
IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1970 | P a g e

Testing Methodology of Algorithm in Slicing of Program

Elements
Sushree Sujata1, Kunwar Babar Ali2

1P.G student, 2Assistant professor,
12department of computer science, Noida, International university, Noida, India

Abstract- Even after thorough testing of a program, usually a

few bugs still remain. These residual bugs are usually

uniformly distributed throughout the code. It is observed that

bugs in some parts of a program can cause more frequent and

more severe failures compared to those in other parts. It

should, then be possible to prioritize the statements, methods

and classes of an object-oriented program according to their

potential to cause failures. Once the program elements have

been prioritized, the testing effort can be apportioned so that

the elements causing most frequent failure are tested more.

Based on this idea, in this paper we propose a program metric

called the influence of program elements. Influence of a class

indicates the potential of class to cause failures. In this

approach, we have used the intermediate graph representation

of a program. The influence of a class is determined through a

forward slicing of the graph. Our proposed program metric

can be useful in applications such as coding, debugging, test

case design and maintenance etc.

Key Words- Prioritization of Program Elements, Slicing,

Intermediate representation, Program testing, Object-oriented

programming.

I. INTRODUCTION

Software solutions are increasingly permeating our everyday

life. Software industries are in immense pressure to provide

very reliable products where tolerance to bugs is very less.

Usually testing of the software products is carried out in

various levels to identify all defects existing in the software

product. However, for most practical systems, even after

satisfactorily carrying out the testing process, it is not possible

to guarantee that a software product is error free. This

situation is caused by the fact that input data domain of most

software products is very large. Also, each software product

development project is constrained by time and cost. As a

result, it is not practical to test a software product exhaustively

using each value that the input data may assume. At present,

testing takes on an average 50% of the total development cost

and time. Thus, possibility of increasing the testing effort any

further appears bleak. In traditional testing techniques, each

element of the software product is tested with equal

thoroughness. This causes usually a uniform distribution of

bugs in the software product. But presence of bugs in some

parts cause more severe and frequent failures than other parts.

For example, if a statement produces crucial data that is useful

for many other statements, then an error in this statement

would affect many other statements. So our aim is to identify

those more critical parts of a program, for which more

exhaustive testing has to be carried out. We define influence

of an element as the measure of criticality and severity of that

element. We proposed a metric to compute the influence of a

statement and influence of a method. With the help of these

two metrics we can calculate the influence of a class. The

characterization of code can help in designing, coding, testing

and maintenance phases of software development cycle. We

use Extended System Dependent Graph for intermediate code

representation.

II. CONCEPT

Slicing
A program slice is a part of the code that contributes in

computation of certain variable at a program point of interest.

More formally a slice can be defined as follows:

1. Program Slice
2. In computer programming, program slicing is the

computation of the set of program statements, the

program slice that may affect the values at some point of

interest, referred to as a slicing criterion. Program slicing

can be used in debugging to locate source of errors more

easily. Other applications of slicing include software

maintenance, optimization, program analysis, and

information flow control.

3. Slicing techniques have been seeing a rapid development

since the original definition by Mark Weiser. At first,

slicing was only static, i.e., applied on the source code

with no other information than the source code.

BogdanKorelandJanusz Laski introduced dynamic slicing,

which works on a specific execution of the program (for a

given execution trace). Other forms of slicing exist, for

instance path slicing.

4. . For statement s and variable v, the slice of a program P

with respect to the slicing criterion < s, v > includes only

those statements of P needed to capture the behaviour of v

at s.

5. Static slicing

Based on the original definition of Weiser, informally, a static

program slice S consists of all statements in program P that

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1971 | P a g e

may affect the value of variable v in a statement x. The slice is

defined for a slicing criterion C=(x,v) where x is a statement

in program P and v is variable in x. A static slice includes all

the statements that can affect the value of variable v at

statement x for any possible input. Static slices are computed

by backtracking dependencies between statements. More

specifically, to compute the static slice for (x,v), we first find

all statements that can a directly affect the value of v before

statement x is encountered. Recursively, for each statement y

which can affect the value of v in statement x, we compute the

slices for all variables z in y that affect the value of v. The

union of all those slices is the static slice for (x,v).

