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Goal for talk

Describe a construction of p-adic L-functions

For unitary groups

For ordinary families
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Motivation/Context

Builds on earlier constructions, including Hida and Katz (and recovers
Katz’s p-adic L-functions for CM fields as a special case)

Motivated by various conjectures about existence, form, and role of
p-adic L-functions (in Iwasawa Theory), due to Coates, Perrin-Riou,
Greenberg, ...
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Goals of project

p-adically interpolate values of L(s, χ, π), where χ is a CM Hecke
character and π is a cuspidal automorphic representation of a unitary
group

More precisely, construct an element L ∈ Λ⊗̂T so that the image of L
under the map induced by a Hecke character χ and a system of Hecke
eigenvalues λπ (from a Hecke algebra T to an appropriate p-adic
ring) is L(s, χ, π)/Ωπ,χ for some period Ωπ,χ. (Here Λ is a certain
Iwasawa algebra.)

Allow both χ and highest weights for π (characters on a torus) to
vary.

Remark: By work of Chenevier, there is a family of Galois representations
associated to these cuspidal automorphic representations.
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Strategy to construct the p-adic L-function

1 Construct a family of Eisenstein series.

2 Pair (pullbacks of) these Eisenstein series against pairs of cusp forms
corresponding to chosen representations.

3 Automorphic side: Interpret this pairing as recognizable zeta integral.

4 p-adic side: Interpret this pairing in terms of a p-adic measure, or
equivalently, as an element of Λ⊗̂T.
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Plan for talk

1 Overview of automorphic side (pairing of Eisenstein series against pair
of cusp forms, via doubling method)

2 Overview of interpretation of pairing in p-adic setting, and
comparison with automorphic side

3 Explain the construction of a family of Eisenstein series
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Doubling method and pullback methods

Start with doubling (or “pullback”) method, a Rankin-Selberg type
construction, due to Gelbart-Piatetski-Shapiro-Rallis, as well as
Garrett and Shimura

Method for obtaining integral representations of L-function (i.e.
whose Euler factors are expressed as certain integrals)

Good for other classical groups as well

Unlike the usual Rankin-Selberg method for GLn or the
Langlands-Shahidi method does not rely on Whittaker models
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Setup

K be a CM field, i.e. a quadratic imaginary extension of a totally real
field E

For the discussion of p-adic properties later, we also fix a rational
prime p such that each prime in E above p splits in K .
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Doubling method: pairings

Let:

V be an n-dimensional vector space over K together with a Hermitian
pairing ⟨, ⟩V

W = V ⊕V together with the Hermitian pairing ⟨, ⟩W defined by

⟨(u, v), (u′, v ′)⟩W ∶= ⟨u,u′⟩V − ⟨v , v ′⟩V

for u,u′, v , v ′ ∈ V

Note that ⟨, ⟩W is a Hermitian pairing on W of signature (n,n).
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Doubling method: unitary groups

Define UV ∶= U(V ) to be the unitary group preserving ⟨, ⟩V

Define UW ∶= U(W ) to be the unitary group preserving ⟨, ⟩W

Can also consider GU (preserving ⟨, ⟩ up to a similitude factor), SU
(determinant 1)

Remark

Have natural embedding U(V ) ×U(V )↪ U(W ), and identify
U(V ) ×U(V ) with its image in U(W )

Similarly, G(U(V ) ×U(V ))↪ GU(W )
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Doubling method: integrals

The doubling method expresses certain L-functions as an integral of a pair
of cusp forms on U(V ) ×U(V ) against an Eisenstein series on U(W )
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Doubling method input

Input to doubling method:

1 Siegel Eisenstein series on U(W )

2 pair of cusp forms on U(V ) ×U(V )
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Doubling method: Some important groups

Let P be the parabolic subgroup of UW preserving
{(v , v)∣v ∈ V } ⊆ W

Let M denote Levi subgroup of P. Write P = MN, with N unipotent
radical.

