
IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1366 | P a g e

Detecting and Preventing DDoS attacks, Taking Counter

Measures for Successful Attack
Ch.Annapurna1, Mr.G.Praveen Babu2

1M.Tech student of CS, 2Assosiate Professor of CSE
12JNTUH,SIT

Abstract- Internet services and applications have become an

inextricable part of daily life, enabling communication and the

management of personal information from anywhere. To

accommodate this increase in application and data complexity,

web services have moved to a multi-tiered design wherein the

webserver runs the application front-end logic and data are

outsourced to a database or file server.

As the increasing of usage of multi tier web services ,attacks
on multi tier web services are also increases. The main attack

we are considering here is Distributed Denial-of-Service

attack. So to prevent and detect the possibility of DDoS attack

here we are using a Double Guard Technology.

Double Guard differs from this type of approach that

correlates alerts from independent IDSs. Rather, Double-

Guard operates on multiple feeds of network traffic using

single IDS that looks across sessions to produce an alert

without correlating or summarizing the alerts produced by

other independent IDSs. This system used to detect attacks in

multi-tiered web services. Our approach can create normality
models of isolated user sessions that include both the web

front-end (HTTP) and back-end (File or SQL) network

transactions. For websites that do not permit content

modification from users, there is a direct causal relationship

between the requests received by the front-end webserver and

those generated for the database back end.

Keywords- Double Guard, Intrusion Detection System

I. INTRODUCTION

Web-delivered services and applications have increased in

both popularity and complexity over the past few years.

services typically employ a web server front-end that runs the

application user interface logic, as well as a back-end server

that consists of a database or file server.

Because of increasing the use of personal and/or corporate

data, web services have always been the target of attacks.
To protect multi-tiered web services, Intrusion detection

systems (IDS) have been widely used to detect known attacks

by matching misused traffic patterns or signatures.However,

IDS cannot detect cases wherein normal traffic is used to

attack the web server and the database server. Another

drawback of using of IDS is in current multi-threaded web

server architecture, it is not feasible to detect causal mapping

between web server traffic and DB server traffic since traffic

cannot be clearly attributed to user sessions.

In this paper, we present DoubleGuard, a system used to

detect attacks in multi-tiered web services. Our approach can

create normality models of isolated user sessions that include

both the web front-end (HTTP) and back-end (File or SQL)

network transactions. To achieve this, we employ a

lightweight virtualization technique to assign each user’s web

session to a dedicated container, an isolated virtual computing

environment. We use the container ID to accurately associate

the web request with the subsequent DB queries. Thus,

DoubleGuard can build a causal mapping profile by taking

both the web sever and DB traffic into account.

As we are using multi tierwebservices, it gets requests from
many clients. So to not to correlate the information between

two clients we are using container IDs. It means for each user

we are assigning a different id. So for each user it will create a

seperate session called containers.

For each user session we are assigning a virtualized server. It

means for each user request we are creating a virtual server.

So if any attack happens on server it will not effect on actual

server. Because we are creating a virtual server.

Because of we are using containers and virtualization we are

calling it as Double Guard Technology.

No prior knowledge of the source code or the application logic
of web services deployed on the webserver. Virtualization is

used to isolate objects and enhance security performance.

Lightweight containers can have considerable performance

advantages over full virtualization.

II. BACKGROUND WORK

A network Intrusion Detection System (IDS) can be classified

into two types: anomaly detection and misuse detection.

Anomaly detection first requires the IDS to define and

characterize the correct and acceptable static form and

dynamic behavior of the system, which can then be used to

detect abnormal changes or anomalous behaviors [1], [2].
Intrusion alerts correlation [3] provides a collection of

components that transform intrusion detection sensor alerts

into succinct intrusion reports in order to reduce the number of

replicated alerts, false positives, and non-relevant positives. It

also fuses the alerts from different levels describing a single

attack, with the goal of producing a succinct overview of

security-related activity on the network. It focuses primarily

on abstracting the low-level sensor alerts and providing

compound, logical, high-level alert events to the users.

DoubleGuard differs from this type of approach that correlates

alerts from independent IDSes. Rather, DoubleGuard operates
on multiple feeds of network traffic using a single IDS that

looks across sessions to produce an alert without correlating or

summarizing the alerts produced by other independent IDSs.

