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A Coupled Lift and Drag analytical model is presented on stationary right circular cylinder 

in the lock-on regime. Numerical simulations of the flow field are performed on the stationary 

right circular cylinder to obtain the data for coupled lift and drag coefficients. Spectral analysis is 

performed to the data to characterize the linear and non-linear coupling between the vortex 

shedding frequency and its third harmonic. Parameters are obtained on applying Fast Fourier 

Transform (FFT). From this analysis it is concluded that the van der Pol equation should be used 

to model the coupled lift and drag coefficients on stationary right circular cylinder in the lock-on 

regime.  

1    Introduction 

 The vortex shedding pattern directly related to drag and lift forces on circular cylinder in 

their wakes. Reducing vortex induced-vibrations or augmenting the lift component is the area of 

interest of most of the researchers. To affect the wake pattern and associated forces on the circular 

cylinder, different forcing conditions have been applied significantly and one such condition is 

oscillation forcing. Studies by Tokumaru and Dimostakis [1], Lu and Sato[2], and Chou[3] on 

rotationally oscillating cylinder showed a significant drag reduction under specific forcing 

conditions. Results of Choi et al. [4] showed that the maximum amplitude of the lift coefficient is 

increased in the lock-on region. 
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 The optimal approach to assess effects of cylinder forcing and the lift and drag forces on 

the wake structure would be a time-domain numerical simulation of the fluid flow and the 

structure’s motion. On the other hand, and for different purposes such as optimization of the 

forcing parameters, analytical models have been proposed as a more efficient alternative for 

determining effects of forces for different conditions of the circular cylinder. One of the first 

models proposed for vortex-induced vibrations of circular cylinder is the one by Hartlen and 

Currie [5]. In that model, the lift presented by Rayleigh equation, is linearly coupled to the 

cylinder’s motion. Using a combination of approximate solutions of the Rayleigh and Van der Pol 

equations and amplitude and phase measurements of higher-order spectral moments, Nayfeh, 

Owis and Hajj[6] showed that the lift coefficient, on the stationary circular cylinders should be 

modeled by the self-excited Van der Pol equation. Isam Janajreh and Muhammad Hajj [7] also 

proved the same result for the lift coefficient, on rotationally oscillating cylinder under the 

resonance condition. The extension of such models to develop an analytical model for the lift 

force on in-line oscillating circular cylinder would be very beneficial for modeling vortex-induced 

vibrations, drag reduction or lift augmentation. 

 In this model we have presented an analytical model for the prediction of the lift and drag 

on stationary circular cylinder. Numerical simulations are performed to generate a data base from 

which parameters for the developed model are determined. Amplitude and phase measurements 

from higher order spectral parameters are matched with approximate solutions of the model to 

characterize the nonlinearities in the model and determine these parameters.  

3    Spectral Analysis 

 Traditional signal processing techniques used in data analysis are based on second-order 

statistics, such as the power spectra which are the Fourier transforms of the second-order 

correlation functions. These quantities yield an estimate of energy content of the different 

frequency components in a signal or the coherence between equal frequency components in two 

signals. In many cases, higher-order spectral moments can be used to obtain more information 

from signals or time series. In nonlinear systems, frequency components interact to pass energy to 

other components at their sum and/or difference frequency. Because of this interaction, the phases 

of the interacting components are coupled. This phase coupling can be used for the detection of 

nonlinear interactions between frequency components in one or more time series. Faced with an 

unknown system in terms of its nonlinear characteristic, these moments can be applied to identify 

quadratic and cubic nonlinearities. The bis-pectrum [8, 9, 10], which is the next higher order 

spectrum to power spectrum, has been established as a tool to quantify the level of phase coupling 

among three frequency components and thus identify quadratic nonlinearities. To this work our 

particular interest is the trispectrum [11], which is the next higher order moment to the bi-

spectrum, and which is used to detect and characterize cubic nonlinearities expected to be a part 

of the lift coefficient. 
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 Above induced higher order spectral moments are multi-dimensional Fourier Transforms 

of higher-order statistical moments. For any real random process )(tx and its stationary moments 

up to order n, one could define the nth order moment function as 

𝑚𝑛(𝜏1, 𝜏2, 𝜏3, … . , 𝜏𝑛−1) = 𝐸{𝑥(𝑡)𝑥(𝑡 + 𝜏1) … . 𝑥(𝑡 + 𝜏𝑛−1)}                                                       (1) 