M ≅ GLn(K)
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Doubling method: The Eisenstein series

M is of form (
A 0

0 tA
−1)

Let χ ∶ K×/A×
K → C× be a Hecke character

View χ as character on M via composition with determinant, extend
to character on P

Can adapt to include similitude factors, when working with GU
instead of U
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Doubling method: The Eisenstein series

Let fs,χ ∈ Ind
UW (A)

P(A)
(χ ⋅ ∣ ● ∣s).

Define Eisenstein series Efs,χ on UW by

Efs,χ(h) = ∑
γ∈P(E)/UW (E)

fs,χ(γh).
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Eisenstein series

This Eisenstein series extends to a meromorphic function of s and satisfies
a functional equation
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Question

Question

How should we choose fs,χ?

We’ll return to that question later.
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Doubling method: Cusp forms

Let π be a cuspidal representation of U(V ) and π′ be its
contragredient representation.

Let ϕ ∈ π and ϕ′ ∈ π′.
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Another question

Question

How should we choose ϕ and ϕ′?
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Doubling method: integral

Define

Z (ϕ,ϕ′, fs,χ)

∶= ∫
[UV×UV ]/[UV )×UV ](AE )

ϕ(g)ϕ′(h)Efs,χ ((g ,h))χ
−1 (det h)dgdh
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Doubling method: properties

Z (ϕ,ϕ′, fs,χ) can be analytically continued to a meromorphic
function of s and satisfies a functional equation.
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Factorizations

Suppose we have the following factorizations

ϕ = ⊗vϕv ∈ π ≅ ⊗′πv

ϕ′ = ⊗vϕ
′
v ∈ π

′ ≅ ⊗′π′v

fs,χ = ⊗v fs,χv ∈ Ind
UW (A)

P(A)
(χ ⋅ ∣ ● ∣s) ≅ ⊗′Ind

UW (Ev )

P(Ev )
(χv ⋅ ∣ ● ∣

s
v)

Away from the set Sπ of places where πv is ramified, we choose ϕv , ϕ
′
v to

be non-zero unramified vectors such that ⟨ϕv , ϕ
′
v ⟩v = 1, where ⟨, ⟩v is the

unique (up to scalar-multiple) invariant pairing

⟨φ,φ′⟩v = ∫
GV (Ev )/GV (A)

φ(g)φ′(g)dg .
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Factorization into Euler product

Then we have the following factorization:

Z (ϕ,ϕ′, fs,χ) =∏
v

Zv (ϕv , ϕ
′
v , fs,χv ) ,

where

Zv (ϕv , ϕ
′
v , fs,χv ) = ∫

UV (Ev )
fs,χv ((g ,1)) ⟨πv(g)ϕv , ϕ

′
v ⟩vdg

for R(s) >> 0.
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Siegel sections

Need to choose fs,χ so that both:

1 The Eisenstein series Efs,χ can be p-adically interpolated (fits into
p-adic measure)

2 We can compute the local integrals in the Euler factors and relate
them to familiar L-functions
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Local zeta integrals appearing in the Euler product

Four main cases:

1 v ∣p

2 v ∣∞
3 v ∤ p∞ such that

▸ (unramified case) v is in the set S of primes that does not ramify in K
and at which πv and χv are unramified

▸ (ramified case) v ∉ S
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Local zeta integrals: v ∤ p∞, unramified case

For ϕv , ϕ
′
v normalized spherical vectors such that ⟨ϕv , ϕ

′
v ⟩v = 1 and fχv ,s

the unique GW (Ow)-invariant function such that fχv ,s(Kw) = 1,

dn,v (x , χv)Zv (ϕv , ϕ
′
v , fχv ,s) = Lv (s +

1

2
, πv , χv) ,

with

dn,v (s, χv) =
n−1

∏
r=0

Lv (2s + n − r , χv ∣Eη
r
v) ,

ηv the character on E attached by local CFT to the extension Kw /Ev , w a
prime over v , and Lv(s, πv , χv) the standard Langlands Euler factor.
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Local zeta integrals: v ∤ p∞, unramified case

Two cases:

1 v splits:

computations reduce to those in work of Jacquet and
Gelbart-Piatetski-Shapiro-Rallis.

