1. Find the derivative of the following

$$(i) y = x \sin^{-1} x$$

$$(ii) y = \ln(x^2 + e^x)$$

(iii)
$$x^2 - xy + y^4 = x - y$$

Soln (i).
$$y' = 1 \sin^{-1} x + x \cdot \frac{1}{\sqrt{1 - x^2}}$$

Soln (ii). $y' = \frac{1}{x^2 + e^x} \cdot (2x + e^x)$

Soln (iii). We differentiate implicitly giving

$$2x - (xy' + y) + 4y^{3}y' = 1 - y'$$

$$-xy' + 4y^{3}y' + y' = 1 - 2x + y$$

$$(-x + 4y^{3} + 1)y' = 1 - 2x + y$$

$$y' = \frac{1 - 2x + y}{-x + 4y^{3} + 1}$$
(1)

$$y' = \frac{1}{x^2 + e^x} \cdot (2x + e^x)$$

2. If $f(x) = x^3 + x + 1$ find $(f^{-1})'(3)$.

Soln. The inverse is given by $x = y^3 + y + 1$. We wish to find the derivative at x = 3 so we need the y value. Therefore, $3 = y^3 + y + 1$ or $y^3 + y - 2 = 0$ or $(y - 1)(y^2 + y + 2) = 0$ giving that y = 1. Since $x = y^3 + y + 1$ then $1 = (3y^2 + 1)y'$ or $y' = \frac{1}{3\nu^2 + 1}$ and at y = 1y' = 1/4.

Find the absolute minimium and maximum of the following on the given interval

(i)
$$f(x) = 1 - x^2$$
 on $[-2,3]$
(ii) $f(x) = 2x^3 - 15x^2 + 24x$ on $[0,3]$

(ii)
$$f(x) = 2x^3 - 15x^2 + 24x$$
 on [0,3]

Soln (i). Since f is continuous on [-2,3] and differentiable on (-2,3) it will have a minimum and maximum. These will be located at the endpoints or inside the interval at the critical points. So here f' = -2x and f' = 0 when x = 0.

$$f(-2) = -3$$
, $f(0) = 1(max)$, $f(3) = -8(min)$. (2)

Soln (ii). Since f is continuous on [0,3] and differentiable on (0,3) it will have a minimum and maximum. These will be located at the endpoints or inside the interval at the critical points. So here $f' = 6x^2 - 30x + 24 = 6(x - 1)(x - 4)$ and f' = 0 when x = 1, 4 but x = 4is outside the interval

$$f(0) = 0, \quad f(1) = 11(max), \quad f(3) = -9(min).$$
 (3)

4. State the Mean Value Theorem. Verify the Mean Value Theorem for the following

(i)
$$f(x) = x^3 - x$$
 on $[0,2]$

(ii)
$$f(x) = \frac{x}{x+2}$$
 on [1,10]

Soln. The MVT states that if f(x) is continuous on [a, b] and differentiable on (a, b) then there exists a c (at least one) in (a, b) such that

$$\frac{f(b) - f(a)}{b - a} = f'(c). \tag{4}$$

Soln (i) We have $\frac{f(2) - f(0)}{2 - 0} = \frac{6}{2} = 3$. Also $f' = 3x^2 - 1$ and $f'(c) = 3c^2 - 1 = 3$ gives $c = 2/\sqrt{3}$

Soln (ii) We have
$$\frac{f(10) - f(1)}{10 - 1} = \frac{1/2}{9} = 1/18$$
. Also $f'(x) = \frac{2}{(x+2)^2}$ and

$$f'(c) = \frac{2}{(c+2)^2} = \frac{1}{18} \implies c = -8.4$$

from which we choose c = 4.

5. If $y = x(x-4)^3$ calculate the following

- (i) The critical numbers
- (ii) When y is increasing and decreasing.
- (iii) Determine whether any of the critical numbers are minimum or maximum.
- (iv) When y is concave up and down and determine the points of inflection.
- (v) Then sketch the curve.

Soln

$$y' = (x-4)^3 + 3x(x-4)^2 = 4(x-1)(x-4)^2$$

and y' = 0 when x = 1, 4 (Critical numbers)

$$y'' = 4(x-2)^2 + 8(x-1)(x-4) = 12(x-2)(x-4)$$

and y'' = 0 when x = 2,4 (possible PI's.)

X		1		2		4	
x-1	_	0	+	+	+	+	+
$(x-4)^2$	+	+	+	+	+	0	+
$(x-1)(x-4)^2$	_	0	+	+	+	0	+
slope	\		/	/	/		/
x-2	_	_	_	0	+	+	+
x-4	_	_	_	_	_	0	+
(x-2)(x-4)	+	+	+	0	_	0	+
h/v)))	PI		PI)

critical numbers x = 1, 4

increasing
$$(1,4)$$
, $(4,\infty)$ decreasing $(-\infty,1)$
$$\min(1,-27) \quad \text{max - none}$$
 concave up $(\infty,2)$, $(4,\infty)$ concave down $(2,4)$
$$\operatorname{PI}(2,-16), (4,0)$$

6. A ladder 13 feet long is resting against the wall of a house. The base of the ladder is pulled away from the wall at a rate of 2 ft/sec. At rate is the tip of the ladder moving down the wall when the base of the ladder is 5 ft away from the wall?

Soln.

What we know:
$$\frac{dx}{dt} = 2$$

What we want:
$$\frac{dy}{dt}$$
 when $x = 5$

Relate rates:
$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$$

so
$$\frac{dy}{dt} = -\frac{x}{y}\frac{dx}{dt}$$

When
$$x = 4$$
, $y = 12$ so $\frac{dy}{dt} = -\frac{5}{12} \cdot 2 = -\frac{5}{6}$ ft/sec.

7. A paper cup in the shape of an inverted cone with height 10 cm and a base of radius 3 cm, is being filled at a rate of $2 \text{ cm}^3/\text{min}$. Find the rate of change in the height of the water when the height of the water is 5 cm.

Soln.

What we know:
$$\frac{dV}{dt} = 2$$

What we want:
$$\frac{dh}{dt}$$
 when $h = 5$

Relate variables:
$$V = \frac{1}{3}\pi r^2 h$$
.

We also have similar triangles so
$$\frac{h}{10} = \frac{r}{3}$$

so
$$V = \frac{3\pi h^3}{100}$$

Relate rates:
$$\frac{dV}{dt} = \frac{9\pi h^2}{100} \frac{dh}{dt} = 0$$
 so $\frac{dh}{dt} = \frac{100}{9\pi h^2} \frac{dV}{dt}$

When
$$h = 5 \frac{dh}{dt} = \frac{100}{9\pi 5^2} \cdot 2 = \frac{8}{9\pi}$$
 cm/min.