Where𝐸{𝑥} represents ensemble averaging and 𝜏1, 𝜏2, 𝜏3, … . , 𝜏𝑛−1represents time differences. 

By Fourier Transforming the second, third and fourth-order moment functions, one obtains, 

respectively, the auto-power spectrum, auto-bispectrum and auto-trispectrum [11]. Then the 

hierarchy of higher-order moment spectra is expressed as 

𝑆2𝑥(𝑓) = lim
𝑇→∞

1

𝑇
𝐸{𝑋𝑇

∗ (𝑓)𝑋𝑇(𝑓)}                                                                                              (2) 

𝑆3𝑥(𝑓1, 𝑓2) = lim
𝑇→∞

1

𝑇
𝐸{𝑋𝑇

∗ (𝑓1)𝑋𝑇
∗ (𝑓2)𝑋𝑇(𝑓1 + 𝑓2)}                                                                   (3) 

𝑆4𝑥(𝑓1, 𝑓2, 𝑓3) = lim
𝑇→∞

1

𝑇
𝐸{𝑋𝑇

∗ (𝑓1)𝑋𝑇
∗ (𝑓2)𝑋𝑇

∗ 𝑋𝑇(𝑓1 + 𝑓2 + 𝑓3)}                                                 (4)

 

 

Where 𝑋𝑇(𝑓)is the Fourier Transform of 𝑥(𝑡)define over a time duration 𝑇, and the superscript ∗ 

is used to denote complex conjugate. The higher-order spectral moments and their normalized 

counterparts are capable of identifying nonlinear coupling among frequency components and 

quantifying their phase relations [8, 9, 10]. In this work, we will stress the use of the auto-

trispectrum to determine the phase relation between the vortex shedding component and its third 

harmonic. This relation will be used in determining the parameters of the proposed analytical 

model. 

4. Numerical Simulation 

Direct Numerical simulations of the flow of the unsteady incompressible Navier-Stokes equations 

for different cases over a stationary circular cylinder were performed. All simulations were 

performed at 𝑅𝑒 = 100. In this simulation the computational domain is extended 15 cylinder 

diameters upstream, 15 diameters from cross-stream on each side and 40 diameters from down-

stream. The mesh domain is divided in to multiple blocks in which a quadratic cell type mesh is at 

the boundaries of the domain and triangular cell type mesh is near the cylinder wall, in order to 

provide more faces and to enhance the cell communication and computational accuracy. The 

minimum face area of the cell is 2.099284e-02 𝑚2 where as maximum face area is 6.568327e-01 𝑚2 

. While the minimum Orthogonal Quality and maximum Aspect Ratio are 6.42237e-01 and 

6.10345e+00. Imposed cylinder oscillations were determined by two parameters, namely, the non-

dimensional amplitude, 𝑅𝑒 =
𝜃𝑚𝑎𝑥

̇ 𝐷𝑣

2𝑈∞
= 0.064, where θ̇max is the forcing angular velocity, and the 

forcing frequency 𝑈∞ = 0.35, where 𝑓 is the dimensional forcing frequency. Meshing used in this 

simulation is shown in Fig. 1. 
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Fig 1: Mesh modeling used for the analysis of coupled lift and drag coefficients over the stationary circular cylinder 

with minimum and maximum face areas of the cell 2.099284e-02 𝑚2 and 6.568327e-01 𝑚2 . The computational 

domain extended 15 cylinder diameters upstream, 15 diameters cross-stream on each side and 40 diameters down-

stream. 

