as

defined in the Definition 3.4. However, we start with the

question of controllability and see that this property is in fact,

not preserved when controllable networks are interconnected.

Lemma 4.1: Let G be an interconnected single-leader

network as per Definition 4.1. If the individual networks

G (1),G (2), ...,G (n) are completely controllable with respect

to their respective leaders, then complete controllability of

the connection network G (l) is neither a necessary nor a

sufficient condition for the complete controllability of G .

Proof: (Counter example)- Let G (1) and G (2) be two

completely controllable single-leader networks with x
(1)
l and

x
(2)
l as leaders respectively, as shown in the Fig. 3. Intercon-

nected network G is obtained by connecting G (1) and G (2)

through a completely controllable connection network G (l).

1Note that we will, throughout this paper, use x(i) to denote the state
associated with node i, but we will also use it as shorthand to denote the
node itself, whenever this is clear from the context.



The resulting interconnected network G is not completely

controllable with xls , as its LEP is non-trivial. (see Fig. 3.)
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Fig. 3. Complete controllability of connection network G (l) is not a
sufficient condition for controllability of interconnected network G .

Now, let us connect the leaders of same G (1) and G (2)

through another connection network G (l) that is symmetric

with respect to xls , and hence uncontrollable. The resulting

G is completely controllable with respect to xls even though

G (l) is uncontrollable. (see Fig. 4.)
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Fig. 4. Complete controllability of connection network G (l) is not a
necessary condition for controllability of interconnected network G .

This shows that the complete controllability of the indi-

vidual networks does not ensure the complete controllability

of the interconnected network.

Lemma 4.2: Let G (1) be a path network with one of

the end nodes as a leader x
(1)
l and G (2) be any leader-

asymmetric single leader network with a leader x
(2)
l . Let G

be a network obtained by connecting the second end node

of G (1) with x
(2)
l , then G is also a leader-asymmetric, single

leader network with x
(1)
l

as a leader.
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Fig. 5. Path network connected with a leader-asymmetric, single leader
network gives leader-asymmetric G .

Proof: A path network with a terminal node as the only

leader, is completely controllable and hence, in πG , cells

containing the nodes of G (1) will be singletons. Since x
(2)
l is

the only node of G (2), connected with any node of G (1), so

a cell containing x
(2)
l is also singleton. Since G (2) is itself

leader asymmetric and x
(2)
l is in a singleton cell in πG , so

all other nodes of G (2) will also be in singleton cells. Thus,

giving a trivial πG . Hence G is leader-asymmetric. (see Fig.

5.)

Lemma 4.3: Let G be an interconnected single leader

network as per Definition 4.1, with all subnetworks G (i)

being leader-asymmetric, then, G is also leader-asymmetric

iff cells containing x
(i)
l in G are singletons.

Proof:(⇒) If G is leader-asymmetric, then it has a trivial

LEP πG by definition with all cells being singletons.

(⇐) Let us assume for the sake of contradiction that

in πG , cells containing x
(i)
l ’s are singletons but G is not

leader-asymmetric. Then, there must be a cell C∗ in πG

containing more than one nodes that either belong to (a)

same subnetwork G (i) or (b) different subnetworks. (a) is not

possible as each subnetwork is itself leader asymmetric and

each x
(i)
l is in a singleton cell in πG . For (b), since followers

of one subnetwork G (i) are not connected to the leader

of another subnetwork, so nodes in a cell C∗ containing

followers of different subnetworks, can never have same

node to cell degree with other cells, as required by LEP

construction. So, (b) is also not possible.

Theorem 4.4: If G is an interconnected network as per

Definition 4.1 and G (1),G (2), ...,G (n) are identical, leader-

asymmetric, single leader networks, then leader-asymmetry

of the connection network G (l) with xls as a leader, is a

sufficient condition for the interconnected network G to be

leader-asymmetric with the same leader xls.

Proof: Let X be a set, containing the leader nodes of

G (i) i.e. X = {x
(1)
l ,x

(2)
l , · · · ,x

(n)
l }. Also, let Xdir = {x

(i)
l ∈

X : x
(i)
l is directly connected to xls}. Similarly, Xnot dir =

{x
(i)
l

∈ X : x
(i)
l

is not directly connected to xls}. Note that,

X = Xdir ∪Xnot dir

For proving the above theorem, we will prove the follow-

ing claims first.

Claim 1: In πG , every xd ∈ Xdir is in a singleton cell.