An IDS such as [4] also uses temporal information to detect

intrusions. DoubleGuard, however, does not correlate events

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1367 | P a g e

on a time basis, which runs the risk of mistakenly considering

independent but concurrent events as correlated events.

DoubleGuard does not have such a limitation as it uses the

container ID for each session to causally map the related

events, whether they be concurrent or not.

Since databases always contain more valuable information,
they should receive the highest level of protection. Therefore,

significant research efforts have been made on database IDS

[5], [6], [7] and database firewalls [8]. Thesesoftwares, such as

Green SQL [9], work as a reverse proxy for database

connections. Instead of connecting to a database server, web

applications will first connect to a database firewall. SQL

queries are analyzed; if they’re deemed safe, they are then

forwarded to the back-end database server. The system

proposed in [10] composes both web IDS and database IDS to

achieve more accurate detection, and it also uses a reverse

HTTP proxy to maintain a reduced level of service in the

presence of false positives. However, we found that certain
types of attack utilize normal traffics and cannot be detected

by either the web IDS or the database IDS. In such cases, there

would be no alerts to correlate.

In the existing system we use desktop systems [11] that use

lightweight virtualization to isolate different application

instances. Such virtualization techniques are commonly used

for isolation and containment of attacks. However, in our

DoubleGuard, we utilized the container ID to separate session

traffic as a way of extracting and identifying causal

relationships between web server requests and database query

events.

III. IMPLEMENTATION

In an general case we have two types of web sites. Those are

static and dynamic. For a static website, we can build an

accurate model of the mapping relationships between web

requests and database queries since the links are static and

clicking on the same link always returns the same information.

However, some websites (e.g., blogs, forums) allow regular
users with non-administrative privileges to update the contents

of the served data. This creates tremendous challenges for IDS

system training because the HTTP requests can contain

variables in the passed parameters.

For example, instead of one-to-one mapping, one web request

to the web server usually invokes a number of SQL queries

that can vary depending on type of the request and the state of

the system. Some requests will only retrieve data from the web

server instead of invoking database queries. In other cases, one

request will invoke a number of database queries The

challenge is to take all of these cases into account and build
the normality model in such a way that we can cover all of

them.

As we know that all communications from the clients to the

database are separated by a session. We assign each session

with a unique session ID. DoubleGuard normalizes the

variable values in both HTTP requests and database queries,

preserving the structures of the requests and queries. To

achieve this, DoubleGuard substitutes the actual values of the

variables with symbolic values.

Following this step, session i will have a set of requests, which

is Ri , as well as a set of queries, which is Qi . If the total

number of sessions of the training phase is N, then we have

the set of total web requests REQ and the set of total SQL

queries SQL across all sessions. Each single web request rm∈
REQ may also appear several times in different Ri where i can

be 1, 2 ... N. The same holds true for qn∈ SQL.

If several SQL queries, such as qn, qp, are always found

within one HTTP request of rm, then we can usually have an

exact mapping of rm → {qn, qp}. However, this is not always

the case. Some requests will result in different queries based

on the request parameters and the state of the web server. For

example, for web request rm, the invoked query set can

sometimes be {qn,qp} or, at other times, {qp} or {qq,qn,qs}.

The probabilities for these queries are usually not the same.

For 100 requests of rm, the set is at {qn,qp} 75 times, at {qp}
20 times, and at {qq,qn,qs} only 5 times. In such a case, we

can find the mapping of rm → qp is 100%, with a rm → qn

possibility of 80% and a rm → qs occurrence at 5% of all

cases. We define this first type of mapping as deterministic

and the latter ones as non-deterministic.

We developed an algorithm that takes the input of training

dataset and builds the mapping model for static websites. For

each unique HTTP request and database query, the algorithm

assigns a hash table entry, the key of the entry is the request or

query itself, and the value of the hash entry is AR for the

request or AQ for the query respectively.

