p-adic L-functions for unitary groups

Ellen Eischen ${ }^{1}$
University of Oregon
(Joint with M. Harris, J.-S. Li, and C. Skinner)

Goal for talk

Describe a construction of p-adic L-functions

Goal for talk

Describe a construction of p-adic L-functions

- For unitary groups

Goal for talk

Describe a construction of p-adic L-functions

- For unitary groups
- For ordinary families

Motivation/Context

- Builds on earlier constructions, including Hida and Katz (and recovers Katz's p-adic L-functions for CM fields as a special case)

Motivation/Context

- Builds on earlier constructions, including Hida and Katz (and recovers Katz's p-adic L-functions for CM fields as a special case)
- Motivated by various conjectures about existence, form, and role of p-adic L-functions (in Iwasawa Theory), due to Coates, Perrin-Riou, Greenberg, ...

Goals of project

- p-adically interpolate values of $L(s, \chi, \pi)$, where χ is a CM Hecke character and π is a cuspidal automorphic representation of a unitary group

Goals of project

- p-adically interpolate values of $L(s, \chi, \pi)$, where χ is a CM Hecke character and π is a cuspidal automorphic representation of a unitary group
- More precisely, construct an element $\mathcal{L} \in \Lambda \hat{\otimes} \mathbb{T}$ so that the image of \mathcal{L} under the map induced by a Hecke character χ and a system of Hecke eigenvalues λ_{π} (from a Hecke algebra \mathbb{T} to an appropriate p-adic ring) is $L(s, \chi, \pi) / \Omega_{\pi, \chi}$ for some period $\Omega_{\pi, \chi}$. (Here Λ is a certain Iwasawa algebra.)

Goals of project

- p-adically interpolate values of $L(s, \chi, \pi)$, where χ is a CM Hecke character and π is a cuspidal automorphic representation of a unitary group
- More precisely, construct an element $\mathcal{L} \in \Lambda \hat{\otimes} \mathbb{T}$ so that the image of \mathcal{L} under the map induced by a Hecke character χ and a system of Hecke eigenvalues λ_{π} (from a Hecke algebra \mathbb{T} to an appropriate p-adic ring) is $L(s, \chi, \pi) / \Omega_{\pi, \chi}$ for some period $\Omega_{\pi, \chi}$. (Here Λ is a certain Iwasawa algebra.)
- Allow both χ and highest weights for π (characters on a torus) to vary.

Goals of project

- p-adically interpolate values of $L(s, \chi, \pi)$, where χ is a CM Hecke character and π is a cuspidal automorphic representation of a unitary group
- More precisely, construct an element $\mathcal{L} \in \Lambda \hat{\otimes} \mathbb{T}$ so that the image of \mathcal{L} under the map induced by a Hecke character χ and a system of Hecke eigenvalues λ_{π} (from a Hecke algebra \mathbb{T} to an appropriate p-adic ring) is $L(s, \chi, \pi) / \Omega_{\pi, \chi}$ for some period $\Omega_{\pi, \chi}$. (Here Λ is a certain Iwasawa algebra.)
- Allow both χ and highest weights for π (characters on a torus) to vary.

Remark: By work of Chenevier, there is a family of Galois representations associated to these cuspidal automorphic representations.

Strategy to construct the p-adic L-function

(1) Construct a family of Eisenstein series.

Strategy to construct the p-adic L-function

(1) Construct a family of Eisenstein series.
(2) Pair (pullbacks of) these Eisenstein series against pairs of cusp forms corresponding to chosen representations.

Strategy to construct the p-adic L-function

(1) Construct a family of Eisenstein series.
(2) Pair (pullbacks of) these Eisenstein series against pairs of cusp forms corresponding to chosen representations.
(3) Automorphic side: Interpret this pairing as recognizable zeta integral.

Strategy to construct the p-adic L-function

(1) Construct a family of Eisenstein series.
(2) Pair (pullbacks of) these Eisenstein series against pairs of cusp forms corresponding to chosen representations.
(3) Automorphic side: Interpret this pairing as recognizable zeta integral.
(9) p-adic side: Interpret this pairing in terms of a p-adic measure, or equivalently, as an element of $\Lambda \hat{\otimes} \mathbb{T}$.

Plan for talk

(1) Overview of automorphic side (pairing of Eisenstein series against pair of cusp forms, via doubling method)

Plan for talk

(1) Overview of automorphic side (pairing of Eisenstein series against pair of cusp forms, via doubling method)
(2) Overview of interpretation of pairing in p-adic setting, and comparison with automorphic side

Plan for talk

(1) Overview of automorphic side (pairing of Eisenstein series against pair of cusp forms, via doubling method)
(2) Overview of interpretation of pairing in p-adic setting, and comparison with automorphic side
(3) Explain the construction of a family of Eisenstein series

Doubling method and pullback methods

- Start with doubling (or "pullback") method, a Rankin-Selberg type construction, due to Gelbart-Piatetski-Shapiro-Rallis, as well as Garrett and Shimura

Doubling method and pullback methods

- Start with doubling (or "pullback") method, a Rankin-Selberg type construction, due to Gelbart-Piatetski-Shapiro-Rallis, as well as Garrett and Shimura
- Method for obtaining integral representations of L-function (i.e. whose Euler factors are expressed as certain integrals)

Doubling method and pullback methods

- Start with doubling (or "pullback") method, a Rankin-Selberg type construction, due to Gelbart-Piatetski-Shapiro-Rallis, as well as Garrett and Shimura
- Method for obtaining integral representations of L-function (i.e. whose Euler factors are expressed as certain integrals)
- Good for other classical groups as well

Doubling method and pullback methods

- Start with doubling (or "pullback") method, a Rankin-Selberg type construction, due to Gelbart-Piatetski-Shapiro-Rallis, as well as Garrett and Shimura
- Method for obtaining integral representations of L-function (i.e. whose Euler factors are expressed as certain integrals)
- Good for other classical groups as well
- Unlike the usual Rankin-Selberg method for $G L_{n}$ or the Langlands-Shahidi method does not rely on Whittaker models

Setup

- K be a CM field, i.e. a quadratic imaginary extension of a totally real field E

Setup

- K be a CM field, i.e. a quadratic imaginary extension of a totally real field E
- For the discussion of p-adic properties later, we also fix a rational prime p such that each prime in E above p splits in K.

Doubling method: pairings

Let:

- V be an n-dimensional vector space over K together with a Hermitian pairing \langle,\rangle_{V}

Doubling method: pairings

Let:

- V be an n-dimensional vector space over K together with a Hermitian pairing \langle,\rangle_{V}
- $W=V \oplus V$ together with the Hermitian pairing \langle,\rangle_{W} defined by

$$
\left\langle(u, v),\left(u^{\prime}, v^{\prime}\right)\right\rangle_{w}:=\left\langle u, u^{\prime}\right\rangle_{v}-\left\langle v, v^{\prime}\right\rangle_{v}
$$

for $u, u^{\prime}, v, v^{\prime} \in V$

Doubling method: pairings

Let:

- V be an n-dimensional vector space over K together with a Hermitian pairing \langle,\rangle_{V}
- $W=V \oplus V$ together with the Hermitian pairing \langle,\rangle_{W} defined by

$$
\left\langle(u, v),\left(u^{\prime}, v^{\prime}\right)\right\rangle_{W}:=\left\langle u, u^{\prime}\right\rangle_{v}-\left\langle v, v^{\prime}\right\rangle_{v}
$$

for $u, u^{\prime}, v, v^{\prime} \in V$

Note that \langle,\rangle_{W} is a Hermitian pairing on W of signature (n, n).

Doubling method: unitary groups

- Define $U_{V}:=U(V)$ to be the unitary group preserving \langle,\rangle_{V}

Doubling method: unitary groups

- Define $U_{V}:=U(V)$ to be the unitary group preserving \langle,\rangle_{V}
- Define $U_{W}:=U(W)$ to be the unitary group preserving \langle,\rangle_{W}

Doubling method: unitary groups

- Define $U_{V}:=U(V)$ to be the unitary group preserving \langle,\rangle_{V}
- Define $U_{W}:=U(W)$ to be the unitary group preserving \langle,\rangle_{W}
- Can also consider $G U$ (preserving \langle,$\rangle up to a similitude factor), S U$ (determinant 1)

Doubling method: unitary groups

- Define $U_{V}:=U(V)$ to be the unitary group preserving \langle,\rangle_{V}
- Define $U_{W}:=U(W)$ to be the unitary group preserving \langle,\rangle_{W}
- Can also consider $G U$ (preserving \langle,$\rangle up to a similitude factor), S U$ (determinant 1)

Remark

- Have natural embedding $U(V) \times U(V) \hookrightarrow U(W)$, and identify $U(V) \times U(V)$ with its image in $U(W)$
- Similarly, $G(U(V) \times U(V)) \rightarrow G U(W)$

Doubling method: integrals

The doubling method expresses certain L-functions as an integral of a pair of cusp forms on $U(V) \times U(V)$ against an Eisenstein series on $U(W)$

Doubling method input

Input to doubling method:

Doubling method input

Input to doubling method:
(1) Siegel Eisenstein series on $U(W)$

Doubling method input

Input to doubling method:
(1) Siegel Eisenstein series on $U(W)$
(2) pair of cusp forms on $U(V) \times U(V)$

Doubling method: Some important groups

- Let P be the parabolic subgroup of U_{W} preserving $\{(v, v) \mid v \in V\} \subseteq W$

Doubling method: Some important groups

- Let P be the parabolic subgroup of U_{W} preserving $\{(v, v) \mid v \in V\} \subseteq W$
- Let M denote Levi subgroup of P. Write $P=M N$, with N unipotent radical.