2 v inert:
computations were completed in work of Li.
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Local zeta integrals: v ∤ p∞, ramified case

Zv (ϕv , ϕ
′
v , fχv ,s) = volume (Uv) ,

where Uv is an open neighborhood of −1n contained in the open subset
−1n ⋅Kv , with Kv an open compact subgroup of Gv that fixes ϕv , and fχv ,s

is defined in terms of the characteristic function of a closely related lattice.

Computation of integral is relatively quick and straight-forward. (Carefully
making choices takes longer than computing the integral.)
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Local zeta integrals: w ∣p

A few remarks:

The calculations at p are where much of the work lies (both for the
integrals and, later in this talk, for the Eisenstein measure).

Euler factor has similar form to that predicted by Coates

Since we assume each place v of E above p splits in K , the
component of the Hecke character χ at v gives pair (χv ,1, χv ,2) of
characters, and the unitary group is isomorphic to a general linear
group.
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Local zeta integrals: v ∣p

Euler factor at v is Z1,v ⋅ Z2,v , where

Z1,v =
L (s + 1

2 , πbv ⊗ χ2,v)

ε (s + 1
2 , πbv ⊗ χ2,v)L (−s + 1

2 , π
′
bv
⊗ χ−12,v)

Z2,v = ωav (−1)
L (12 + s, π′av ⊗ χ

−1
1,v)

ε (s + 1
2 , π

′
av ⊗ χ

−1
1,v)L (−s + 1

2 , πav ⊗ χ1,v)
.

The representations πv are defined in terms of representations
πav , πbv , π

′
av , π

′
bv

dependent on the signature (av ,bv) of the unitary group,
and these representations are in turn defined by inducing characters on a
torus (more later).
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Local zeta integrals: v ∣p

Calculation of the integrals relies in part on realizing the integrals in the
form of the “Godement-Jacquet” integrals in Jacquet’s Corvallis article.
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Local zeta integrals: v ∣∞

Start with fv built from canonical automorphy factors (more later)

Possibly apply differential operator to handle non-holomorphic or
non-scalar weight case (more on those later, related to differential
operators in de Shalit’s talk)

Take ϕv , ϕ
′
v in the highest weight subspace of the archimedean

component
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Local zeta integrals: v ∣∞

When the extreme K-type (K a maximal compact) is
one-dimensional, the archimedean zeta integrals were computed by
Garrett and also by Shimura.

When at least one of the two factors of the extreme K-type is
one-dimensional, Garrett computed the integrals precisely.

In all cases, Garrett has shown the integrals are algebraic up to a
predictable power of π.
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Plan for talk

1 Overview of automorphic side (pairing of Eisenstein series against pair
of cusp forms, via doubling method)✓

2 Overview of interpretation of pairing in p-adic setting, and
comparison with automorphic side

3 Explain the construction of a family of Eisenstein series
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About weights

We will choose the cusp forms and Eisenstein series so that their weights
are compatible (like in related constructions of p-adic L-functions,
including Hida, Panchishkin,...).
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Special case: definite case

Recall:

Z (ϕ,ϕ′, fs,χ)

∶= ∫
[UV×UV ]/[UV )×UV ](AE )

ϕ(g)ϕ′(h)Efs,χ ((g ,h))χ
−1 (det h)dgdh

In the definite case, we can reinterpret this integral as a finite sum
over CM points. This is essentially the strategy of N. Katz.

So congruence between cusp forms and congruence between
Eisenstein series implies congruence between values of L-functions.
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The space X ∶= Xp

For each integer r > 0, let

Ur = (O ⊗ Ẑ{p})× × (1 + prO ⊗Zp) ⊂ (K ⊗ Ẑ)×

and
Xp = lim

←Ð
r

K×/(K ⊗ Ẑ)×/Ur .