Simulations were performed on licensed Ansys fluent software where as the post processing i.e., 

Fast Fourier Transform (FFT) to obtained spectral parameters were performed on matlab 

software. Then the validation was done in Microsoft excel software.  

 

4    Analytical Model for the Lift  

Analytical models for the prediction of  lift coefficient on stationary right circular cylinder 

modeled by Rayleigh equation and van der Pol oscillator are given by 

 

�̈�𝐿 + 𝜔𝑠
2𝐶𝐿 − 𝜇𝑟�̇�𝐿 + 𝛼𝑟�̇�𝐿

3 = 0                                                                                                     (5) 

 

and 

 

�̈�𝐿 + 𝜔𝑠
2𝐶𝐿 − 𝜇𝑣�̇�𝐿 + 𝛼𝑣𝐶𝐿

2�̇�𝐿 = 0                                                                                                 (6) 

                                         

Where 𝜔𝑠 is the shedding frequency, (𝜇𝑟, 𝜇𝑣) and (𝛼𝑟, 𝛼𝑣) represents the linear and nonlinear 

damping coefficients in Rayleigh equation and van der Pol oscillator. The linear and nonlinear 

damping coefficients are positive so that the linear damping and the nonlinear damping are 

negative and positive respectively. Because of this stable limit cycles forms, as small and large 

motions grow and decay. 

 

Analytical approximate solutions, using the method of multiple scales [12, 13], are derived for the 

equations (5) and (6), and are given below 

  

𝐶𝐿 ≈ acos(𝜔𝑠𝑡 + 𝛽) +
𝛼𝑟𝜔𝑠

32
𝑎3 cos (3𝜔𝑠𝑡 + 3𝛽 −

𝜋

2
)                                                                   (7) 

 

And 
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𝐶𝐿 ≈ acos(𝜔𝑠𝑡 + 𝛽) +
𝛼𝑣

32𝜔𝑠
𝑎3 cos (3𝜔𝑠𝑡 + 3𝛽 +

𝜋

2
)                                                                   (8) 

Where phase 𝛽 and the amplitude 𝑎 for equation (7) are determined by using 

 

�̇� =
1

2
𝜇𝑟𝑎 −

3𝛼𝑟𝜔𝑠
2

8
𝑎3                                                                                                                      (9) 

 

�̇� = 0                                                                                                                                            (10) 

 

while for equation (8), 𝛽  and 𝑎  are governed by 

 

�̇� =
1

2
𝜇𝑣𝑎 −

𝛼𝑣

8
𝑎3                                                                                                                         (11) 

 

�̇� = 0                                                                                                                                            (12) 

 

When 𝑎 and 𝛽 are constants in equations (7) and (8), i.e., for steady-state oscillations, the solution 

given in equation (7) and (8) represents a periodic motion which can be written in complex form 

as 

 

𝐶𝐿(𝑡) ≈
a

2
{𝑒𝑖(𝜔𝑠𝑡+𝛽) + 𝑒−𝑖(𝜔𝑠𝑡+𝛽)} +

𝛼𝑟𝜔𝑠

64
𝑎3 {𝑒𝑖(3𝜔𝑠𝑡+3𝛽−

𝜋

2
) + 𝑒−𝑖(3𝜔𝑠𝑡+3𝛽−

𝜋

2
)}                       (13) 

 

𝐶𝐿(𝑡) ≈
a

2
{𝑒𝑖(𝜔𝑠𝑡+𝛽) + 𝑒−𝑖(𝜔𝑠𝑡+𝛽)} +

𝛼𝑣

64𝜔𝑠
𝑎3 {𝑒𝑖(3𝜔𝑠𝑡+3𝛽+

𝜋

2
) + 𝑒−𝑖(3𝜔𝑠𝑡+3𝛽+

𝜋

2
)}                       (14) 