Doubling method: Some important groups

- Let P be the parabolic subgroup of U_{W} preserving $\{(v, v) \mid v \in V\} \subseteq W$
- Let M denote Levi subgroup of P. Write $P=M N$, with N unipotent radical.
- $M \cong \mathrm{GL}_{n}(K)$

Doubling method: The Eisenstein series

- M is of form $\left(\begin{array}{cc}A & 0 \\ 0 & { }^{t} A^{-1}\end{array}\right)$

Doubling method: The Eisenstein series

- M is of form $\left(\begin{array}{cc}A & 0 \\ 0 & { }^{t} \bar{A}^{-1}\end{array}\right)$
- Let $\chi: K^{\times} \backslash \mathbf{A}_{K}^{\times} \rightarrow \mathbb{C}^{\times}$be a Hecke character

Doubling method: The Eisenstein series

- M is of form $\left(\begin{array}{cc}A & 0 \\ 0 & { }^{t} \bar{A}^{-1}\end{array}\right)$
- Let $\chi: K^{\times} \backslash \mathbf{A}_{K}^{\times} \rightarrow \mathbb{C}^{\times}$be a Hecke character
- View χ as character on M via composition with determinant, extend to character on P

Doubling method: The Eisenstein series

- M is of form $\left(\begin{array}{cc}A & 0 \\ 0 & { }^{t} \bar{A}^{-1}\end{array}\right)$
- Let $\chi: K^{\times} \backslash \mathbf{A}_{K}^{\times} \rightarrow \mathbb{C}^{\times}$be a Hecke character
- View χ as character on M via composition with determinant, extend to character on P
- Can adapt to include similitude factors, when working with GU instead of U

Doubling method: The Eisenstein series

- Let $f_{s, \chi} \in \operatorname{Ind}_{P(\mathbf{A})}^{U_{w}(\mathbf{A})}\left(\chi \cdot|\bullet|^{s}\right)$.

Doubling method: The Eisenstein series

- Let $f_{s, \chi} \in \operatorname{Ind}_{P(\mathbf{A})}^{U_{w}(\mathbf{A})}\left(\chi \cdot|\bullet|^{s}\right)$.
- Define Eisenstein series $E_{f_{s, \chi}}$ on U_{W} by

$$
E_{f_{s, \chi}}(h)=\sum_{\gamma \in P(E) \backslash U_{w}(E)} f_{s, \chi}(\gamma h) .
$$

Eisenstein series

This Eisenstein series extends to a meromorphic function of s and satisfies a functional equation

Question

Question

How should we choose $f_{s, \chi}$?

Question

Question

How should we choose $f_{s, \chi}$?
We'll return to that question later.

Doubling method: Cusp forms

- Let π be a cuspidal representation of $U(V)$ and π^{\prime} be its contragredient representation.

Doubling method: Cusp forms

- Let π be a cuspidal representation of $U(V)$ and π^{\prime} be its contragredient representation.
- Let $\varphi \in \pi$ and $\varphi^{\prime} \in \pi^{\prime}$.

Another question

Question

How should we choose φ and φ^{\prime} ?

Doubling method: integral

Define

$$
\begin{aligned}
& Z\left(\varphi, \varphi^{\prime}, f_{s, \chi}\right) \\
&:=\int_{\left.\left[U_{V} \times U_{V}\right] \backslash\left[U_{V}\right) \times U_{V}\right]\left(\mathbf{A}_{E}\right)} \varphi(g) \varphi^{\prime}(h) E_{f_{s, \chi}}((g, h)) \chi^{-1}(\operatorname{det} h) d g d h
\end{aligned}
$$

Doubling method: properties

- $Z\left(\varphi, \varphi^{\prime}, f_{s, \chi}\right)$ can be analytically continued to a meromorphic function of s and satisfies a functional equation.

Factorizations

Suppose we have the following factorizations

- $\varphi=\otimes_{v} \varphi_{v} \in \pi \cong \otimes^{\prime} \pi_{v}$

Factorizations

Suppose we have the following factorizations

- $\varphi=\otimes_{v} \varphi_{v} \in \pi \cong \otimes^{\prime} \pi_{v}$
- $\varphi^{\prime}=\otimes_{v} \varphi_{v}^{\prime} \in \pi^{\prime} \cong \otimes^{\prime} \pi_{v}^{\prime}$

Factorizations

Suppose we have the following factorizations

- $\varphi=\otimes_{v} \varphi_{v} \in \pi \cong \otimes^{\prime} \pi_{v}$
- $\varphi^{\prime}=\otimes_{v} \varphi_{v}^{\prime} \in \pi^{\prime} \cong \otimes^{\prime} \pi_{v}^{\prime}$
- $f_{s, \chi}=\otimes_{v} f_{s, \chi_{v}} \in \operatorname{Ind}_{P(\mathbf{A})}^{U_{W}(\mathbf{A})}\left(\chi \cdot|\bullet|^{s}\right) \cong \otimes^{\prime} \operatorname{Ind}_{P\left(E_{v}\right)}^{U_{W}\left(E_{v}\right)}\left(\chi_{v} \cdot|\bullet|_{v}^{s}\right)$

Factorizations

Suppose we have the following factorizations

- $\varphi=\otimes_{v} \varphi_{v} \in \pi \cong \otimes^{\prime} \pi_{v}$
- $\varphi^{\prime}=\otimes_{v} \varphi_{v}^{\prime} \in \pi^{\prime} \cong \otimes^{\prime} \pi_{v}^{\prime}$
- $f_{s, \chi}=\otimes_{v} f_{s, \chi_{v}} \in \operatorname{Ind}_{P(\mathbf{A})}^{U_{w}(\mathbf{A})}\left(\chi \cdot|\bullet|^{s}\right) \cong \otimes^{\prime} \operatorname{Ind}_{P\left(E_{v}\right)}^{U_{w}\left(E_{v}\right)}\left(\chi_{v} \cdot|\bullet|_{v}^{s}\right)$

Away from the set S_{π} of places where π_{v} is ramified, we choose $\varphi_{v}, \varphi_{v}^{\prime}$ to be non-zero unramified vectors such that $\left\langle\varphi_{v}, \varphi_{v}^{\prime}\right\rangle_{v}=1$, where \langle,\rangle_{v} is the unique (up to scalar-multiple) invariant pairing

Factorizations

Suppose we have the following factorizations

- $\varphi=\otimes_{v} \varphi_{v} \in \pi \cong \otimes^{\prime} \pi_{v}$
- $\varphi^{\prime}=\otimes_{v} \varphi_{v}^{\prime} \in \pi^{\prime} \cong \otimes^{\prime} \pi_{v}^{\prime}$
- $f_{s, \chi}=\otimes_{v} f_{s, \chi_{v}} \in \operatorname{Ind}_{P(\mathbf{A})}^{U_{w}(\mathbf{A})}\left(\chi \cdot|\bullet|^{s}\right) \cong \otimes^{\prime} \operatorname{Ind}_{P\left(E_{v}\right)}^{U_{w}\left(E_{v}\right)}\left(\chi_{v} \cdot|\bullet|_{v}^{s}\right)$

Away from the set S_{π} of places where π_{v} is ramified, we choose $\varphi_{v}, \varphi_{v}^{\prime}$ to be non-zero unramified vectors such that $\left\langle\varphi_{v}, \varphi_{v}^{\prime}\right\rangle_{v}=1$, where \langle,\rangle_{v} is the unique (up to scalar-multiple) invariant pairing

$$
\left\langle\phi, \phi^{\prime}\right\rangle_{v}=\int_{G_{V}\left(E_{v}\right) \backslash G_{V}(\mathbf{A})} \phi(g) \phi^{\prime}(g) d g .
$$

Factorization into Euler product

Then we have the following factorization:

$$
Z\left(\varphi, \varphi^{\prime}, f_{s, \chi}\right)=\prod_{v} Z_{v}\left(\varphi_{v}, \varphi_{v}^{\prime}, f_{s, \chi_{v}}\right),
$$

where

$$
Z_{v}\left(\varphi_{v}, \varphi_{v}^{\prime}, f_{s, \chi_{v}}\right)=\int_{U_{v}\left(E_{v}\right)} f_{s, \chi_{v}}((g, 1))\left\langle\pi_{v}(g) \varphi_{v}, \varphi_{v}^{\prime}\right\rangle_{v} d g
$$

for $\mathfrak{R}(s) \gg 0$.

Siegel sections

Need to choose $f_{s, \chi}$ so that both:

Siegel sections

Need to choose $f_{s, \chi}$ so that both:
(1) The Eisenstein series $E_{f_{s, \chi}}$ can be p-adically interpolated (fits into p-adic measure)

Siegel sections

Need to choose $f_{s, \chi}$ so that both:
(1) The Eisenstein series $E_{f_{s, \chi}}$ can be p-adically interpolated (fits into p-adic measure)
(2) We can compute the local integrals in the Euler factors and relate them to familiar L-functions

Local zeta integrals appearing in the Euler product

Four main cases:

Local zeta integrals appearing in the Euler product

Four main cases:
(1) $v \mid p$

Local zeta integrals appearing in the Euler product

Four main cases:
(1) $v \mid p$
(2) $v \mid \infty$

Local zeta integrals appearing in the Euler product

Four main cases:
(1) $v \mid p$
(2) $v \mid \infty$
(3) $v+p \infty$ such that

Local zeta integrals appearing in the Euler product

Four main cases:
(1) $v \mid p$
(2) $v \mid \infty$
(3) $v+p \infty$ such that

- (unramified case) v is in the set S of primes that does not ramify in K and at which π_{v} and χ_{v} are unramified

Local zeta integrals appearing in the Euler product

Four main cases:
(1) $v \mid p$
(2) $v \mid \infty$
(3) $v+p \infty$ such that

- (unramified case) v is in the set S of primes that does not ramify in K and at which π_{v} and χ_{v} are unramified
- (ramified case) $v \notin S$

Local zeta integrals: $v+p \infty$, unramified case

For $\varphi_{v}, \varphi_{v}^{\prime}$ normalized spherical vectors such that $\left\langle\varphi_{v}, \varphi_{v}^{\prime}\right\rangle_{v}=1$ and $f_{\chi_{v}, s}$ the unique $G_{W}\left(\mathcal{O}_{w}\right)$-invariant function such that $f_{\chi_{v}, s}\left(K_{w}\right)=1$,

$$
d_{n, v}\left(x, \chi_{v}\right) Z_{v}\left(\varphi_{v}, \varphi_{v}^{\prime}, f_{\chi_{v}, s}\right)=L_{v}\left(s+\frac{1}{2}, \pi_{v}, \chi_{v}\right),
$$

with

$$
d_{n, v}\left(s, \chi_{v}\right)=\prod_{r=0}^{n-1} L_{v}\left(2 s+n-r, \chi_{v} \mid E \eta_{v}^{r}\right),
$$

η_{v} the character on E attached by local CFT to the extension $K_{w} / E_{v}, w$ a prime over v, and $L_{v}\left(s, \pi_{v}, \chi_{v}\right)$ the standard Langlands Euler factor.