This is the projective limit of the ray class groups of K of conductor (pr).
In particular, it is a profinite abelian group.
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Preliminaries

Let V denote the space of p-adic modular forms on UV .

Later, we will construct a V ⊗ V-valued measure φEis on Xp ×T , the
Eisenstein measure. (T is identified with a torus in UW (Zp) .)

Let e denote Hida’s ordinary projector.

We will denote a Hecke algebra acting on V by T (without further
details).
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The Gorenstein hypothesis

The T-module V is said to satisfy the Gorenstein hypothesis if:

T ≅ HomR(T,R) as R-modules (where R denotes a sufficiently large
p-adic ring here)

V is free over T
We will assume V satisfies the Gorenstein hypothesis.
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Multiplicity one hypothesis

The localization of T at kerλπ is of rank 1 over R (a sufficiently large
p-adic ring).

π appears with multiplicity 1 in the cuspidal spectrum of the unitary
group.
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Image of the Eisenstein measure

Define

Eord ∈ ΛX ⊗̂ (ΛT ⊗ eV⊗̂eV)
T

to be the element such that

(χ⊗ µ) (Eord) = eφEis(χ,µ).

(By χ⊗ µ, I mean the function obtained by linearly extending the
character χ⊗ µ on Xp ⊗T .)
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Image of the Eisenstein measure

In fact, we can actually consider an element

Eord = lim
←Ð
r

Eordr ΛX ⊗̂ lim
←Ð
r

HomT (C(T /Tr), (eVr ⊗̂eVr)
Tr )

The reason we can take an element Eord in this smaller space is that we
are actually going to pair the image of the Eisenstein measure with Hecke
eigenforms via the doubling method.
So the image of the Eisenstein measure should be viewed as lying in the
dual of the space of these eigenforms.
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Image of the Eisenstein measure

In fact, we have an isomorphism

lim
←Ð
r

HomT (C(T /Tr), (eVr ⊗̂eVr)
Tr ) ≅ T

So we may view Eord as an element of ΛX ⊗̂T.
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Isomorphism with Hecke algebra

We now outline the proof that

lim
←Ð
r

HomT (C(T /Tr), (eVr ⊗̂eVr)
Tr ) ≅ T.
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Outline of isomorphism with Hecke algebra

HomT (C(T /Tr), (eVr ⊗̂eVr)
Tr ) ≅ (eVr ⊗̂eVr)

Tr

Define e− to be the anti-ordinary projector, i.e. adjoint to e.

We have eVr = HomR (e
−V∗r ,R), where V∗r denotes the R-dual to Vr

under the pairing coming from Serre duality.

So (eVr ⊗̂eVr) = HomTr (e
−V∗r , eVr)

It is a consequence of the Gorenstein and multiplicity one hypotheses
that

eVr ≅ Tr sr , e−V∗r ≅ Tr s∗r

This gives an isomorphism HomTr (e
−V∗r , eVr) ≅ Tr
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Compatibility

Note that the elements sr ’s are chosen compatibly so that
sr = trTr+1/Tr

sr+1 and s∗r = trTr+1/Tr
s∗r+1.
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Putting it together

So we get

lim
←Ð
r

HomT (C(T /Tr), (eVr ⊗̂eVr)
Tr ) ≅ (eVr ⊗̂eVr)

Tr ≅ lim
←Ð
r

Tr ≅ T.

Hence, we may view Eord = lim
←Ðr
Eordr as an element of

ΛX ⊗̂T = ΛX ⊗̂ lim
←Ðr

Tr .
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Hecke eigenvalues

Now fix a cuspidal automorphic representation π of UV , and consider a
homomorphism

λπ ∶ T→ R.
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About λπ

By the Gorenstein condition, AnnTr (kerλπ) is principle. Let Tπ be a
generator for this ideal.

Then λπ gives an isomorphism Tr / kerλπ ≅ R.

So t ⋅Tπ = λπTπ for each t ∈ Tr .