 

The Fourier transform, 𝐿(𝜔), of 𝐶𝐿(𝑡) presented in (7) and (8) are then given by 

 

𝐿(𝜔) ≈
a

2
{𝑒𝑖𝛽𝛿(𝜔 − 𝜔𝑠) + 𝑒−𝑖𝛽𝛿(𝜔 + 𝜔𝑠)} +

𝛼𝑟𝜔𝑠

64
𝑎3 {𝑒𝑖(3𝛽−

𝜋

2
)𝛿(𝜔 − 3𝜔𝑠) + 𝑒−𝑖(3𝛽−

𝜋

2
)𝛿(𝜔 +

3𝜔𝑠)}                                                                                                                                             

(15) 

 

𝐿(𝜔) ≈
a

2
{𝑒𝑖𝛽𝛿(𝜔 − 𝜔𝑠) + 𝑒−𝑖𝛽𝛿(𝜔 + 𝜔𝑠)} +

𝛼𝑣

64𝜔𝑠
𝑎3 {𝑒𝑖(3𝛽+

𝜋

2
)𝛿(𝜔 − 3𝜔𝑠) + 𝑒−𝑖(3𝛽+

𝜋

2
)𝛿(𝜔 +

3𝜔𝑠)}                                                                                                                                             

(16) 

 

Examining the expressions for 𝐿(𝜔) given in equations (15) and (16), it is noted that the solution 

thus contains components with frequencies at 𝜔𝑠 and 3𝜔𝑠. The amplitudes and phases of these 

components for equation (15) are given by 

 

𝐿(𝜔𝑠) =
a

2
𝑒𝑖𝛽                                                                                                                                (17) 

𝐿(3𝜔𝑠) =
𝛼𝑟𝜔𝑠

64
𝑎3𝑒𝑖(3𝛽−

𝜋

2
)
                                                                                                            (18) 

and for equation (16) are given by 
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𝐿(𝜔𝑠) =
a

2
𝑒𝑖𝛽                                                                                                                                (19) 

𝐿(3𝜔𝑠) =
𝛼𝑣

64𝜔𝑠
𝑎3𝑒𝑖(3𝛽+

𝜋

2
)
                                                                                                            (20) 

 

The steady state value of amplitude 𝑎 for the Rayleigh and van der Pol equations can be obtained 

by setting �̇� = 0 in equations (9) and (11) i.e. 

𝑎 =
2

𝜔𝑠
√

𝜇𝑟

3𝛼𝑟
                                                                                                                                   (21) 

𝑎 = 2√
𝜇𝑣

𝛼𝑣
                                                                                                                                      (22) 

The auto-trispectrum, which is defined as 

 𝑆𝑙𝑙𝑙𝑙(𝜔𝑘, 𝜔𝑙, 𝜔𝑚) =
𝑙𝑖𝑚

𝑇 → ∞
1

𝑇
𝐸[𝐿∗(𝜔𝑘)𝐿∗(𝜔𝑙)𝐿∗(𝜔𝑚)𝐿(𝜔𝑘 + 𝜔𝑙 + 𝜔𝑚)]                                (23) 

is then used to relate the two components,𝜔𝑠 and 3𝜔𝑠. For (𝜔𝑘 = 𝜔𝑙 = 𝜔𝑚 = 𝜔𝑠), this relation is 

given by 

𝑆𝑙𝑙𝑙𝑙(𝜔𝑠, 𝜔𝑠, 𝜔𝑠) ≈
𝑎6𝛼𝑟𝜔𝑠

512
𝑒−𝑖

𝜋

2   (for Rayleigh equation)                                                             (24) 

 𝑆𝑙𝑙𝑙𝑙(𝜔𝑠, 𝜔𝑠, 𝜔𝑠) ≈
𝑎6𝛼𝜈

512ωs
𝑒𝑖

𝜋

2     (for van der Pol equation)                                                           (25)                                                