Local zeta integrals: $v+p \infty$, unramified case

Two cases:
(1) v splits:

Local zeta integrals: $v+p \infty$, unramified case

Two cases:
(1) v splits:
computations reduce to those in work of Jacquet and Gelbart-Piatetski-Shapiro-Rallis.

Local zeta integrals: $v+p \infty$, unramified case

Two cases:
(1) v splits:
computations reduce to those in work of Jacquet and Gelbart-Piatetski-Shapiro-Rallis.
(2) v inert:

Local zeta integrals: $v+p \infty$, unramified case

Two cases:
(1) v splits:
computations reduce to those in work of Jacquet and Gelbart-Piatetski-Shapiro-Rallis.
(2) v inert:
computations were completed in work of Li .

Local zeta integrals: $v+p \infty$, ramified case

$$
Z_{v}\left(\varphi_{v}, \varphi_{v}^{\prime}, f_{\chi v, s}\right)=\operatorname{volume}\left(\mathcal{U}_{v}\right),
$$

where \mathcal{U}_{v} is an open neighborhood of -1_{n} contained in the open subset $-1_{n} \cdot \mathcal{K}_{v}$, with \mathcal{K}_{v} an open compact subgroup of G_{v} that fixes φ_{v}, and $f_{\chi_{v}, s}$ is defined in terms of the characteristic function of a closely related lattice.

Local zeta integrals: $v+p \infty$, ramified case

$$
Z_{v}\left(\varphi_{v}, \varphi_{v}^{\prime}, f_{\chi v, s}\right)=\operatorname{volume}\left(\mathcal{U}_{v}\right),
$$

where \mathcal{U}_{v} is an open neighborhood of -1_{n} contained in the open subset $-1_{n} \cdot \mathcal{K}_{v}$, with \mathcal{K}_{v} an open compact subgroup of G_{v} that fixes φ_{v}, and $f_{\chi_{v}, s}$ is defined in terms of the characteristic function of a closely related lattice.

Computation of integral is relatively quick and straight-forward. (Carefully making choices takes longer than computing the integral.)

Local zeta integrals: $w \mid p$

A few remarks:

- The calculations at p are where much of the work lies (both for the integrals and, later in this talk, for the Eisenstein measure).

Local zeta integrals: $w \mid p$

A few remarks:

- The calculations at p are where much of the work lies (both for the integrals and, later in this talk, for the Eisenstein measure).
- Euler factor has similar form to that predicted by Coates

Local zeta integrals: $w \mid p$

A few remarks:

- The calculations at p are where much of the work lies (both for the integrals and, later in this talk, for the Eisenstein measure).
- Euler factor has similar form to that predicted by Coates
- Since we assume each place v of E above p splits in K, the component of the Hecke character χ at v gives pair $\left(\chi_{v, 1}, \chi_{v, 2}\right)$ of characters, and the unitary group is isomorphic to a general linear group.

Local zeta integrals: $v \mid p$

Euler factor at v is $Z_{1, v} \cdot Z_{2, v}$, where

$$
\begin{aligned}
& Z_{1, v}=\frac{L\left(s+\frac{1}{2}, \pi_{b_{v}} \otimes \chi_{2, v}\right)}{\varepsilon\left(s+\frac{1}{2}, \pi_{b_{v}} \otimes \chi_{2, v}\right) L\left(-s+\frac{1}{2}, \pi_{b_{v}}^{\prime} \otimes \chi_{2, v}^{-1}\right)} \\
& Z_{2, v}=\omega_{a_{v}}(-1) \frac{L\left(\frac{1}{2}+s, \pi_{a_{v}}^{\prime} \otimes \chi_{1, v}^{-1}\right)}{\varepsilon\left(s+\frac{1}{2}, \pi_{a_{v}}^{\prime} \otimes \chi_{1, v}^{-1}\right) L\left(-s+\frac{1}{2}, \pi_{a_{v}} \otimes \chi_{1, v}\right)} .
\end{aligned}
$$

Local zeta integrals: $v \mid p$

Euler factor at v is $Z_{1, v} \cdot Z_{2, v}$, where

$$
\begin{aligned}
& Z_{1, v}=\frac{L\left(s+\frac{1}{2}, \pi_{b_{v}} \otimes \chi_{2, v}\right)}{\varepsilon\left(s+\frac{1}{2}, \pi_{b_{v}} \otimes \chi_{2, v}\right) L\left(-s+\frac{1}{2}, \pi_{b_{v}}^{\prime} \otimes \chi_{2, v}^{-1}\right)} \\
& Z_{2, v}=\omega_{a_{v}}(-1) \frac{L\left(\frac{1}{2}+s, \pi_{a_{v}}^{\prime} \otimes \chi_{1, v}^{-1}\right)}{\varepsilon\left(s+\frac{1}{2}, \pi_{a_{v}}^{\prime} \otimes \chi_{1, v}^{-1}\right) L\left(-s+\frac{1}{2}, \pi_{a_{v}} \otimes \chi_{1, v}\right)} .
\end{aligned}
$$

The representations π_{v} are defined in terms of representations $\pi_{a_{v}}, \pi_{b_{v}}, \pi_{a_{v}}^{\prime}, \pi_{b_{v}}^{\prime}$ dependent on the signature (a_{v}, b_{v}) of the unitary group, and these representations are in turn defined by inducing characters on a torus (more later).

Local zeta integrals: $v \mid p$

Calculation of the integrals relies in part on realizing the integrals in the form of the "Godement-Jacquet" integrals in Jacquet's Corvallis article.

Local zeta integrals: $v \mid \infty$

- Start with f_{v} built from canonical automorphy factors (more later)

Local zeta integrals: $v \mid \infty$

- Start with f_{v} built from canonical automorphy factors (more later)
- Possibly apply differential operator to handle non-holomorphic or non-scalar weight case (more on those later, related to differential operators in de Shalit's talk)

Local zeta integrals: $v \mid \infty$

- Start with f_{v} built from canonical automorphy factors (more later)
- Possibly apply differential operator to handle non-holomorphic or non-scalar weight case (more on those later, related to differential operators in de Shalit's talk)
- Take $\varphi_{v}, \varphi_{v}^{\prime}$ in the highest weight subspace of the archimedean component

Local zeta integrals: $v \mid \infty$

- When the extreme \mathcal{K}-type (\mathcal{K} a maximal compact) is one-dimensional, the archimedean zeta integrals were computed by Garrett and also by Shimura.

Local zeta integrals: $v \mid \infty$

- When the extreme \mathcal{K}-type (\mathcal{K} a maximal compact) is one-dimensional, the archimedean zeta integrals were computed by Garrett and also by Shimura.
- When at least one of the two factors of the extreme \mathcal{K}-type is one-dimensional, Garrett computed the integrals precisely.

Local zeta integrals: $v \mid \infty$

- When the extreme \mathcal{K}-type (\mathcal{K} a maximal compact) is one-dimensional, the archimedean zeta integrals were computed by Garrett and also by Shimura.
- When at least one of the two factors of the extreme \mathcal{K}-type is one-dimensional, Garrett computed the integrals precisely.
- In all cases, Garrett has shown the integrals are algebraic up to a predictable power of π.

Plan for talk

(1) Overview of automorphic side (pairing of Eisenstein series against pair of cusp forms, via doubling method) \checkmark
(2) Overview of interpretation of pairing in p-adic setting, and comparison with automorphic side
(3) Explain the construction of a family of Eisenstein series

About weights

We will choose the cusp forms and Eisenstein series so that their weights are compatible (like in related constructions of p-adic L-functions, including Hida, Panchishkin,...).

Special case: definite case

- Recall:

$$
\begin{aligned}
& Z\left(\varphi, \varphi^{\prime}, f_{s, \chi}\right) \\
&:=\int_{\left.\left[U_{V} \times U_{V}\right] \backslash\left[U_{V}\right) \times U_{V}\right]\left(\mathbf{A}_{E}\right)} \varphi(g) \varphi^{\prime}(h) E_{f_{s, \chi}}((g, h)) \chi^{-1}(\operatorname{det} h) d g d h
\end{aligned}
$$

Special case: definite case

- Recall:

$$
\begin{aligned}
& Z\left(\varphi, \varphi^{\prime}, f_{s, \chi}\right) \\
& :=\int_{\left.\left[U_{V} \times U_{V}\right] \backslash\left[U_{V}\right) \times U_{V}\right]\left(\mathbf{A}_{E}\right)} \varphi(g) \varphi^{\prime}(h) E_{f_{s, \chi}}((g, h)) \chi^{-1}(\operatorname{det} h) d g d h
\end{aligned}
$$

- In the definite case, we can reinterpret this integral as a finite sum over CM points. This is essentially the strategy of N. Katz.

Special case: definite case

- Recall:

$$
\begin{aligned}
& Z\left(\varphi, \varphi^{\prime}, f_{s, \chi}\right) \\
& :=\int_{\left.\left[U_{V} \times U_{V}\right] \backslash\left[U_{V}\right) \times U_{V}\right]\left(\mathbf{A}_{E}\right)} \varphi(g) \varphi^{\prime}(h) E_{f_{s, \chi}}((g, h)) \chi^{-1}(\operatorname{det} h) d g d h
\end{aligned}
$$

- In the definite case, we can reinterpret this integral as a finite sum over CM points. This is essentially the strategy of N. Katz.
- So congruence between cusp forms and congruence between Eisenstein series implies congruence between values of L-functions.