Static Model building algorithm:

Require: Training Dataset, Threshold t

Ensure: The Mapping Model for static website

1: for each session separated traffic Ti do

2: Get different HTTP requests r and DB queries q in

this session

3: for each different r do

4: if r is a request to static file then
5: Add r into set EQS

6: else

7: if r is not in set REQ then

8: Add r into REQ

9: Append session ID i to the set ARr with r as the

key

10: for each different q do

11: if q is not in set SQL then

12: Add q into SQL

13: Append session ID i to the set AQq with q as the

key

14: for each distinct HTTP request r in REQ do
15: for each distinct DB query q in SQL do

16: Compare the set ARr with the set AQq

17: if ARr = AQq and Cardinality(ARr) > t then

18: Found a Deterministic mapping from r to q

19: Add q into mapping model set MSr of r

20: Mark q in set SQL

21: else

22: Need more training sessions

23: return False

24: for each DB query q in SQL do

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1368 | P a g e

25: if q is not marked then

26: Add q into set NMR

27: for each HTTP request r in REQ do

28: if r has no deterministic mapping model then

29: Add r into set EQS

30: return True

In our prototype, we chose to assign each user session into a

different container; however this was a design decision. For

instance, we can assign a new container per each new IP

address of the client. In our implementation, containers were

recycled based on events or when sessions time out. We were

able to use the same session tracking mechanisms as

implemented by the Apache server (cookies, mod usertrack,

etc) because lightweight virtualization containers do not

impose high memory and storage overhead..It uses the

container ID to accurately associate the web request with the

subsequent DB queries.
Thus, DoubleGuard can build a causal mapping profile by

taking both the webserver and DB traffic into account.In

addition to this static website case, there are web services that

permit persistent back-end data modifications. These services,

which we call dynamic, allow HTTP requests to include

parameters that are variable and depend on user input.

IV. ARCHITECTURE

Fig.1: Using of DoubleGuard in multitier web servers

In anmulti tier architecture server gets request from many

users. So for each request we are assigning container id so that

one user cannot steal the information from another user. Each

of these requests from clients should be assigned to server. But

here we are using virtualization technique on server. It means

every request from client is assigned to each virtualized

server. So if any attack is happend on actual server, it will not

effect on original server . So that attacks that are happend on

network get reduced. Because of we are using containr ID and

virtualization Techniques we are calling it as Double Guard

technology.

V. ADVANTAGES OF DOUBLE GUARD

TECHNOLOGY

A. Attack Detection

Once the model is built, it can be used to detect malicious

sessions. We manually launch attacks against the testing

website, and we mixed these attack sessions.

A.Injection Attack

Attacks such as SQL injection do not require

compromisingthe webserver. Attackers can use existing

vulnerabilities inthe webserver logic to inject the data or string
content thatcontains the exploits and then use the webserver to

relay theseexploits to attack the back-end database. Since our

approachprovides two-tier detection, even if the exploits are

acceptedby the webserver, the relayed contents to theDBserver

wouldnot be able to take on the expected structure for the

givenwebserver request. For instance, since the SQL

injectionattack changes the structure of the SQL queries, even

if theinjected data were to go through the webserver side, it

wouldgenerate SQL queries in a different structure that could

bedetected as a deviation from the SQL query structure

thatwould normally follow such a web request

B.Direct DB Attack

It is possible for an attacker to bypass the webserver

orfirewalls and connect directly to the database. An

attackercould also have already taken over the webserver and

besubmitting such queries from the webserver without sending

web requests. Without matched web requests for suchqueries,

a webserver IDS could detect neither. Furthermore,if these DB

queries were within the set of allowed queries,then the

database IDS it would not detect it either.However, thistype of

attack can be caught with our approachsince we cannot match

any web requests with these queries.
.

VI. RESULTS

In a network we can get packets from either from TCP or UDP

or any other protocol, Based on the packet type we are

seperating the packets. Here for packet creation we are using

jpcap package in java. If a client is sending requests for more

number of times or packets flow is getting high over some

peroid of time to a network we are considering that as an

Attack. For every network there should be a Threshold value.It

means maximum capable of accepting packets from another

network or client. The thresould value range is 1 to 5000. The
Defalut value is 1500.