Proof : Let Cls be a cell in πG , containing the super leader

xls . Now assume for the sake of contradiction that there exists

xd ∈Xdir not contained in a singleton cell Cd . Then, this Cd

can only contain another xd′ ∈ Xdir as they are the only

nodes in πG directly connected to xls (and Cls ). This requires

G to be symmetric about xls . Since all G (i)’s are identical

and leader-asymmetric, so G can be symmetric about xls iff

the connection network G (l) is symmetric about xls . But G (l)

is leader-asymmetric by construction and so, not symmetric

about xls . Thus, G is also not symmetric about xls and hence,

our assumption is not true, thus, proving the claim.

Claim 2: In πG , every xnd ∈Xnot dir is also in a singleton

cell.

Proof : Let us assume for the sake of contradiction that

there exist xnd ∈Xnot dir that is not in a singleton cell Cnd in

πG . Also, it is directly connected to some xd ∈ Xdir. Then

there is one of the following possibilities that (a) Cnd also

has some xd′ ∈ Xdir. (b) Cnd also has a follower node of

subnetwork whose leader is xd or (c) Cnd also has some

other xnd ∈ Xnot dir. (a) is not possible by claim 1. (b) is



not possible as all subnetworks G (i) are identical and also

leader-asymmetric, so there will always be a follower node

in the subnetwork of leader xd that can never be contained

in a valid cell in πG .

For (c), let us assume that Cnd also contain xnd′ ∈Xnot dir

along with xnd . Since, xnd is directly connected to xd that is in

a singleton cell Cd , this requires xnd′ to be directly connected

to xd also. Now, to maintain the same node to cell degree

condition for a valid πG , the leader in Xnot dir that is directly

connected to xnd will be contained in a cell along with

some other leader that is directly connected to xnd′ . This will

continue until we get a cell containing xndα ∈ Xnot dir and

xndβ
∈Xnot dir. Now there must be another leader in Xnot dir

that should be directly connected to either one of xndα or xndβ

but not both, as otherwise the connection network G (l) cannot

be leader-asymmetric. Let that remaining leader be xndlast
and

without loss of generality, it is connected to xndα . Then for a

valid πG , the cell Cndlast
containing xndlast

must also contain

a follower node of subnetwork whose leader is xndβ
and that

follower node should be directly connected to xndβ
. Since all

subnetworks are identical and leader-asymmetric with the the

same number of follower nodes, so a follower node in the

subnetwork of xndlast
will always be left that can never be

contained in a valid cell in πG . So our assumption is not

valid and the claim is true.

From claims 1 and 2, we get that in LEP of G , all leaders

x
(i)
l of subnetworks G (i) will be contained in singleton cells.

Thus, from Lemma 4.3, we get that G is leader-asymmetric.
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Fig. 6. An example illustrating Theorem 4.4.

Theorem 4.5: Let G (1),G (2), ...,G (n) be identical and

leader-asymmetric single leader networks with leaders

x
(1)
l ,x

(2)
l , ...,x

(n)
l respectively. Let G be a network obtained

by interconnecting the leaders x
(i)
l through a network G (l).

If G (l) is leader-asymmetric with one of x
(i)
l say x

(∗)
l , then

G is also leader-asymmetric with a single leader x
(∗)
l .

Proof: Let X = {x
(1)
l ,x

(2)
l , · · · ,x

(n)
l }. Also, assume that

there exists x
(∗)
l ∈ X such that G (l) is leader-asymmetric

with x
(∗)
l . Also x

(∗)
l is a leader of a subnetwork G (∗).

Let us do the partition of X as X =

Xdir

⋃

Xnot dir

⋃

{x
(∗)
l }, where, Xdir = {x

(i)
l ∈ X :

x
(i)
l is directly connected to x

(∗)
l }. Also, Xnot dir = {x

(i)
l ∈

X : x
(i)
l is not directly connected to x

(∗)
l }.

Claim: In πG , the follower nodes of subnetwork G (∗) will

be contained in singleton cells.

Proof : Let V be a set of follower nodes of G (∗) and

V = Vd

⋃

Vnd , where Vd ⊆ V is a subset containing those

followers of G (∗) that are directly connected to x
(∗)
l and

Vnd ⊆ V is a subset containing the followers of G (∗) not

directly connected to x
(∗)
l .

Firstly, we show that, in πG , any vd ∈ Vd will be in a

singleton cell. For the sake of contradiction, let us assume

that there exists vd1
∈ Vd such that cell Cvd1

containing vd1

is not singleton. Then Cvd1
will also contain one of the

following along with vd1
, (a) some vnd ∈ Vnd , (b) some other

vd ∈ Vd , (c) some xnd ∈ Xnot dir, (d) some follower node of

a subnetwork G (i) where G (i) 6= G (∗). or (e) some xd ∈Xdir.