The space $X:=X_{p}$

For each integer $r>0$, let

$$
U_{r}=\left(\mathcal{O} \otimes \widehat{\mathbb{Z}}^{\{p\}}\right)^{\times} \times\left(1+p^{r} \mathcal{O} \otimes \mathbb{Z}_{p}\right) \subset(K \otimes \widehat{\mathbb{Z}})^{\times}
$$

and

This is the projective limit of the ray class groups of K of conductor $\left(p^{r}\right)$. In particular, it is a profinite abelian group.

Preliminaries

- Let \mathcal{V} denote the space of p-adic modular forms on U_{V}.

Preliminaries

- Let \mathcal{V} denote the space of p-adic modular forms on U_{V}.
- Later, we will construct a $\mathcal{V} \otimes \mathcal{V}$-valued measure $\phi_{\text {Eis }}$ on $X_{p} \times T$, the Eisenstein measure. (T is identified with a torus in $U_{W}\left(\mathbb{Z}_{p}\right)$.)

Preliminaries

- Let \mathcal{V} denote the space of p-adic modular forms on U_{V}.
- Later, we will construct a $\mathcal{V} \otimes \mathcal{V}$-valued measure $\phi_{\text {Eis }}$ on $X_{p} \times T$, the Eisenstein measure. (T is identified with a torus in $U_{W}\left(\mathbb{Z}_{p}\right)$.)
- Let e denote Hida's ordinary projector.
- We will denote a Hecke algebra acting on \mathcal{V} by \mathbb{T} (without further details).

The Gorenstein hypothesis

The \mathbb{T}-module \mathcal{V} is said to satisfy the Gorenstein hypothesis if:

- $\mathbb{T} \cong \operatorname{Hom}_{R}(\mathbb{T}, R)$ as R-modules (where R denotes a sufficiently large p-adic ring here)
- \mathcal{V} is free over \mathbb{T}

We will assume \mathcal{V} satisfies the Gorenstein hypothesis.

Multiplicity one hypothesis

- The localization of \mathbb{T} at $\operatorname{ker} \lambda_{\pi}$ is of rank 1 over R (a sufficiently large p-adic ring).
- π appears with multiplicity 1 in the cuspidal spectrum of the unitary group.

Image of the Eisenstein measure

- Define

$$
\mathcal{E}^{\mathrm{ord}} \in \Lambda_{X} \hat{\otimes}\left(\Lambda_{T} \otimes e \mathcal{V} \hat{\otimes} e \mathcal{V}\right)^{T}
$$

to be the element such that

$$
(\chi \otimes \mu)\left(\mathcal{E}^{\text {ord }}\right)=e \phi_{\text {Eis }}(\chi, \mu) .
$$

Image of the Eisenstein measure

- Define

$$
\mathcal{E}^{\text {ord }} \in \Lambda_{X} \hat{\otimes}\left(\Lambda_{T} \otimes e \mathcal{V} \hat{\otimes} e \mathcal{V}\right)^{T}
$$

to be the element such that

$$
(\chi \otimes \mu)\left(\mathcal{E}^{\text {ord }}\right)=e \phi_{\text {Eis }}(\chi, \mu) .
$$

(By $\chi \otimes \mu$, I mean the function obtained by linearly extending the character $\chi \otimes \mu$ on $X_{p} \otimes T$.)

Image of the Eisenstein measure

In fact, we can actually consider an element

$$
\mathcal{E}^{\text {ord }}={\underset{\longleftarrow}{\lim }}_{\mathcal{E}_{r}^{\text {ord }}} \Lambda_{X} \hat{\otimes}{\underset{\longleftarrow}{r}}_{\lim _{r}}^{\operatorname{Hom}_{T}}\left(C\left(T / T_{r}\right),\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}\right)
$$

Image of the Eisenstein measure

In fact, we can actually consider an element

$$
\mathcal{E}^{\text {ord }}={\underset{\zeta}{\lim }}_{\mathcal{E}_{r}^{\mathrm{ord}}}^{\Lambda_{X}} \hat{\otimes}{\underset{\mathrm{lim}}{r}}_{\lim _{r}}^{\operatorname{Hom}_{T}}\left(C\left(T / T_{r}\right),\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}\right)
$$

The reason we can take an element $\mathcal{E}^{\text {ord }}$ in this smaller space is that we are actually going to pair the image of the Eisenstein measure with Hecke eigenforms via the doubling method.

Image of the Eisenstein measure

In fact, we can actually consider an element

The reason we can take an element $\mathcal{E}^{\text {ord }}$ in this smaller space is that we are actually going to pair the image of the Eisenstein measure with Hecke eigenforms via the doubling method.
So the image of the Eisenstein measure should be viewed as lying in the dual of the space of these eigenforms.

Image of the Eisenstein measure

- In fact, we have an isomorphism

$$
{\underset{r}{\lim }}_{\operatorname{Hom}_{T}\left(C\left(T / T_{r}\right),\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}\right) \cong \mathbb{T}, ~}^{\mathbb{T}}
$$

Image of the Eisenstein measure

- In fact, we have an isomorphism

$$
{\underset{r}{\lim }}_{\lim _{T}} \operatorname{Hom}\left(C\left(T / T_{r}\right),\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}\right) \cong \mathbb{T}
$$

- So we may view $\mathcal{E}^{\text {ord }}$ as an element of $\Lambda_{X} \hat{\otimes} \mathbb{T}$.

Isomorphism with Hecke algebra

We now outline the proof that

$$
{\underset{r}{\lim }}_{\leftrightarrows}^{\operatorname{Hom}_{T}}\left(C\left(T / T_{r}\right),\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}\right) \cong \mathbb{T} .
$$

Outline of isomorphism with Hecke algebra

- $\operatorname{Hom}_{T}\left(C\left(T / T_{r}\right),\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}\right) \cong\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}$

Outline of isomorphism with Hecke algebra

- $\operatorname{Hom}_{T}\left(C\left(T / T_{r}\right),\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}\right) \cong\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}$
- Define e^{-}to be the anti-ordinary projector, i.e. adjoint to e.

Outline of isomorphism with Hecke algebra

- $\operatorname{Hom}_{T}\left(C\left(T / T_{r}\right),\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}\right) \cong\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}$
- Define e^{-}to be the anti-ordinary projector, i.e. adjoint to e.
- We have $e \mathcal{V}_{r}=\operatorname{Hom}_{R}\left(e^{-} \mathcal{V}_{r}^{*}, R\right)$, where \mathcal{V}_{r}^{*} denotes the R-dual to \mathcal{V}_{r} under the pairing coming from Serre duality.

Outline of isomorphism with Hecke algebra

- $\operatorname{Hom}_{T}\left(C\left(T / T_{r}\right),\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}\right) \cong\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}$
- Define e^{-}to be the anti-ordinary projector, i.e. adjoint to e.
- We have $e \mathcal{V}_{r}=\operatorname{Hom}_{R}\left(e^{-} \mathcal{V}_{r}^{*}, R\right)$, where \mathcal{V}_{r}^{*} denotes the R-dual to \mathcal{V}_{r} under the pairing coming from Serre duality.
- So $\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)=\operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right)$

Outline of isomorphism with Hecke algebra

- $\operatorname{Hom}_{T}\left(C\left(T / T_{r}\right),\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}\right) \cong\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}$
- Define e^{-}to be the anti-ordinary projector, i.e. adjoint to e.
- We have $e \mathcal{V}_{r}=\operatorname{Hom}_{R}\left(e^{-} \mathcal{V}_{r}^{*}, R\right)$, where \mathcal{V}_{r}^{*} denotes the R-dual to \mathcal{V}_{r} under the pairing coming from Serre duality.
- So $\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)=\operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right)$
- It is a consequence of the Gorenstein and multiplicity one hypotheses that

$$
e \mathcal{V}_{r} \cong \mathbb{T}_{r} s_{r}, \quad e^{-} \mathcal{V}_{r}^{*} \cong \mathbb{T}_{r} s_{r}^{*}
$$

- This gives an isomorphism $\operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right) \cong \mathbb{T}_{r}$

Compatibility

Note that the elements s_{r} 's are chosen compatibly so that $s_{r}=\operatorname{tr}_{T_{r+1} / T_{r} S_{r+1}}$ and $s_{r}^{*}=\operatorname{tr}_{T_{r+1} / T_{r}} s_{r+1}^{*}$.

Putting it together

- So we get

Putting it together

- So we get

$$
\underset{r}{\lim _{r}} \operatorname{Hom}_{T}\left(C\left(T / T_{r}\right),\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}\right) \cong\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}} \cong \lim _{r} \mathbb{T}_{r} \cong \mathbb{T} \text {. }
$$

- Hence, we may view $\mathcal{E}^{\text {ord }}=\lim _{\leftrightarrows_{r}} \mathcal{E}_{r}^{\text {ord }}$ as an element of $\Lambda_{X} \hat{\otimes} \mathbb{T}=\Lambda_{X} \hat{\otimes} \lim _{\leftrightarrows} \mathbb{T}_{r}$.

Hecke eigenvalues

Now fix a cuspidal automorphic representation π of U_{V}, and consider a homomorphism

$$
\lambda_{\pi}: \mathbb{T} \rightarrow R .
$$

About λ_{π}

- By the Gorenstein condition, $\mathrm{Ann}_{\mathbb{T}_{r}}\left(\operatorname{ker} \lambda_{\pi}\right)$ is principle. Let T_{π} be a generator for this ideal.

About λ_{π}

- By the Gorenstein condition, $\mathrm{Ann}_{\mathbb{T}_{r}}\left(\operatorname{ker} \lambda_{\pi}\right)$ is principle. Let T_{π} be a generator for this ideal.
- Then λ_{π} gives an isomorphism $\mathbb{T}_{r} /$ ker $\lambda_{\pi} \cong R$.