Here we are performing an attack exernally to a web page. So

we are calculate the incoming packets and requests. So those

exceeds the range that we are chosen we are considering that

as an attack. These attacks information can seen only to

admin.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1369 | P a g e

Fig.2: Final result

VII. CONCLUSION

Our assumption is that an attacker can obtain “full control”of

the webserver thread that he/she connects to. That is,

theattacker can only take over the webserver instance

runningin its isolated container. Our architecture ensures that

everyclient be defined by the IP address and port container

pair,which is unique for each session. Therefore, hijacking
anexisting container is not possible because traffic for

othersessions is never directed to an occupied container. If

thiswere not the case, our architecture would have been

similarto the conventional one where a single webserver

runsmany different processes. Moreover, if the

databaseauthenticates the sessions from the webserver, then

eachcontainer connects to the database using either admin

useraccount or nonadmin user account and the connection

isauthenticated by the database.

In such case, an attacker willauthenticate using a nonadmin

account and will not beallowed to issue admin level queries. In

other words, theHTTP traffic defines the privileges of the
session which canbe extended to the back-end database, and a

nonadmin usersession cannot appear to be an admin session

when it comesto back-end traffic.Within the same session that

the attacker connects to, it isallowed for the attacker to launch

“mimicry” attacks. It ispossible for an attacker to discover the

mapping patterns bydoing code analysis or reverse

engineering, and issue“expected” web requests prior to

performing maliciousdatabase queries.

However, this significantly increases theefforts for the

attackers to launch successful attacks. Inaddition, users with

nonadmin permissions can causeminimal (and sometimes
zero) damage to the rest of thesystem and therefore they have

limited incentives to launchsuch attacks.By default,

DoubleGuard normalizes all the parameters.Of course, the

choice of the normalization parameters needsto be performed

carefully. DoubleGuard offers the capabilityof normalizing the

parameters so that the user ofDoubleGuard can choose which

values to normalize.

Forexample, we can choose not to normalize the value

“admin” in “user= ‘admin’.” Likewise, one can choose to

normalizeit if the administrative queries are structurally

different fromthe normal-user queries, which is common case.
Additionally,if the database can authenticate admin and

nonadminusers, then privilege escalation attacks by changing

valuesare not feasible (i.e., there is no session hijacking).

VIII. REFERENCES
[1]. H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of

intrusiondetection systems. Computer Networks, 31(8), 1999.
[2]. T. Verwoerd and R. Hunt. Intrusion detection techniques and

approaches. Computer Communications, 25(15), 2002.
[3]. F. Valeur, G. Vigna, C. Krugel, and R. A. Kemmerer. A

comprehensive ̈ approach to intrusion detection alert
correlation. IEEE Trans. Dependable Sec. Comput, 1(3), 2004.

[4]. A. Seleznyov and S. Puuronen. Anomaly intrusion detection
systems: Handling temporal relations between events. In RAID
1999.

[5]. Lee, Low, and Wong. Learning fingerprints for a database
intrusion detection system. In ESORICS: European Symposium
on Research in Computer Security. LNCS, Springer-Verlag,
2002.

[6]. Y. Hu and B. Panda. A data mining approach for database

intrusion detection. In H. Haddad, A. Omicini, R. L.
Wainwright, and L. M. Liebrock, editors, SAC. ACM, 2004.

[7]. A. Srivastava, S. Sural, and A. K. Majumdar. Database intrusion
detection using weighted sequence mining. JCP, 1(4), 2006.

[8]. K. Bai, H. Wang, and P. Liu. Towards database firewalls. In
DBSec 2005.

[9]. G. Vigna, F. Valeur, D. Balzarotti, W. K. Robertson, C.
Kruegel, and E. Kirda. Reducing errors in the anomaly-based
detection of web-based attacks through the combined analysis of

web requests and SQL queries. Journal of Computer Security,
17(3):305–329, 2009.

[10]. S. Potter and J. Nieh. Apiary: Easy-to-use desktop application
fault containment on commodity operating systems. In USENIX
2010 Annual Technical Conference on Annual Technical
Conference.

[11]. Y. Huang, A. Stavrou, A. K. Ghosh, and S. Jajodia. Efficiently
tracking application interactions using lightweight virtualization.

In Proceedings of the 1st ACM workshop on Virtual machine
security, 2008