Under the isomorphism Tr ≅ HomTr (e
−V∗r , eVr), t corresponds to

ηt ∶ s∗r ↦ tsr for each t ∈ Tr , and Tπηt = ηt ⋅Tπ = λπ(t)ηTπ .
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Obtaining the p-adic L-function

A three-step process:

1 Realize Eord = lim
←Ðr
Eordr as an element of

ΛXp ⊗̂ lim
←Ðr

Tr ≅ ΛXp ⊗̂ lim
←Ðr

HomTr (e
−V∗r , eVr) .

✓

2 Evaluate at χ to obtain χ(Eord) of lim
←Ðr

HomTr (e
−V∗r , eVr).

3 Evaluate λπ on χ(Eord) identified with its image under the
isomorphism lim

←Ðr
HomTr (e

−V∗r , eVr) ≅ lim
←Ðr

Tr .

In the next two slides, we explore Steps 2 and 3 further.
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Step 2: Considering the element
χ (Eord) ∈ lim←Ðr

HomTr
(e−V∗r , eVr)

Recall χ (Eord) is identified with an element Eχ of lim
←Ðr
(eVr ⊗̂eVr)

Tr

The corresponding element in lim
←Ðr

HomTr (e
−V∗r , eVr) is defined by

ϕ↦ ⟨ϕ,Eχ⟩,

where this is the pairing from the doubling method, identified with
the pairing coming from Serre duality.

For ϕπ ∈ π, ⟨ϕπ,Eχ⟩ = L(π,χ) ⋅ ϕιπ.
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Step 3: Evaluating λπ

For any element t ∈ T, and ϕ′ ∈ π′ a Hecke eigenform and ϕ ∈ π,

λπ(t) =
⟨ϕ, tϕ′⟩

⟨ϕ,ϕ′⟩
,

with ⟨, ⟩ the unique (up to constant multiple) non-trivial invariant
pairing.
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Intermediate observation

Recall ηt ∶ s∗r ↦ tsr .

So Eord(ϕ) = ηTord
E
(Tπs∗r ) = ηTEordTπ (s

∗
r ) = TEordTπsr = TEordϕ

′.
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Step 3: Evaluating λπ on χ (Eord)

So (with subscript π’s to remind of membership in π) we have

λπ (χ (E
ord)) =

⟨ϕπ,E
ord(ϕπ)⟩

⟨ϕπ, ϕ′π⟩
=

L(π,χ)

Ω
,

where

Ω =
⟨ϕπ, ϕ

′
π⟩

⟨ϕπ, ϕιπ⟩
.
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Remarks/reassurance

There is a unique (up to scalar multiple) ordinary vector φord ∈ π
Iv,r
v

(Iv ,r a mod pr Iwahori subgroup relative to the Borel in the general
unitary group)

Let 0 ≠ φ ∈ πIvv with e ⋅ φ = cφφ
ord. Then ⟨φ,φ′⟩ = cφ⟨φ

ord, φ′⟩ ≠ 0.
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Plan for talk

1 Overview of automorphic side (pairing of Eisenstein series against pair
of cusp forms, via doubling method)✓

2 Overview of interpretation of pairing in p-adic setting, and
comparison with automorphic side✓

3 Explain the construction of a family of Eisenstein series
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Goal for rest of talk

Describe a construction of a p-adic family of Eisenstein series on unitary
groups of signature (n,n).
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Remarks about related cases

What about related cases?

Recover N. Katz’s results as a special case

Methods generalize to case of Siegel modular forms

Very close to - but not precisely - Shimura’s Eisenstein series (modify
local data at p...more later in talk)
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Main Result

Theorem (E, (J. Reine Angew. Math. ’15; Algebra Number Theory
’14))

There is a p-adic family of Eisenstein series {Eλ} on unitary groups (of
signature (n,n)) indexed by weights λ.

This family has the following
properties:

Fix an ordinary CM point A. Then (modulo a period), the values
Eλ(A) vary p-adic continuously as the weights λ vary p-adic
continuously.

The values of Eλ p-adically interpolate certain values of C∞ (not
necessary holomorphic) Eisenstein series (modulo a period), similar to
ones studied by Shimura.