About λ_{π}

- By the Gorenstein condition, $\mathrm{Ann}_{\mathbb{T}_{r}}\left(\operatorname{ker} \lambda_{\pi}\right)$ is principle. Let T_{π} be a generator for this ideal.
- Then λ_{π} gives an isomorphism $\mathbb{T}_{r} / \operatorname{ker} \lambda_{\pi} \cong R$.
- So $t \cdot T_{\pi}=\lambda_{\pi} T_{\pi}$ for each $t \in \mathbb{T}_{r}$.

About λ_{π}

- By the Gorenstein condition, $\operatorname{Ann}_{\mathbb{T}_{r}}\left(\operatorname{ker} \lambda_{\pi}\right)$ is principle. Let T_{π} be a generator for this ideal.
- Then λ_{π} gives an isomorphism $\mathbb{T}_{r} / \operatorname{ker} \lambda_{\pi} \cong R$.
- So $t \cdot T_{\pi}=\lambda_{\pi} T_{\pi}$ for each $t \in \mathbb{T}_{r}$.
- Under the isomorphism $\mathbb{T}_{r} \cong \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right), t$ corresponds to $\eta_{t}: s_{r}^{*} \mapsto t s_{r}$ for each $t \in \mathbb{T}_{r}$, and $T_{\pi} \eta_{t}=\eta_{t \cdot T_{\pi}}=\lambda_{\pi}(t) \eta_{T_{\pi}}$.

Obtaining the p-adic L-function

A three-step process:
(1) Realize $\mathcal{E}^{\text {ord }}=\lim _{\leftrightarrows_{r}} \mathcal{E}_{r}^{\text {ord }}$ as an element of $\Lambda_{X_{p}} \hat{\otimes} \lim _{\leftrightarrows_{r}} \mathbb{T}_{r} \cong \Lambda_{X_{p}} \hat{\otimes} \lim _{\leftrightarrows_{r}} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right)$.

Obtaining the p-adic L-function

A three-step process:
(1) Realize $\mathcal{E}^{\text {ord }}=\lim _{\leftrightarrows_{r}} \mathcal{E}_{r}^{\text {ord }}$ as an element of

$$
\Lambda_{X_{p}} \hat{\otimes} \lim _{\leftrightarrows} \mathbb{T}_{r} \cong \Lambda_{X_{p}} \hat{\otimes} \lim _{\leftrightarrows} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right) \cdot \checkmark
$$

Obtaining the p-adic L-function

A three-step process:
(1) Realize $\mathcal{E}^{\text {ord }}=\lim _{\leftrightarrows_{r}} \mathcal{E}_{r}^{\text {ord }}$ as an element of
$\Lambda_{X_{p}} \hat{\otimes} \lim _{\leftrightarrows} \mathbb{T}_{r} \cong \Lambda_{X_{p}} \hat{\otimes} \lim _{\leftrightarrows} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right) \cdot \checkmark$
(2) Evaluate at χ to obtain $\chi\left(\mathcal{E}^{\text {ord }}\right)$ of $\lim _{\leftrightarrows} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right)$.

Obtaining the p-adic L-function

A three-step process:
(1) Realize $\mathcal{E}^{\text {ord }}=\lim _{\leftrightarrows_{r}} \mathcal{E}_{r}^{\text {ord }}$ as an element of
$\Lambda_{X_{p}} \hat{\otimes} \lim _{\longleftarrow} \mathbb{T}_{r} \cong \Lambda_{X_{p}} \hat{\otimes} \lim _{\longleftarrow} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right) \cdot \checkmark$
(2) Evaluate at χ to obtain $\chi\left(\mathcal{E}^{\text {ord }}\right)$ of $\lim _{\leftrightarrows} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right)$.
(3) Evaluate λ_{π} on $\chi\left(\mathcal{E}^{\text {ord }}\right)$ identified with its image under the isomorphism $\lim _{\longleftarrow} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right) \cong \lim _{\leftrightarrows} \mathbb{T}_{r}$.

Obtaining the p-adic L-function

A three-step process:
(1) Realize $\mathcal{E}^{\text {ord }}=\lim _{\leftrightarrows_{r}} \mathcal{E}_{r}^{\text {ord }}$ as an element of $\Lambda_{X_{p}} \hat{\otimes} \lim _{\longleftarrow} \mathbb{T}_{r} \cong \Lambda_{X_{p}} \hat{\otimes} \lim _{\longleftarrow} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right) \cdot \checkmark$
(2) Evaluate at χ to obtain $\chi\left(\mathcal{E}^{\text {ord }}\right)$ of $\lim _{\leftrightarrows} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right)$.
(3) Evaluate λ_{π} on $\chi\left(\mathcal{E}^{\text {ord }}\right)$ identified with its image under the isomorphism $\lim _{\leftrightarrows} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right) \cong \lim _{\leftrightarrows} \mathbb{T}_{r}$.
In the next two slides, we explore Steps 2 and 3 further.

Step 2: Considering the element

$\chi\left(\mathcal{E}^{\text {ord }}\right) \in \lim _{\leftrightarrows} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right)$

- Recall $\chi\left(\mathcal{E}^{\text {ord }}\right)$ is identified with an element E_{χ} of $\lim _{\varkappa_{r}}\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}$
- The corresponding element in $\lim _{\leftrightarrows_{r}} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right)$ is defined by

$$
\varphi \mapsto\left\langle\varphi, E_{\chi}\right\rangle,
$$

where this is the pairing from the doubling method, identified with the pairing coming from Serre duality.

Step 2: Considering the element

$\chi\left(\mathcal{E}^{\text {ord }}\right) \in \lim _{\leftrightarrows} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right)$

- Recall $\chi\left(\mathcal{E}^{\text {ord }}\right)$ is identified with an element E_{χ} of $\lim _{\varkappa_{r}}\left(e \mathcal{V}_{r} \hat{\otimes} e \mathcal{V}_{r}\right)^{\mathbb{T}_{r}}$
- The corresponding element in $\lim _{\leftrightarrows_{r}} \operatorname{Hom}_{\mathbb{T}_{r}}\left(e^{-} \mathcal{V}_{r}^{*}, e \mathcal{V}_{r}\right)$ is defined by

$$
\varphi \mapsto\left\langle\varphi, E_{\chi}\right\rangle,
$$

where this is the pairing from the doubling method, identified with the pairing coming from Serre duality.

- For $\varphi_{\pi} \in \pi,\left\langle\varphi_{\pi}, E_{\chi}\right\rangle=L(\pi, \chi) \cdot \varphi_{\pi}^{\iota}$.

Step 3: Evaluating λ_{π}

- For any element $t \in \mathbb{T}$, and $\varphi^{\prime} \in \pi^{\prime}$ a Hecke eigenform and $\varphi \in \pi$,

$$
\lambda_{\pi}(t)=\frac{\left\langle\varphi, t \varphi^{\prime}\right\rangle}{\left\langle\varphi, \varphi^{\prime}\right\rangle}
$$

with \langle,$\rangle the unique (up to constant multiple) non-trivial invariant$ pairing.

Intermediate observation

- Recall $\eta_{t}: s_{r}^{*} \mapsto t s_{r}$.

Intermediate observation

- Recall $\eta_{t}: s_{r}^{*} \mapsto t s_{r}$.
- So $\mathcal{E}^{\text {ord }}(\varphi)=\eta_{T_{\mathcal{E}}^{\text {ord }}}\left(T_{\pi} s_{r}^{*}\right)=\eta_{T_{\mathcal{E} \text { ord }} T_{\pi}}\left(s_{r}^{*}\right)=T_{\mathcal{E}}$ ord $T_{\pi} s_{r}=T_{\mathcal{E}}$ ord φ^{\prime}.

Step 3: Evaluating λ_{π} on $\chi\left(\mathcal{E}^{\text {ord }}\right)$

So (with subscript π 's to remind of membership in π) we have

$$
\lambda_{\pi}\left(\chi\left(\mathcal{E}^{\mathrm{ord}}\right)\right)=\frac{\left\langle\varphi_{\pi}, \mathcal{E}^{\mathrm{ord}}\left(\varphi_{\pi}\right)\right\rangle}{\left\langle\varphi_{\pi}, \varphi_{\pi}^{\prime}\right\rangle}=\frac{L(\pi, \chi)}{\Omega}
$$

where

$$
\Omega=\frac{\left\langle\varphi_{\pi}, \varphi_{\pi}^{\prime}\right\rangle}{\left\langle\varphi_{\pi}, \varphi_{\pi}^{\iota}\right\rangle}
$$

Remarks/reassurance

- There is a unique (up to scalar multiple) ordinary vector $\phi^{\text {ord }} \in \pi_{v}^{I_{v, r}}$ $\left(I_{v, r}\right.$ a $\bmod p^{r}$ Iwahori subgroup relative to the Borel in the general unitary group)
- Let $0 \neq \phi \in \pi_{v}$ with $e \cdot \phi=c_{\phi} \phi^{\text {ord } . ~ T h e n ~}\left\langle\phi, \phi^{\prime}\right\rangle=c_{\phi}\left\langle\phi^{\text {ord }}, \phi^{\prime}\right\rangle \neq 0$.

Plan for talk

(1) Overview of automorphic side (pairing of Eisenstein series against pair of cusp forms, via doubling method) \checkmark
(2) Overview of interpretation of pairing in p-adic setting, and comparison with automorphic side \checkmark
(3) Explain the construction of a family of Eisenstein series

Goal for rest of talk

Describe a construction of a p-adic family of Eisenstein series on unitary groups of signature (n, n).

Remarks about related cases

What about related cases?

Remarks about related cases

What about related cases?

- Recover N. Katz's results as a special case

Remarks about related cases

What about related cases?

- Recover N. Katz's results as a special case
- Methods generalize to case of Siegel modular forms

Remarks about related cases

What about related cases?

- Recover N. Katz's results as a special case
- Methods generalize to case of Siegel modular forms
- Very close to - but not precisely - Shimura's Eisenstein series (modify local data at p...more later in talk)

Main Result

Theorem (E, (J. Reine Angew. Math. '15; Algebra Number Theory '14))
There is a p-adic family of Eisenstein series $\left\{E_{\lambda}\right\}$ on unitary groups (of signature (n, n)) indexed by weights λ.