Dynamic slicing:

Makes use of information about a particular execution of a

program. A dynamic slice contains all statements that actually

affect the value of a variable at a program point for a

particular execution of the program rather than all statements

that may have affected the value of a variable at a program

point for any arbitrary execution of the program.

• Example to clarify the difference between static and

dynamic slicing. .consider a small piece of programunit ,

in which there is an iteration block containing an if- else-

block . There are few statement in both the if and else

block that an effect the variable. In case of static slicing

since the whole program unit is locked at irrespective of

particular execution of the program , the affect statement

in both block would be included in the slice..

• Dynamic slicing makes use of the information about a

particular execution of a program. The execution of a

program is monitored and the dynamic slices are

computed with respect to execution history. A dynamic

slice with respect to a slicing criterion < s, v >, for a

particular execution, contains those statements that

actually affect the slicing criterion in the particular

execution. Therefore, dynamic slices are usually smaller

than static slices and are more useful in interactive

applications such as program debugging and testing.

III. PROGRAM REPRESENTATION

In the following, we present a few basic concepts associated

with intermediate representation of program that are used in

later sections.

Control Flow Graph

• The control flow graph (CFG) is an intermediate

representation for programs that is useful for data flow

analysis and for many optimization code transformations

such common sub expression elimination, copy

propagation, and loop invariant code motion

• In a control flow graph each node in the graph represents

a basic block , i.e. a straight-line piece of code without

any jumps or jump targets ; jump targets start a block, and

jumps end a block.

• . Directed edges are used to represent jumps in the control

flow. There are, in most presentations, two specially

designated blocks: the entry block, through which control

enters into the flow graph, and the exit block, through

which all control flow leaves.[[3]

• The CFG can thus be obtained, at least conceptually, by

starting from the program's (full) flow graph—i.e. the

graph in which every node represents an individual

instruction—and performing an edge contraction for

every edge that falsifies the predicate above, i.e.

contracting every edge whose source has a single exit and

whose destination has a single entry. This contraction-

based algorithm is of no practical importance, except as a

visualization aid for understanding the CFG construction,

because the CFG can be more efficiently constructed

directly from the program by scanning it for basic blocks

IV. PROGRAM DEPENDENCE GRAPH

Program Dependence Graph (PDG) in computer

science is a representation usinggraph notation that

makes data dependencies and control dependencies

explicit. These dependencies are used during dependence

analysis in optimizing compilers to make transformations

so that multiple cores are used, and parallelism is

improved

• The program dependence graph G of a program P is the

graph G = (N, E), where each node n 2 N represents a

statement of the program P. The graph contains two kinds

of directed edges: control dependence edges and data

dependence edges. A control(or data) dependence

• An edge (m, n) indicates that n is control (or data)

dependent on m. Note that the PDG of a program P is the

union of a pair of graphs: Data dependence graph and

control flow graph of P.

System Dependence Graph

• The PDG can’t handle procedure calls. Horwitzetal .

Introduced the System Dependence Graph (SDG)

representation which models the main program together

with all associated procedures. The SDG is very similar to

the PDG. Indeed, a PDG of the main program is a sub

graph of the SDG. In other words, for a program without

procedure calls, the PDG and SDG are identical. The

technique for constructing an SDG consists of first

constructing a PDG for every procedure, including the

main procedure, and then adding dependence edges which

link the various sub-graphs together.

• An SDG includes several types of nodes to model

procedure calls and parameter passing:

• Call-site nodes represent the procedure call statements in the

program.

• Actual-in and actual-out nodes represent the input and output

parameters at call site. They are control dependent on the call-

site nodes.