Remark: Can use these Eisenstein series as a starting point to
construct p-adic families of automorphic forms on unitary groups of
signature (a,b) for all a,b.
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The Main Steps in the construction

Step 1: Choose a ”nice” family of Eisenstein series:

1 Fourier coefficients in some specified ring (e.g. ring of integers)

2 Fourier coefficients ”nice” (easy to describe) and interpolate nicely

3 convenient for p-adic L-functions computations, other applications,
etc. (Beware of requirements of potential applications. Try to make
”natural” or ”general” choices to make more versatile, in case of
unforeseen requirements of applications.)
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The Main Steps

Step 2: Compute Fourier coefficients (for holomorphic forms), i.e.
determine the q-expansions
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The Main Steps

Step 3: Apply certain weight-raising C∞ (and p-adic) differential operators
to obtain C∞ and (p-adic) automorphic forms (For now, call the operators
D∞ and Dp−adic)

Step 4: Use q-expansion principle and p-adic interpolation of q-expansion
coefficients to construct p-adic family of forms (N.B: The p-adic
differential operators have an easy-to-describe action on q-expansion
coefficients.)

Step 5: Interpolate special values of C∞ Eisenstein series, using

(∗)D∞E(A) = (∗′)Dp−adicE(A)

for all ordinary CM points A. (See [E, Ann. Inst. Fourier 2012].)
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The Main Steps

Step 6: Obtain a p-adic family of automorphic forms (over the “Igusa
tower”, over the ordinary locus).
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Setup

Let K be a CM field, i.e. a quadratic imaginary extension of totally
real field E

Fix a prime p that splits completely in K (can weaken slightly).

Fix a positive integer n.

Let W be a 2n-dimensional vector space over K , together with
Hermitian pairing ⟨, ⟩ of signature (n,n).

Let P be a Siegel parabolic in G ∶= U(W ). (Here, U(W ) is the
unitary group preserving ⟨, ⟩.)

Let χ ∶ K×/A×
K → C be a Hecke character with conductor dividing p∞

(can weaken slightly).

Choose f ∈ Ind
G(AE )

P(AE )
(χ∣ ⋅ ∣−sK ).

(Choose f very carefully!)
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Siegel Eisenstein series

Define a Siegel Eisenstein series by

Ef (g) = ∑
γ∈P(E)/G(E)

f (γg).

(Recall:

P be a Siegel parabolic in G ∶= U(W ). Here, U(W ) is the unitary
group preserving ⟨, ⟩.

χ ∶ K×/A×
K → C is a Hecke character with conductor dividing p∞.

f ∈ Ind
G(AE )

P(AE )
(χ∣ ⋅ ∣−sK ).)
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q-expansions

Theorem (E, (J. Reine Angew. Math. ’15; Algebra Number Theory
’14))

Let R be an OK -algebra, k ≥ n. Let F ∶ (OK ⊗Zp) ×Mn (OE ⊗Zp)→ R
be a locally constant function supported on (OK ⊗Zp)

× ×GLn (OE ⊗Zp)

satisfying

F (ex ,NK/E(e)
−1y) = Nk,ν(e)F (x , y).

(Nk,ν ∶= σ
k+2ν(σσ̄)−ν .) for all e ∈ O×K , x ∈ OK ⊗Zp, and

y ∈ Mn (OE ⊗Zp).

Then there exists an algebraic automorphic form Gk,ν,F (on U(n,n)) of
weight (k , ν) defined over R, whose q-expansion at a cusp m ∈ GM+ is of
the form ∑0<β∈Lm c(β)qβ, with c(β) a finite Z-linear combination of terms

of the form F (a,NK/E(a)
−1β)Nk,ν (a

−1 detβ)NK/E (detβ)−n .
When R = C, this is the Fourier expansion (at s = k/2) of a C∞

automorphic form Gk,ν,F (z , s) of weight (k , ν) that is holomorphic at
s = k/2.
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Consequence

p-adically interpolate q-expansion coefficients to construct p-adic families
of automorphic forms. (Similar to approach taken by Serre, Katz...)
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A p-adic Measure