Out of these (a),(c) and (d) are not possible as none of the

nodes in these options is directly connected to x
(∗)
l while

vd1
∈ Cvd1

is directly connected to x
(∗)
l . Now, since G (∗) is

leader-asymmetric, so it is not symmetric about x
(∗)
l , hence

(b) is also not possible. For (e), assume that Cvd1
contains vd1

and some xd1
∈ Xdir, where xd1

is a leader of a subnetwork

G (d1). Then vnd1
∈ Vnd , where vnd1

is directly connected

to vd1
, and a follower node of subnetwork G (d1) say v

(d1)
f1

directly connected to xd1
, must also be contained in the same

cell due to the construction rules of πG . Similarly, in the next

step, vnd2
∈ Vnd where vnd2

is directly connected to vnd1
,

and a follower node of G (d1) directly connected to v
(d1)
f1

,

must also be in a same cell. This will continue and since all

subnetworks G (i) are identical, so we will always be left with

a follower node in G (d1) that cannot be contained in a valid

cell in πG . So,(e) is also not possible, and every vd ∈ Vd will

be in a singleton cell in πG .

Note that followers of one subnetwork G (i) are not con-

nected with the leaders or followers of another subnetwork.

Also, in G (∗), every vd ∈ Vd will be in a singleton cell in

πG . Since G (∗) is also leader-asymmetric, so these facts will

directly imply that every vnd ∈ Vnd will also be in a singleton

cell. This proves our claim.

If we remove the follower nodes of G (∗) from G , we get

G̃ , where G̃ exactly satisfies the conditions in Theorem 4.4

with x
(∗)
l = xls , thus, π

G̃
is trivial, with all nodes being in

singleton cells. Now adding the follower nodes of G (∗) to G̃

will give us G . By the above claim, we know that follower

nodes of G (∗) can never be a cause of non trivial πG if G (∗)

is identical to the other subnetworks G (i). Combining these

facts, we conclude that πG is also trivial and hence, G is

leader-asymmetric with x
(∗)
l as a leader.

V. GRAPH GRAMMAR PRELIMINARIES.

In this section, we will review the basics of graph gram-

mars approach to model the task of assembling large number

of self controlled parts into a prescribed formation. We refer

the readers to [10] and [11] for more details about this topic.

Definition 5.1: (Rule): A rule is a pair of graphs r =
(Ga,Gb) that changes the edge set E(Ga) of Ga to E(Gb) to

give Gb while keeping the vertex set constant, i.e. V (Ga) =
V (Gb). The size of r is V (Ga) =V (Gb).
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Fig. 7. An example illustrating Theorem 4.5.

Definition 5.2: (Rule Set or Grammar): A rule set (or

grammar) Φ is a set of rules that defines a concurrent

algorithm for a group of individual nodes to follow.

Definition 5.3: (System): A system is a pair (G0,Φ)
where G0 is an initial graph of the system and Φ is a set of

rules applied on G0.

Definition 5.4: (Trajectory): A trajectory of a system

(G0,Φ) is a (finite or infinite) sequence

G0 (r1,h1)
−−−−→

G1 (r2,h2)
−−−−→

G2 (r3,h3)
−−−−→

·· ·

If the sequence is finite, then there exists a terminal graph

where no rule in Φ is applicable. We denote a trajectory of a

system by τ and the set of all such trajectories by T (G0,Φ).
Also, we use the notation τ j to denote the jth graph in the

trajectory τ j .

VI. GRAPH GRAMMARS FOR PRODUCING

LEADER-ASYMMETRIC SINGLE NETWORKS

In this section we will show how graph grammars can be

used to produce leader-asymmetric, single leader networks

of any size in a decentralized way. These simple rules can

be used to produce subnetworks of any size and then using

the previous results, we can construct bigger networks out

of them that are also leader-asymmetric with a single leader.

So we can state our goal as, Construct a rule set Φ for a

system (Go,Φ) with Go as a set of isolated nodes, such that

trajectory of a system, τ ∈ T (Go,Φ), is a finite sequence

with a terminal graph as a set of leader-asymmetric, single

leader networks with p nodes. We call the resulting leader-

asymmetric networks with p nodes and a single leader as

a crystal. We will also provide maximum leader to node

distance, d in that crystal, resulting from (Go,Φ). We also

use the notation | G | to denote the cardinality of the vertex

set of the graph G .