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1972 | P a g e

• Formal-in and formal-out nodes represent the input and

output parameters at called procedures. They are control

dependent on procedure’s entry node.

• Control dependence edges and data dependence edges

are used to link the individual PDGs in an SDG. The

additional edges that are used to link the PDGs are as

follows:

• Call edges link the call-site nodes with the procedure entry

nodes.

• Parameter-in edges link the actual-in nodes with the formal-

in nodes.

V. METHOD

An object-oriented program comprises of a set of classes. We

assume that each class consists of variables and methods.

Influence of a class is sum of influence of all it’s elements. So

we calculate influence of each statement and if a statement

involves a method call then influence of method will also be

calculated. Our approach is based on static analysis of the

code and it does not consider the value of variables. So it can’t

deal with recursive function calls and loops effectively. Sum

of influence of all statements and all relevant methods is the

influence of class. This approach statically computes the

influence of a class. Execution of program is not necessary.

First, we construct the intermediate representation

(SDG/ESDG) of the program. Then, we calculate the

influence of desired element using the proposed algorithms.

We first discuss computation of influence of a statement, then

subsequently influence of method and influence of class are

discussed.

Influence statement:In a program the result of one statement

may depend on the result computed by other statements. If the

influence is more, then the statement is more critical. The

influence of the statement is defined by the number of other

statements of the given program which use that variable

directly or indirectly. We give a metric to calculate influence

considering no call vertex. If a statement is call vertex then its

influence will be calculated separately using the influence of

method metric and will be added to get total influence of the

desired statement. Influence of the statement expressed as a

percentage is given by:

 Total number of nodes marked influenced *100

 Total number of nodes in graph

Let us say In f luence(u, stmt) denote the node u and statement

‘stmt0, where stmtcan be any variable or ‘if’ or ‘while’ or

‘printf’ etc. Let (x1, u1), (x2, u2), ...(xk,

uk) be all there outgoing data flow edges of u in the PDG of

that program. Where x1, x2, ...,xkare dependency edges and

u1, u2, ..., uk are nodes.

So influence of a statement corresponding to node u is given

by:

Influence(u, stmt) = {u1, u2, ..., uk}[{Influence(u1,

stmt1)[Influence(u2, stmt2)[. . .[Influence(uk, stmtk)}

Algorithm

Input: Program code and the statement.

Output: In f luenceof given statement.

StmtInfluence(statement){

1. Construct ESDG of the program statically.

2. For statement traverse it’s all dependency edges and mark

them.

3. For each marked node repeat step 2 until no dependency

edges are found.

4. If any marked node is a call vertex then calculate its

influence using Method Influence(callvertex).

5. Count marked nodes and calculate Influence using

expression (1).

6. Stop.

 }

VI. INFLUENCE OF A METHOD

The result computed by a method of a program affects the

other methods and statements. A method may influence one or

more methods and other statements of the program. If the

influence of the method is more, then method is more critical.

We have designed a program metric called Influence of a

method for object-oriented programs. The influence of a

method is defined by the number of other statements and other

methods of the given program, which uses the results

computed by the method directly or indirectly.

If other methods are called by the given method for which we

want to find the influence, then the overall influence of the

method will be influence of the method itself and the

influence of other called methods. We first represent the input

program in ESDG as intermediate representation and after that

we apply our proposed algorithm on resulting ESDG. Then we

count the number of nodes influenced from that method’s

formal parameter out nodes as well as other called method’s

formal out parameters and we count the total no nodes in

graph.

• The influence of a method expressed as a percentage is

given by:

 Total number of nodes influenced

Total number of nodes in the graph × 100

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1973 | P a g e

Algorithm

Input: A program and name of the method of that program.

Output: Influence of the method.

• Method Influence(call vertex){

1. Construct ESDG of the program.

2. For the method entry vertex of the method traverse all

edges and mark them visited.