Main Result

Theorem (E, (J. Reine Angew. Math. '15; Algebra Number Theory '14))
There is a p-adic family of Eisenstein series $\left\{E_{\lambda}\right\}$ on unitary groups (of signature (n, n)) indexed by weights λ. This family has the following properties:

Main Result

Theorem (E, (J. Reine Angew. Math. '15; Algebra Number Theory '14))
There is a p-adic family of Eisenstein series $\left\{E_{\lambda}\right\}$ on unitary groups (of signature (n, n)) indexed by weights λ. This family has the following properties:

- Fix an ordinary CM point A. Then (modulo a period), the values $E_{\lambda}(\underline{A})$ vary p-adic continuously as the weights λ vary p-adic continuously.

Main Result

Theorem (E, (J. Reine Angew. Math. '15; Algebra Number Theory '14))
There is a p-adic family of Eisenstein series $\left\{E_{\lambda}\right\}$ on unitary groups (of signature (n, n)) indexed by weights λ. This family has the following properties:

- Fix an ordinary CM point \underline{A}. Then (modulo a period), the values $E_{\lambda}(\underline{A})$ vary p-adic continuously as the weights λ vary p-adic continuously.
- The values of E_{λ} p-adically interpolate certain values of C^{∞} (not necessary holomorphic) Eisenstein series (modulo a period), similar to ones studied by Shimura.

Main Result

Theorem (E, (J. Reine Angew. Math. '15; Algebra Number Theory '14))
There is a p-adic family of Eisenstein series $\left\{E_{\lambda}\right\}$ on unitary groups (of signature (n, n)) indexed by weights λ. This family has the following properties:

- Fix an ordinary CM point \underline{A}. Then (modulo a period), the values $E_{\lambda}(\underline{A})$ vary p-adic continuously as the weights λ vary p-adic continuously.
- The values of E_{λ} p-adically interpolate certain values of C^{∞} (not necessary holomorphic) Eisenstein series (modulo a period), similar to ones studied by Shimura.

Remark: Can use these Eisenstein series as a starting point to construct p-adic families of automorphic forms on unitary groups of signature (a, b) for all a, b.

The Main Steps in the construction

Step 1: Choose a "nice" family of Eisenstein series:

The Main Steps in the construction

Step 1: Choose a "nice" family of Eisenstein series:
(1) Fourier coefficients in some specified ring (e.g. ring of integers)

The Main Steps in the construction

Step 1: Choose a "nice" family of Eisenstein series:
(1) Fourier coefficients in some specified ring (e.g. ring of integers)
(2) Fourier coefficients "nice" (easy to describe) and interpolate nicely

The Main Steps in the construction

Step 1: Choose a "nice" family of Eisenstein series:
(1) Fourier coefficients in some specified ring (e.g. ring of integers)
(2) Fourier coefficients "nice" (easy to describe) and interpolate nicely
(3) convenient for p-adic L-functions computations, other applications, etc. (Beware of requirements of potential applications. Try to make "natural" or "general" choices to make more versatile, in case of unforeseen requirements of applications.)

The Main Steps

Step 2: Compute Fourier coefficients (for holomorphic forms), i.e. determine the q-expansions

The Main Steps

Step 3: Apply certain weight-raising C^{∞} (and p-adic) differential operators to obtain C^{∞} and (p-adic) automorphic forms (For now, call the operators D_{∞} and $\left.D_{p-a d i c}\right)$

The Main Steps

Step 3: Apply certain weight-raising C^{∞} (and p-adic) differential operators to obtain C^{∞} and (p-adic) automorphic forms (For now, call the operators D_{∞} and $\left.D_{p-a d i c}\right)$

Step 4: Use q-expansion principle and p-adic interpolation of q-expansion coefficients to construct p-adic family of forms (N.B: The p-adic differential operators have an easy-to-describe action on q-expansion coefficients.)

The Main Steps

Step 3: Apply certain weight-raising C^{∞} (and p-adic) differential operators to obtain C^{∞} and (p-adic) automorphic forms (For now, call the operators D_{∞} and $\left.D_{p-a d i c}\right)$

Step 4: Use q-expansion principle and p-adic interpolation of q-expansion coefficients to construct p-adic family of forms (N.B: The p-adic differential operators have an easy-to-describe action on q-expansion coefficients.)

Step 5: Interpolate special values of C^{∞} Eisenstein series, using

$$
(*) D_{\infty} E(\underline{A})=\left(*^{\prime}\right) D_{p-\operatorname{adic}} E(\underline{A})
$$

for all ordinary CM points \underline{A}. (See [E, Ann. Inst. Fourier 2012].)

The Main Steps

Step 6: Obtain a p-adic family of automorphic forms (over the "Igusa tower", over the ordinary locus).

Setup

- Let K be a CM field, i.e. a quadratic imaginary extension of totally real field E

Setup

- Let K be a CM field, i.e. a quadratic imaginary extension of totally real field E
- Fix a prime p that splits completely in K (can weaken slightly).

Setup

- Let K be a CM field, i.e. a quadratic imaginary extension of totally real field E
- Fix a prime p that splits completely in K (can weaken slightly).
- Fix a positive integer n.

Setup

- Let K be a CM field, i.e. a quadratic imaginary extension of totally real field E
- Fix a prime p that splits completely in K (can weaken slightly).
- Fix a positive integer n.
- Let W be a $2 n$-dimensional vector space over K, together with Hermitian pairing \langle,$\rangle of signature (n, n)$.

Setup

- Let K be a CM field, i.e. a quadratic imaginary extension of totally real field E
- Fix a prime p that splits completely in K (can weaken slightly).
- Fix a positive integer n.
- Let W be a $2 n$-dimensional vector space over K, together with Hermitian pairing \langle,$\rangle of signature (n, n)$.
- Let P be a Siegel parabolic in $G:=U(W)$. (Here, $U(W)$ is the unitary group preserving $\langle\rangle.$, .)

Setup

- Let K be a CM field, i.e. a quadratic imaginary extension of totally real field E
- Fix a prime p that splits completely in K (can weaken slightly).
- Fix a positive integer n.
- Let W be a $2 n$-dimensional vector space over K, together with Hermitian pairing \langle,$\rangle of signature (n, n)$.
- Let P be a Siegel parabolic in $G:=U(W)$. (Here, $U(W)$ is the unitary group preserving $\langle\rangle.$,)
- Let $\chi: K^{\times} \backslash \mathbb{A}_{K}^{\times} \rightarrow \mathbb{C}$ be a Hecke character with conductor dividing p^{∞} (can weaken slightly).

Setup

- Let K be a CM field, i.e. a quadratic imaginary extension of totally real field E
- Fix a prime p that splits completely in K (can weaken slightly).
- Fix a positive integer n.
- Let W be a $2 n$-dimensional vector space over K, together with Hermitian pairing \langle,$\rangle of signature (n, n)$.
- Let P be a Siegel parabolic in $G:=U(W)$. (Here, $U(W)$ is the unitary group preserving $\langle\rangle.$, .)
- Let $\chi: K^{\times} \backslash \mathbb{A}_{K}^{\times} \rightarrow \mathbb{C}$ be a Hecke character with conductor dividing p^{∞} (can weaken slightly).
- Choose $f \in \operatorname{Ind} d_{P\left(\mathbb{A}_{E}\right)}^{G\left(\mathbb{A}_{E}\right)}\left(\chi|\cdot|_{K}^{-s}\right)$.

(Choose f very carefully!)

Siegel Eisenstein series

Define a Siegel Eisenstein series by

$$
E_{f}(g)=\sum_{\gamma \in P(E) \backslash G(E)} f(\gamma g) .
$$

(Recall:

- P be a Siegel parabolic in $G:=U(W)$. Here, $U(W)$ is the unitary group preserving \langle,$\rangle .$
- $\chi: K^{\times} \backslash \mathbb{A}_{K}^{\times} \rightarrow \mathbb{C}$ is a Hecke character with conductor dividing p^{∞}.
- $f \in \operatorname{Ind}_{P\left(\mathbb{A}_{E}\right)}^{G\left(\mathbb{A}_{E}\right)}\left(\chi|\cdot|_{K}^{-s}\right)$. $)$

q-expansions

Theorem (E, (J. Reine Angew. Math. '15; Algebra Number Theory '14))
Let R be an \mathcal{O}_{K}-algebra, $k \geq n$. Let $F:\left(\mathcal{O}_{K} \otimes \mathbb{Z}_{p}\right) \times M_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right) \rightarrow R$ be a locally constant function supported on $\left(\mathcal{O}_{K} \otimes \mathbb{Z}_{p}\right)^{\times} \times G L_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right)$ satisfying

$$
F\left(e x, \mathbb{N}_{K / E}(e)^{-1} y\right)=\mathbb{N}_{K, \nu}(e) F(x, y) .
$$

$\left(\mathbb{N}_{k, \nu}:=\sigma^{k+2 \nu}(\sigma \bar{\sigma})^{-\nu}\right.$.) for all $e \in \mathcal{O}_{K}^{\times}, x \in \mathcal{O}_{K} \otimes \mathbb{Z}_{p}$, and $y \in M_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right)$.

q-expansions

Theorem (E, (J. Reine Angew. Math. '15; Algebra Number Theory '14))
Let R be an \mathcal{O}_{K}-algebra, $k \geq n$. Let $F:\left(\mathcal{O}_{K} \otimes \mathbb{Z}_{p}\right) \times M_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right) \rightarrow R$ be a locally constant function supported on $\left(\mathcal{O}_{K} \otimes \mathbb{Z}_{p}\right)^{\times} \times G L_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right)$ satisfying

$$
F\left(e x, \mathbb{N}_{K / E}(e)^{-1} y\right)=\mathbb{N}_{K, \nu}(e) F(x, y) .
$$