A. Rules for Crystals of Size p = 2n,n ≥ 1

Consider the following rule set ΦA

ΦA =

{

(r0) a a ⇀ ℓ1 c

(r1) ℓi ℓi ⇀ ℓi+1 c 1 ≤ i ≤ n− 1

Claim: ΦA gives leader-asymmetric, single leader crystals

of size p = 2n.

Proof : Let τA be a trajectory obtained by ΦA and τ j is

the jth graph in this trajectory. Then τ0 is a path graph with

a single node c and a single leader ℓ1. τ1 is obtained by

connecting two τ0 via their leaders and making one of them

as a new leader ℓ2. By Theorem 4.5, τ1 is leader-asymmetric

with leader ℓ2 as τ0 is leader-asymmetric. Also | τ j |= 2 |
τ j−1 |. This continues until we get a terminal graph with

τn−1 which is infact leader-asymmetric with a single leader

ℓn and | τn−1 |= p = 2n.

Here maximum leader to node distance, d = n.

B. Rules for Crystals of Size p = k(2)n,k ≥ 3,n ≥ 0

Consider the following rule set ΦB

ΦB =















(r0) a a ⇀ ℓ1 b1

(r1) bi a ⇀ c bi+1 1 ≤ i ≤ (k− 3)
(r2) bk−2 a ⇀ c c

(r3) ℓ j ℓ j ⇀ ℓ j+1 c 1 ≤ j ≤ n

Claim: ΦB gives leader-asymmetric crystals of size p =
k(2)n with single leader.

Proof : Proof is exactly like the proof of ΦA with the only

addition that in the initial steps, the first three rules r0,r1,r2

are creating a path graph τk−2 with | τk−2 |= k with a single

leader ℓ1.

Maximum leader to node distance, d = (n+k)-1 in this

case.

C. Rules for Crystals of Size p = k(2)n + 1,k ≥ 3,n ≥ 0

Consider the following rule set ΦC

ΦC =































(r0) a a ⇀ ε1 b1

(r1) bi a ⇀ c bi+1 1 ≤ i ≤ (k− 3)
(r2) bk−2 a ⇀ c c

(r3) ε1 a ⇀ ℓ1 ℓ f inal

(r4) εi ℓi ⇀ c ℓi+1 1 ≤ i ≤ n

(r5) εm εm ⇀ εm+1 c 1 ≤ m ≤ (n− 1)

These rules will produce the leader-asymmetric, single

leader crystals of size p− 1 = k(2)n, exactly the same way

as in ΦB with ℓn+1 as a leader. An extra node, ℓ f inal is then

connected to ℓn+1 to give a crystal of size p = k(2)n. In this

case, maximum leader to node distance, d = n+k

D. Rules for Crystals of Size p = k(q)n. k,q ≥ 3, n ≥ 0

Consider the following rule set ΦD

ΦD =

(r0) a a ⇀ ℓ1 b1

(r1) bi a ⇀ c bi+1 1 ≤ i ≤ (k− 3)
(r2) bk−2 a ⇀ c c

(r3) ℓ j ℓ j ⇀ ℓ j+1 ε j,1 1 ≤ j ≤ n

(r4) ℓ j ε j,m ⇀ ε j,(m+1) c 1 ≤ j ≤ n, 1 ≤ m ≤ (q−3)

(r5) ℓ j ε j,(q−2) ⇀ c c 1 ≤ j ≤ n,

Claim: ΦD gives leader-asymmetric, single leader crystals

of size p = k(q)n.

Proof : Let τD be a trajectory produced by ΦD. Here τk−2

is a path graph with | τk−2 |= k having a single leader ℓ1

produced by first three rules r0,r1 and r2. In the next step

q of these identical τk−2 graphs are connected via their

leaders only, such that these ℓ1’s are themselves connected



in a path graph now with ℓ2 as their leader to give τk+q−3.

Now by the direct application of Theorem 4.5, τk+q−3 is also

leader-asymmetric with ℓ2 as a leader. Also | τk+q−3 |= kq.

In the next step q identical τk+q−3 are connected via their

leaders ℓ2 that are connected in a path graph, thus giving

us τ(k−2)+2(q−1) with ℓ3 as a leader and | τ(k−2)+2(q−1) |=

q(kq) = k(q)2. Again τ(k−2)+2(q−1) is leader-asymmetric by

the direct application of Theorem 4.5. This continues n

times until we get a terminal graph τ(k−2)+n(q−1) which

is infact a leader-asymmetric with ℓn+1 as a leader and

| τ(k−2)+n(q−1) |= k(q)n.