3. For each visited node traverse through it’s all edges

marking it’s corresponding node as visited and if it is not a

call-vertex node then mark it as influenced if not marked

already.

4. Check each visited node and if it is a call vertex, traverse

through it’s call edge and:

(a) If next node is polymorphic call vertex then traverse

through each polymorphic edge and in

VII. EXPERIMENTAL RESULTS

We have taken test cases based on operational profile of the

case study in each test suite. In the traditional testing method,

we seeded bugs in each class in random fashion and tested the

first copy of the case study using both structural and

functional testing method loges . The numbers of seeded bugs

for each class are selected using the operation profile of the

case study. For prioritized testing method, we tested second

copy of the case study with the same number of test cases and

with the same testing methodologies as in first copy but, the

number of test cases for each class are taken according to it’s

influence. In this case, we seeded the bugs in each method of

the class according to it’s influence. Hence, in the prioritized

testing method the elements with higher influence are tested

with more number of test cases. From the above table it is

clear that as we gave more efforts in testing the more

influenced elements we caught some more bugs. Although the

number of extra caught bugs in each sample program were not

many in number but the number of failures of the programs

were reduced greatly. This shows that if we reduce the number

of bugs from more critical elements by testing them more

exhaustively the rate of failure is reduced. In each phase of

software development cycle we can use the results and can

give extra efforts to develop the more critical elements.

VIII. CONCLUSION

We have purposed a program metric which called the

influence of program elements. The influence shows that

which elements affect more than others in a program. So the

elements with higher influence are more critical and presence

of bugs in them will increase the probability of failure of

software. So, the purposed metrics greatly help in finding out

the more critical elements and guides to take utmost care in

developing the elements with higher influence during software

development cycle. This also suggests that elements with least

priority can be tested with least number of test cases rather

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1974 | P a g e

than giving similar efforts as more critical elements and hence

saving the very important time for testing the more critical

elements.

1. It is based on static analysis of a program.

2. Useful in test case design and test case prioritization.

3. Useful to characterize the influence of various

components of the program. So one can have more

reliable components to be tested thoroughly.

IX. REFERENCES
[1]. Horwitz S., Reps T., and Binkley D. Inter-procedural slicing

using dependence graphs. ACM Transactions on Programing

Languagees and Systems 12, 1(1990), 26-61.

[2]. Zhang X., Gupta R., and Zhang Y. Efficient forward

computation of dynamic slices using reduced ordered binary

decision diagrams. In International conference of Software

Engineering(2004).

[3]. Agrawal H., DeMillo R, A., and Spafford E. H. Debugging with

dynamic slicing and backtracking. Software Practice and

Experience 23, 6(1993), 589-616.

[4]. Dhamdhare D.M., Gururaja K., and Ganu P. G.A compact

education history for dynamic slicing.Information Processing

Letters 85(2003), 145-152.

[5]. Korel B., and Rilling J. Dynamic Program Slicing Methods.

Information and Software Technology 40(1998), 155-163.

[6]. Xu B., Qian J., Zhang X., Wu Z., and Chen L. A Brief Survey

of program slicing. ACM SIGSOFT Software Engineering

Notes 30, 2(2005), 1-36.

[7]. WeiserM. Programmers use slices when debugging.

Communication of ACM25, 7(1982), 446-452.

[8]. Ball T. The Use of Control Flow and Control Dependence in

Software Tools.PhD thesis, Computer Science Department,

University of Wisconsin-Madison, 1993.

[9]. Song Y., and Huynh D. Forward Dynamic Object-Oriented

Slicing. Application Specific Systems and Software Engineering

and Technology(ASSET’99). IEEE CS Press, 1999.

[10]. Ferrante J., Ottenstein K., and Warren J. The program

dependence graph and it’s use in optimization. ACM

Transactions on Programming Languages and Systems 9,

3(1987), 319-349.

[11]. http://linuxgazette.net/100/vinayak.html