From equation (25) it is observed that the magnitude of the auto-trispectrum can be used to 

determine the coefficient of the cubic nonlinearity 𝛼𝜈. The phase of the auto-trispectrum  

𝑆𝑙𝑙𝑙𝑙(𝜔𝑠, 𝜔𝑠, 𝜔𝑠), given by 𝛾 = 𝜙(3𝜔𝑠) − 3𝜙(𝜔𝑠), and equal to 
𝜋

2
 or −

𝜋

2
, should be used to 

establish the validity of the proposed model. 

From equations (7) and (8) it can be clearly observed that there is difference in the phase of the 

third harmonic in relation to the phase of the vortex shedding frequency. So the correct value of 

this phase will give the perfect modelling of the lift coefficient. To determine linear and nonlinear 

damping coefficients in equation (5) from the amplitude and phases of the Fourier components in 

the time series, the lift coefficient is re-written as 

 

𝐶𝐿 ≈ a1cos(𝜔𝑠𝑡) + 𝑎3 cos(3𝜔𝑠𝑡 + 𝛾)                                                                                         (26) 

 

where a1 and 𝑎3 are the amplitudes of the first and third harmonic, where as 𝛾 shows the phase of 

the third harmonic when phase of the fundamental component is zero. On comparing equations 

(7), (8) and (26), it can be concluded that lift coefficient 𝐶𝐿 can be modeled either by Rayleigh 

equation or Van der Pol equation whether 𝛾 =
𝜋

2
 or 𝛾 = −

𝜋

2
. 

By comparing equation (26) with equation (8) and applying equation (22), one obtains 
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𝛼𝑣 =
32𝜔𝑠𝑎3

𝑎1
3                                                                                                                                    (27) 

𝜇𝑣 =
1

4
𝛼𝑣𝑎1

2                                                                                                                                  (28) 

The mean component that is independent of the lift and a periodic component that is related to the 

unsteady lift are two components of drag. As the phase relation between the drag component and 

the lift is near 3𝜋/2, hence the periodic component of the drag must be proportional to −𝐶𝐿𝐶�̇�. 

The drag coefficient can be modeled as 

𝑑 = 𝑑𝑚 −
𝑘1

𝑎1
2𝜔𝑠

𝐶𝐿𝐶�̇�                                                                                                                     (29) 

Where 𝑑𝑚is mean drag obtained as a mean of time series of the drag and 𝑘1is the amplitude of the 

maximum frequency component in the drag. Because the frequency of the major component of 

the drag is twice the frequency of the major component in the lift, this phase relation is given by 

𝑓(2𝜔𝑠) in the drag time series −2𝑓(𝜔𝑠)  in the lift time series. As shown in [6], this phase can be 

measured as the phase of the cross bispectrum between 2𝑓 in the drag and 𝑓 in the lift, which is 

defined as 

𝑆𝑑𝑙𝑙 = 〈𝐷(2𝜔𝑠)𝐿∗(𝜔𝑠)𝐿∗(𝜔𝑠)〉                                                                                                     (30) 

Where 𝐷(𝜔𝑠)is the Fourier Transform of the drag time series 𝑑(𝑡). 

5 Results and Discussion 

Vorticity contour in the wake of the stationary right circular cylinder is presented in Fig. 2. In this 

paper, we have shown validation of the time-varying coupled lift force, which act on a stationary 

circular cylinder for Reynolds number 𝑅𝑒 = 100. Comparison of vortex shedding pattern presented in 

Fig. 2 with the pattern, presented in Fig. 3, obtained by Ali H. Nayfeh [6] are nearly similar. 

 

Fig 2: Vorticity contour, 𝑅𝑒 = 100, on stationary right circular cylinder. 