Here, maximum leader to node distance, d = n(q-1)+k-1.

VII. EXAMPLE AND GENERAL ALGORITHM

An example showing the construction of crystals of size

p = 8, using the rule sets of Section VI-A are shown in the

Fig. 8. All rules in the rule sets in Section VI are binary 2.

An algorithm behind the graph grammars of above cases is

presented below.

Algorithm I

Require: G be a graph, such that

(a) G is leader-asymmetric with a single leader

(b) | G |= p

1 : Factorize p as p = k(q)n

2 : Make Path Grpahs G1 initially with a single leader

ℓ1 and | G1 |= k

3 : for i = 1 to i = n

4 : Gi+1 = Connect q no. of Gi’s together via their

leaders ℓi, s.t. these ℓi’s are connected

in a path graph with the end node

as a new leader ℓi+1 of Gi+1.

5 : i = i+ 1

6 : end

7 : Gn+1 is required G with a single leader ℓn+1

Here the factorization step of p = k(q)n is important as

it is not unique. The maximum leader to node distance d

depends on the specific choice of k,q and n for the same

p. It turns out that for same p = k(q)n, factorization with a

larger value of n produces a crystal of size p with smaller d,

where d is the maximum leader to node distance, if we use

the above scheme. Also, for same p, if two factorizations

have same n, then the one with larger q produces a crystal

with smaller d.

VIII. CONCLUSIONS

In this paper, we discussed the construction of hierar-

chical leader-follower networks through the interconnection

of multiple subnetworks that are themselves leader-follower.

2Rules, whose vertex sets have two vertices are binary.
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Fig. 8. An example assembly sequences for producing crystals of size
p = 8

We investigated the leader-asymmetry property of such in-

terconnected networks which is a necessary condition for

their controllability, in terms of their subnetworks. We also

gave a sufficient condition for the interconnected hierarchical

networks to be leader-asymmetric. Moreover, these results

are used to design the rules for self-assembly of isolated

nodes into leader-asymmetric, single leader networks of any

size in a decentralized manner.

REFERENCES

[1] A. Jadbabaie, J. Lin and A.S. Morse, ”Coordination of groups of
mobile autonomous agents using nearest neighbor rules”, IEEE Trans.
Automat. Contr.,, vol. 48, no.6, pp. 988-1001, 2003.

[2] M. Mesbahi, ”On state-dependent dynamic graphs and their control-
lability properties”, IEEE Trans. Automat. Contr.,, vol. 50, no.3, pp.
387-392, 2005.

[3] M. Ji, A. Muhammad and M. Egerstedt, ”Leader-based multi-agent
coordination: Controllability and optimal control”, American Control

Conference,, Minneapolis, pp. 1358-1363, June 2006.
[4] R. Olfati-Saber, J.A. Fax and R.M. Murray, ”Concensus and cooper-

ation in networked-multiagent systems”, IEEE Proceedings, vol. 95,
no.1, pp. 215-233, 2007.

[5] H.G. Tanner, ”On the controllability of nearest neighbor interconnec-
tions”, IEEE Conference on Decision and Control, pp.2467-2472, Dec.
2004.

[6] A. Rahmani and M. Mesbahi, ”On the controlled agreement problem”,
American Control Conference, Minnesota, pp. 1376-1381, June 2006.

[7] M. Ji and M. Egerstedt, ”A graph-theoretic characterization of control-
lability for multi-agent systems”, American Control Conference, New
York, pp. 4588 - 4593, July 2007.

[8] S. Martini, M. Egerstedt and A. Bicchi, ”Controllability decomposi-
tions of networked systems through quotient graphs”, IEEE Confer-

ence on Decision and Control, Cancun, pp. 5244 - 5249, Dec. 2008.
[9] A. Rahmani, M. Ji and M. Egerstedt, ”Controllability of multi-agent

systems from a graph theoretic perspective”, SIAM Journal on Control

and Optimization, vol. 48, no. 1, pp. 162-186, 2009.
[10] E. Klavins, R. Ghrist and D. Lipsky, ”Graph grammars for self assem-

bling robotic systems”, IEEE International Conference on Robotics

and Automation, New Orleans, pp. 5293 - 5300, April 2004.
[11] E. Klavins, R. Ghrist and D. Lipsky, ”A Grammatical Approach to

Self-Organizing Robotic Systems”, IEEE Trans. Automat. Contr., vol.
51, no. 6, pp. 949 - 962, June 2006.