Theorem (E, 2015 (Crelle), 2014 (Algebra Number Theory))

There is a p-adic measure µ on

G ∶= ((OK ⊗Zp)
× ×GLn (OE ⊗Zp)) /O×K

with values in the space of p-adic automorphic forms on U(n,n) defined by

∫
G

Hdµ = Gn,0,F

for all continuous functions H on G. Here,

F (x , y) ∶=
1

σ (x−1NK/E(x)n det y)
n H (x , y−1)

extended by 0 to all of (OK ⊗Zp) ×Mn (OE ⊗Zp).
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Locally constant case

Remark

For all locally constant functions H,

∫
G

H(x , y)det(NK/E(x)
−1y)−ddµ(A) = (∗)Gn+2d ,−2d ,F(x ,y)(z , k/2),

where A is an ordinary, CM abelian variety over R, and z ∈ corresponds to
the CM abelian variety A (viewed as an abelian variety over C by
extending scalars).

(Can generalize to vector-weight case.)
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Form of measure for this project

Theorem (E, 2015 (Crelle), 2014 (Algebra Number Theory))

There is a p-adic measure φEis (dependent on the signature of our choice
of unitary group) on Xp ×T such that

∫
Xp×T

χ̃µdφEis = Eχ,µ∣U×U

with Eχ,µ Eisenstein series closely related to those of Shimura (and, when
n = 1, to those of Katz) for µ finite order (and using differential operators,
still related even for µ not of finite order).
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Choice of Local Siegel Sections

How do we choose the Siegel section f ∈ Ind
G(AE )

P(AE )
(χ∣ ⋅ ∣−sK )?

Carefully! More precisely...

Choose f ∈ Ind
G(AE )

P(AE )
(χ∣ ⋅ ∣−sK ) so that f = ⊗v fv .

For such an f

Fourier coefficients of Ef factor over v

In particular, we can isolate data at p
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For such an f

Fourier coefficients of Ef factor over v

In particular, we can isolate data at p
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Archimedean Siegel Sections
For the archimedean Siegel sections, use the canonical automorphy factors.

More precisely,

f∞(g ;χ, s) ∶= Jk,ν
g (i1n)

−1 (Jg(i1n)Jg(i1n))
k/2−s

Jg(z) ∶= det(cZ + d)

Jk,ν
g ∶= Jg(z)

k+ν det(c̄tZ + d̄)−ν

g = (
a b
c d

)

When s = k/2 and ν = 0, this gives 1
(cZ+d)k

, appearing in the familiar

Eisenstein series ∑(c,d)≠(0,0)
1

(cZ+d)k
.

Corresponding Fourier cofficient is (∗)detβk−n.
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Siegel sections at primes not dividing p∞
Following Shimura, get Siegel sections ⊗v∤p∞fv such that whenever the
corresponding Fourier coefficient ∏v∤p∞ c(β, fv) ≠ 0,

∏
v∤p∞

c(β, fv) =

NE/Q(bOE)
−n2

n−1

∏
i=0

Lp (2s − i , χ−1E τ
i)
−1
∏

v∤p∞

Pβ,v (χE(πv)
−1 ∣πv ∣

2s
v ) ,

where:
1 the product is over primes of E ;
2 the Hecke character χE is the restriction of χ to E ;
3 the function Pβ,v ,b is a polynomial that is dependent only on β, v ,

and b and has coefficients in Z and constant term 1;
4 the polynomial Pβ,v ,b is identically 1 for all but finitely many v ,
5 τ is the Hecke character of E corresponding to K/E ,
6 πv is a uniformizer of OE ,v , viewed as an element of K× prime to p.

7 Lp(r , χ−1E τ
i) =∏v∤p∞condτ (1 − χv(πv)

−1τ i(πv) ∣πv ∣
r
v)

−1
.
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Sections at primes not divides p∞

Remark

The sections away from p∞ are built from characteristic functions of
lattices (which one can choose to have certain properties corresponding to
a choice of ideal b).
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Sections at primes dividing p

This is where much of the work is.