 

Fig 2: Vorticity contour, 𝑅𝑒 = 100000, on stationary right circular cylinder using RANS by Ali H. Nayfeh [6]. 
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Fig 3: Comparison of the analytically modeled (red line) and numerically simulated (blue line) lift time series on 

stationary circular cylinder. Forcing condition: θ̇maxD/2U∞ = 0.064, 𝑓𝑓D/U∞ = 0.35. 

 

Fig 4: Time histories of the lift coefficient, 𝑅𝑒 = 100, on stationary right circular cylinder.                                 

         

Fig 5: Time histories of the drag coefficient, 𝑅𝑒 = 100, on stationary right circular cylinder. 

Figure 6 show the spectra of the lift coefficient at Reynolds number 100, the spectrum of the lift coefficient shows a 

major peak at the shedding frequency 𝑓 = 1.546. A frequency component at the third harmonic 3𝑓 is also present in 

the spectra of the lift coefficient in Fig 6. It is smaller than the major peak at 𝜔𝑠 by three to four orders of magnitude. 

The presence of peaks corresponding to the shedding frequency and its third harmonic suggests that the lift 

coefficient on the circular cylinder can be modeled by either the Rayleigh equation or van der Pol equation. 

                          
The amplitudes and phases required for the validation of the analytical model presented from van der Pol equation are 

obtained on applying Fast Fourier Transform (FFT), and the phase and amplitude spectra graphs are shown in Fig 7 

and Fig 8. The lift spectral parameters and model parameters obtained on applying FFT are shown in table 1 and table 

2. 

Table 1: Lift spectral parameters in van der Pol equation on stationary circular cylinder. 

-1.50E-01

-1.00E-01

-5.00E-02

0.00E+00

5.00E-02

1.00E-01

1.50E-01

1.40E+021.50E+021.60E+021.70E+021.80E+021.90E+022.00E+02

-1.50E-01

-1.00E-01

-5.00E-02

0.00E+00

5.00E-02

1.00E-01

1.50E-01

1.40E+021.50E+021.60E+021.70E+021.80E+021.90E+022.00E+02

1.04E+00

1.04E+00

1.04E+00

1.04E+00

1.05E+00

1.05E+00

1.05E+00

1.70E+021.80E+021.90E+022.00E+022.10E+022.20E+022.30E+02
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𝑦
𝐷⁄  0.01 

𝑓 (𝐻𝑧) 1.546 

𝑎1 0.0985 

𝑎3 0.0002009 

ϕ(𝜔𝑠) 3.952 

ϕ(3𝜔𝑠) 5.732 

 

 

 

 

 

Table 2: Lift model parameters in van der Pol equation on stationary circular cylinder. 

 

 
𝑦

𝐷⁄  0.01 

𝑓 (𝐻𝑧) 1.54633 

𝛼𝑣 0.0252 

𝜇𝜈 10.42 

𝛾 -6.124 

 

Fig 6: Power spectra graph of the numerically simulated lift coefficients from Matlab, on the stationary right circular 

cylinder: θ̇maxD/2U∞ = 0.064, 𝑓𝑓D/U∞ = 0.35 
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Fig 7: Phase spectra graph of the numerically simulated lift coefficients from Matlab, on the stationary right circular 

cylinder. Forcing condition: θ̇maxD/2U∞ = 0.064, 𝑓𝑓D/U∞ = 0.35 

 

Fig 8: Amplitude spectra graph of the numerically simulated lift coefficients from Matlab, on the stationary right 

circular cylinder. Forcing condition: θ̇maxD/2U∞ = 0.064, 𝑓𝑓D/U∞ = 0.35 

6 Conclusions 

Numerical simulation using Ansys fluent software is performed to validate the analytical model 

for the lift on stationary right circular cylinder. Fast Fourier Transform (FFT) is performed on 

Matlab for the validation of the purposed lift model. The perfect matching of the lift time series 

shows that Rayleigh equation and Van der Pol oscillator would be used to model the lift on a 

stationary right circular cylinder.  
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