$\left(\mathbb{N}_{k, \nu}:=\sigma^{k+2 \nu}(\sigma \bar{\sigma})^{-\nu}\right.$.) for all $e \in \mathcal{O}_{K}^{\times}, x \in \mathcal{O}_{K} \otimes \mathbb{Z}_{p}$, and $y \in M_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right)$.
Then there exists an algebraic automorphic form $G_{k, \nu, F}$ (on $U(n, n)$) of weight (k, ν) defined over R, whose q-expansion at a cusp $m \in G M_{+}$is of the form $\sum_{0<\beta \in L_{m}} c(\beta) q^{\beta}$, with $c(\beta)$ a finite \mathbb{Z}-linear combination of terms of the form $F\left(a, \mathbb{N}_{K / E}(a)^{-1} \beta\right) \mathbb{N}_{k, \nu}\left(a^{-1} \operatorname{det} \beta\right) \mathbb{N}_{K / E}(\operatorname{det} \beta)^{-n}$.

q-expansions

Theorem (E, (J. Reine Angew. Math. '15; Algebra Number Theory '14))
Let R be an \mathcal{O}_{K}-algebra, $k \geq n$. Let $F:\left(\mathcal{O}_{K} \otimes \mathbb{Z}_{p}\right) \times M_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right) \rightarrow R$ be a locally constant function supported on $\left(\mathcal{O}_{K} \otimes \mathbb{Z}_{p}\right)^{\times} \times G L_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right)$ satisfying

$$
F\left(e x, \mathbb{N}_{K / E}(e)^{-1} y\right)=\mathbb{N}_{k, \nu}(e) F(x, y) .
$$

$\mathbb{N}_{k, \nu}:=\sigma^{k+2 \nu}(\sigma \bar{\sigma})^{-\nu}$.) for all $e \in \mathcal{O}_{K}^{\times}, x \in \mathcal{O}_{K} \otimes \mathbb{Z}_{p}$, and
$y \in M_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right)$.
Then there exists an algebraic automorphic form $G_{k, \nu, F}(o n ~ U(n, n)$) of weight (k, ν) defined over R, whose q-expansion at a cusp $m \in G M_{+}$is of the form $\sum_{0<\beta \in L_{m}} c(\beta) q^{\beta}$, with $c(\beta)$ a finite \mathbb{Z}-linear combination of terms of the form $F\left(a, \mathbb{N}_{K / E}(a)^{-1} \beta\right) \mathbb{N}_{k, \nu}\left(a^{-1} \operatorname{det} \beta\right) \mathbb{N}_{K / E}(\operatorname{det} \beta)^{-n}$. When $R=\mathbb{C}$, this is the Fourier expansion (at $s=k / 2$) of a C^{∞} automorphic form $G_{k, \nu, F}(z, s)$ of weight (k, ν) that is holomorphic at $s=k / 2$.

Consequence

p-adically interpolate q-expansion coefficients to construct p-adic families of automorphic forms. (Similar to approach taken by Serre, Katz...)

A p-adic Measure

Theorem (E, 2015 (Crelle), 2014 (Algebra Number Theory))

There is a p-adic measure μ on

$$
\mathcal{G}:=\left(\left(\mathcal{O}_{K} \otimes \mathbb{Z}_{p}\right)^{\times} \times G L_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right)\right) / \overline{\mathcal{O}_{K}^{\times}}
$$

with values in the space of p-adic automorphic forms on $U(n, n)$ defined by

$$
\int_{\mathcal{G}} H d \mu=G_{n, 0, F}
$$

for all continuous functions H on \mathcal{G}. Here,

$$
F(x, y):=\frac{1}{\sigma\left(x^{-1} \mathbb{N}_{K / E}(x)^{n} \operatorname{det} y\right)^{n}} H\left(x, y^{-1}\right)
$$

extended by 0 to all of $\left(\mathcal{O}_{K} \otimes \mathbb{Z}_{p}\right) \times M_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right)$.

Locally constant case

Remark

For all locally constant functions H,

$$
\int_{\mathcal{G}} H(x, y) \operatorname{det}\left(\mathbb{N}_{K / E}(x)^{-1} y\right)^{-d} d \mu(\underline{A})=(*) G_{n+2 d,-2 d, F(x, y)}(z, k / 2),
$$

where \underline{A} is an ordinary, CM abelian variety over R, and $z \in$ corresponds to the CM abelian variety \underline{A} (viewed as an abelian variety over \mathbb{C} by extending scalars).
(Can generalize to vector-weight case.)

Form of measure for this project

Theorem (E, 2015 (Crelle), 2014 (Algebra Number Theory))

There is a p-adic measure $\phi_{\text {Eis }}$ (dependent on the signature of our choice of unitary group) on $X_{p} \times T$ such that

$$
\int_{X_{p \times T}} \tilde{\chi} \mu d \phi_{\text {Eis }}=E_{\chi, \mu} \mid U \times U
$$

with $E_{\chi, \mu}$ Eisenstein series closely related to those of Shimura (and, when $n=1$, to those of Katz) for μ finite order (and using differential operators, still related even for μ not of finite order).

Choice of Local Siegel Sections

Choice of Local Siegel Sections

 Carefully!

Choice of Local Siegel Sections

Carefully! More precisely...

Choice of Local Siegel Sections

Carefully! More precisely...

Choice of Local Siegel Sections

Carefully! More precisely...
Choose $f \in \operatorname{Ind}_{P\left(\mathbb{A}_{E}\right)}^{G\left(\mathbb{A}_{E}\right)}\left(\chi|\cdot|_{K}^{-s}\right)$ so that $f=\otimes_{V} f_{v}$.
For such an f

- Fourier coefficients of E_{f} factor over v

Choice of Local Siegel Sections

Carefully! More precisely...

For such an f

- Fourier coefficients of E_{f} factor over v
- In particular, we can isolate data at p

Archimedean Siegel Sections

For the archimedean Siegel sections, use the canonical automorphy factors.

Archimedean Siegel Sections

For the archimedean Siegel sections, use the canonical automorphy factors. More precisely,

$$
\begin{aligned}
f_{\infty}(g ; \chi, s) & :=J_{g}^{k, \nu}\left(i 1_{n}\right)^{-1}\left(J_{g}\left(i 1_{n}\right) \overline{J_{g}\left(i 1_{n}\right)}\right)^{k / 2-s} \\
J_{g}(z) & :=\operatorname{det}(c Z+d) \\
J_{g}^{k, \nu} & :=J_{g}(z)^{k+\nu} \operatorname{det}\left(\bar{c}^{t} Z+\bar{d}\right)^{-\nu} \\
g & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{aligned}
$$

When $s=k / 2$ and $\nu=0$, this gives $\frac{1}{(c Z+d)^{k}}$, appearing in the familiar Eisenstein series $\sum_{(c, d) \neq(0,0)} \frac{1}{(c Z+d)^{k}}$.

Archimedean Siegel Sections

For the archimedean Siegel sections, use the canonical automorphy factors. More precisely,

$$
\begin{aligned}
f_{\infty}(g ; \chi, s) & :=J_{g}^{k, \nu}\left(i 1_{n}\right)^{-1}\left(J_{g}\left(i 1_{n}\right) \overline{J_{g}\left(i 1_{n}\right)}\right)^{k / 2-s} \\
J_{g}(z) & :=\operatorname{det}(c Z+d) \\
J_{g}^{k, \nu} & :=J_{g}(z)^{k+\nu} \operatorname{det}\left(\bar{c}^{t} Z+\bar{d}\right)^{-\nu} \\
g & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{aligned}
$$

When $s=k / 2$ and $\nu=0$, this gives $\frac{1}{(c Z+d)^{k}}$, appearing in the familiar Eisenstein series $\sum_{(c, d) \neq(0,0)} \frac{1}{(c Z+d)^{k}}$.

Corresponding Fourier cofficient is $(*) \operatorname{det} \beta^{k-n}$.

Siegel sections at primes not dividing $p \infty$

Following Shimura, get Siegel sections $\otimes_{v \nmid p \infty} f_{v}$ such that whenever the corresponding Fourier coefficient $\prod_{v \nmid p \infty} c\left(\beta, f_{v}\right) \neq 0$,

$$
\prod_{v+\infty \infty} c\left(\beta, f_{v}\right)=
$$

$$
N_{E / \mathbb{Q}}\left(\mathfrak{b} \mathcal{O}_{E}\right)^{-n^{2}} \prod_{i=0}^{n-1} L^{p}\left(2 s-i, \chi_{E}^{-1} \tau^{i}\right)^{-1} \prod_{v+p \infty} P_{\beta, v}\left(\chi_{E}\left(\pi_{v}\right)^{-1}\left|\pi_{v}\right|_{v}^{2 s}\right)
$$

Siegel sections at primes not dividing $p \infty$

Following Shimura, get Siegel sections $\otimes_{v+p \infty} f_{v}$ such that whenever the corresponding Fourier coefficient $\prod_{v \nmid p \infty} c\left(\beta, f_{v}\right) \neq 0$,

$$
\prod_{v \neq p \infty} c\left(\beta, f_{v}\right)=
$$

$$
N_{E / \mathbb{Q}}\left(\mathfrak{b} \mathcal{O}_{E}\right)^{-n^{2}} \prod_{i=0}^{n-1} L^{p}\left(2 s-i, \chi_{E}^{-1} \tau^{i}\right)^{-1} \prod_{v+p \infty} P_{\beta, v}\left(\chi_{E}\left(\pi_{v}\right)^{-1}\left|\pi_{v}\right|_{v}^{2 s}\right)
$$

where:
(1) the product is over primes of E;

Siegel sections at primes not dividing $p \infty$

Following Shimura, get Siegel sections $\otimes_{v+p \infty} f_{v}$ such that whenever the corresponding Fourier coefficient $\prod_{v+p \infty} c\left(\beta, f_{v}\right) \neq 0$,

$$
\prod_{v+p \infty} c\left(\beta, f_{v}\right)=
$$

$$
N_{E / \mathbb{Q}}\left(\mathfrak{b} \mathcal{O}_{E}\right)^{-n^{2}} \prod_{i=0}^{n-1} L^{p}\left(2 s-i, \chi_{E}^{-1} \tau^{i}\right)^{-1} \prod_{v \nmid p \infty} P_{\beta, v}\left(\chi_{E}\left(\pi_{v}\right)^{-1}\left|\pi_{v}\right|_{v}^{2 s}\right)
$$

where:
(1) the product is over primes of E;
(2) the Hecke character χ_{E} is the restriction of χ to E;