Given F̃ ∶Mn (OE ⊗Zp) ×Mn (OE ⊗Zp)→ R subject to certain
simple conditions, there exists a Siegel section fF̃ at p whose local

Fourier coefficient is F̃ (1, tβ).

The Idea: Use “partial Fourier transforms.”
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Sections at primes dividing p

Question: How do you choose F̃ ?

Answer: It depends on your intended application (signature, etc)...
Built from tuple of characters on minors of a certain n × n matrix.
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C∞ Differential Operators

Many Eisenstein series that we need to use in applications are merely C∞

(non-holomorphic)...

BUT can be obtained from holomorphic Eisenstein series by applying
certain differential operators (“weight-raising Maass-Shimura operators”)

Example

If f is a modular form of weight k , then ∂k f ∶= y−k ∂
∂z
(yk f ) is a modular

form (function) of weight k + 2.

The operators ∂k generalize to the case of unitary groups.
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C∞ Differential operators

Theorem (Shimura)

If f is a holomorphic automorphic form defined over Q̄ of weight ρ, then
(∗)Dd

ρ f (A) is in Q̄ for any CM abelian variety A defined over Q̄.

(Can generalize to case of vector-valued automorphic forms)
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p-adic Differential operators

Let R be an OK -algebra together with embeddings R ↪ C and R ↪ Cp.
Let f be an automorphic form defined over R. Let A be an ordinary CM
point defined over R.

Theorem (E, 2012)

There’s a p-adic differential operator θdρ such that

θdρ f (A) ∈ R.

(Can generalize to case of vector-valued automorphic forms)

Theorem ((E, 2012 for automorphic forms on unitary groups),
generalizes (Katz, 1978 for Hilbert modular forms))

Furthermore,

(∗′)θdρ f (A) = (∗)Dd
ρ f (A).
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Comparison of action of differential operators: general case

eθE is a classical automorphic form.

eD∞E = ehol(D∞E) on U ×U, where hol denotes the holomorphic
projection

Because these are holomorphic forms that agree at CM points and
since CM points are Zariski dense, these forms agree everywhere.

Note that the eD∞f = ehol(D∞f ) follows from the fact that
UpD∞f = Uphol(D∞f ) + p ⋅ (nearly holo terms) for any classical form
f .
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p-adic Differential operators

Key Feature: The p-adic differential operators have a “nice” action on
q-expansions.
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Four related results

1 Scalar-weight (2015, J. Reine Angew. Math.)

2 Vector-weight (2014, Algebra Number Theory)

3 Pullbacks, under certain restrictions on the signature (2016, Annales
Math. Québec)

4 Pullbacks without restrictions on the signature, joint work together
with J. Fintzen, E. Mantovan, and I. Varma (submitted)

5 See also related results on differential operators - but in a different
direction (p inert, G = U(2,1)) - in recent work by E. Goren and E.
De Shalit
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Thank you
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A picture of Kubota L-series

Figure : Kubota standard L-series (from Shreveport Tractor)

For more information, see http://www.townlineequipment.com/

product-spotlights/kubota-standard-l-series.aspx

E. Eischen p-adic L-functions 84 / 84

http://www.townlineequipment.com/product-spotlights/kubota-standard-l-series.aspx
http://www.townlineequipment.com/product-spotlights/kubota-standard-l-series.aspx


A picture of Kubota L-series

Figure : Kubota standard L-series (from Shreveport Tractor)

For more information, see http://www.townlineequipment.com/

product-spotlights/kubota-standard-l-series.aspx

E. Eischen p-adic L-functions 84 / 84

http://www.townlineequipment.com/product-spotlights/kubota-standard-l-series.aspx
http://www.townlineequipment.com/product-spotlights/kubota-standard-l-series.aspx

	Introduction
	Goals

	The construction and key components of proof
	How it's done!
	Thank you