Siegel sections at primes not dividing $p \infty$

Following Shimura, get Siegel sections $\otimes_{v+p \infty} f_{v}$ such that whenever the corresponding Fourier coefficient $\prod_{v \nmid p \infty} c\left(\beta, f_{v}\right) \neq 0$,

$$
\prod_{v+p \infty} c\left(\beta, f_{v}\right)=
$$

$$
N_{E / \mathbb{Q}}\left(\mathfrak{b} \mathcal{O}_{E}\right)^{-n^{2}} \prod_{i=0}^{n-1} L^{p}\left(2 s-i, \chi_{E}^{-1} \tau^{i}\right)^{-1} \prod_{v \neq p \infty} P_{\beta, v}\left(\chi_{E}\left(\pi_{v}\right)^{-1}\left|\pi_{v}\right|_{v}^{2 s}\right),
$$

where:
(1) the product is over primes of E;
(2) the Hecke character χ_{E} is the restriction of χ to E;
(3) the function $P_{\beta, v, \mathfrak{b}}$ is a polynomial that is dependent only on β, v, and \mathfrak{b} and has coefficients in \mathbb{Z} and constant term 1 ;

Siegel sections at primes not dividing $p \infty$

Following Shimura, get Siegel sections $\otimes_{v+p \infty} f_{v}$ such that whenever the corresponding Fourier coefficient $\prod_{v \nmid p \infty} c\left(\beta, f_{v}\right) \neq 0$,

$$
\prod_{v+p \infty} c\left(\beta, f_{v}\right)=
$$

$$
N_{E / \mathbb{Q}}\left(\mathfrak{b} \mathcal{O}_{E}\right)^{-n^{2}} \prod_{i=0}^{n-1} L^{p}\left(2 s-i, \chi_{E}^{-1} \tau^{i}\right)^{-1} \prod_{v \neq p \infty} P_{\beta, v}\left(\chi_{E}\left(\pi_{v}\right)^{-1}\left|\pi_{v}\right|_{v}^{2 s}\right),
$$

where:
(1) the product is over primes of E;
(2) the Hecke character χ_{E} is the restriction of χ to E;
(3) the function $P_{\beta, v, \mathfrak{b}}$ is a polynomial that is dependent only on β, v, and \mathfrak{b} and has coefficients in \mathbb{Z} and constant term 1 ;
(9) the polynomial $P_{\beta, v, \mathfrak{b}}$ is identically 1 for all but finitely many v,

Siegel sections at primes not dividing $p \infty$

Following Shimura, get Siegel sections $\otimes_{v+p \infty} f_{v}$ such that whenever the corresponding Fourier coefficient $\prod_{v \nmid p \infty} c\left(\beta, f_{v}\right) \neq 0$,

$$
\prod_{v+p \infty} c\left(\beta, f_{v}\right)=
$$

$$
N_{E / \mathbb{Q}}\left(\mathfrak{b} \mathcal{O}_{E}\right)^{-n^{2}} \prod_{i=0}^{n-1} L^{p}\left(2 s-i, \chi_{E}^{-1} \tau^{i}\right)^{-1} \prod_{v \nmid p \infty} P_{\beta, v}\left(\chi_{E}\left(\pi_{v}\right)^{-1}\left|\pi_{v}\right|_{v}^{2 s}\right)
$$

where:
(1) the product is over primes of E;
(2) the Hecke character χ_{E} is the restriction of χ to E;
(3) the function $P_{\beta, v, \mathfrak{b}}$ is a polynomial that is dependent only on β, v, and \mathfrak{b} and has coefficients in \mathbb{Z} and constant term 1 ;
(9) the polynomial $P_{\beta, v, \mathfrak{b}}$ is identically 1 for all but finitely many v,
(5) τ is the Hecke character of E corresponding to K / E,

Siegel sections at primes not dividing $p \infty$

Following Shimura, get Siegel sections $\otimes_{v \nmid p \infty} f_{v}$ such that whenever the corresponding Fourier coefficient $\prod_{v \nmid p \infty} c\left(\beta, f_{v}\right) \neq 0$,

$$
\prod_{v+p \infty} c\left(\beta, f_{v}\right)=
$$

$$
N_{E / \mathbb{Q}}\left(\mathfrak{b} \mathcal{O}_{E}\right)^{-n^{2}} \prod_{i=0}^{n-1} L^{p}\left(2 s-i, \chi_{E}^{-1} \tau^{i}\right)^{-1} \prod_{v \nmid p \infty} P_{\beta, v}\left(\chi_{E}\left(\pi_{v}\right)^{-1}\left|\pi_{v}\right|_{v}^{2 s}\right),
$$

where:
(1) the product is over primes of E;
(2) the Hecke character χ_{E} is the restriction of χ to E;
(3) the function $P_{\beta, v, \mathfrak{b}}$ is a polynomial that is dependent only on β, v, and \mathfrak{b} and has coefficients in \mathbb{Z} and constant term 1 ;
(9) the polynomial $P_{\beta, v, \mathfrak{b}}$ is identically 1 for all but finitely many v,
(5) τ is the Hecke character of E corresponding to K / E,
(0) π_{v} is a uniformizer of $O_{E, v}$, viewed as an element of K^{\times}prime to p.

Siegel sections at primes not dividing $p \infty$

Following Shimura, get Siegel sections $\otimes_{v \nmid p \infty} f_{v}$ such that whenever the corresponding Fourier coefficient $\prod_{v \nmid p \infty} c\left(\beta, f_{v}\right) \neq 0$,

$$
\prod_{v+p \infty} c\left(\beta, f_{v}\right)=
$$

$$
N_{E / \mathbb{Q}}\left(\mathfrak{b} \mathcal{O}_{E}\right)^{-n^{2}} \prod_{i=0}^{n-1} L^{p}\left(2 s-i, \chi_{E}^{-1} \tau^{i}\right)^{-1} \prod_{v \nmid p \infty} P_{\beta, v}\left(\chi_{E}\left(\pi_{v}\right)^{-1}\left|\pi_{v}\right|_{v}^{2 s}\right),
$$

where:
(1) the product is over primes of E;
(2) the Hecke character χ_{E} is the restriction of χ to E;
(3) the function $P_{\beta, v, \mathfrak{b}}$ is a polynomial that is dependent only on β, v, and \mathfrak{b} and has coefficients in \mathbb{Z} and constant term 1 ;
(9) the polynomial $P_{\beta, v, \mathfrak{b}}$ is identically 1 for all but finitely many v,
(5) τ is the Hecke character of E corresponding to K / E,
(0) π_{v} is a uniformizer of $O_{E, v}$, viewed as an element of K^{\times}prime to p.
(1) $L^{p}\left(r, \chi_{E}^{-1} \tau^{i}\right)=\prod_{v+p \infty \operatorname{cond} \tau}\left(1-\chi_{v}\left(\pi_{v}\right)^{-1} \tau^{i}\left(\pi_{v}\right)\left|\pi_{v}\right|_{v}^{r}\right)^{-1}$.

Sections at primes not divides $p \infty$

Remark

The sections away from $p \infty$ are built from characteristic functions of lattices (which one can choose to have certain properties corresponding to a choice of ideal \mathfrak{b}).

Sections at primes dividing p

This is where much of the work is.

Sections at primes dividing p

This is where much of the work is.

Given $\tilde{F}: M_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right) \times M_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right) \rightarrow R$ subject to certain simple conditions, there exists a Siegel section $f_{\tilde{F}}$ at p whose local Fourier coefficient is $\tilde{F}\left(1,{ }^{t} \beta\right)$.

Sections at primes dividing p

This is where much of the work is.

Given $\tilde{F}: M_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right) \times M_{n}\left(\mathcal{O}_{E} \otimes \mathbb{Z}_{p}\right) \rightarrow R$ subject to certain simple conditions, there exists a Siegel section $f_{\tilde{F}}$ at p whose local Fourier coefficient is $\tilde{F}\left(1,{ }^{t} \beta\right)$.

The Idea: Use "partial Fourier transforms."

Sections at primes dividing p

Question: How do you choose \tilde{F} ?

Sections at primes dividing p

Question: How do you choose \tilde{F} ?
Answer: It depends on your intended application (signature, etc)...

Sections at primes dividing p

Question: How do you choose \tilde{F} ?
Answer: It depends on your intended application (signature, etc)... Built from tuple of characters on minors of a certain $n \times n$ matrix.

C^{∞} Differential Operators

Many Eisenstein series that we need to use in applications are merely C^{∞} (non-holomorphic)...

C^{∞} Differential Operators

Many Eisenstein series that we need to use in applications are merely C^{∞} (non-holomorphic)...
BUT can be obtained from holomorphic Eisenstein series by applying certain differential operators ("weight-raising Maass-Shimura operators")

C^{∞} Differential Operators

Many Eisenstein series that we need to use in applications are merely C^{∞} (non-holomorphic)...
BUT can be obtained from holomorphic Eisenstein series by applying certain differential operators ("weight-raising Maass-Shimura operators")

Example

If f is a modular form of weight k, then $\partial_{k} f:=y^{-k} \frac{\partial}{\partial z}\left(y^{k} f\right)$ is a modular form (function) of weight $k+2$.

C^{∞} Differential Operators

Many Eisenstein series that we need to use in applications are merely C^{∞} (non-holomorphic)...
BUT can be obtained from holomorphic Eisenstein series by applying certain differential operators ("weight-raising Maass-Shimura operators")

Example

If f is a modular form of weight k, then $\partial_{k} f:=y^{-k} \frac{\partial}{\partial z}\left(y^{k} f\right)$ is a modular form (function) of weight $k+2$.

The operators ∂_{k} generalize to the case of unitary groups.

C^{∞} Differential operators

Theorem (Shimura)
If f is a holomorphic automorphic form defined over $\overline{\mathbb{Q}}$ of weight ρ, then $(*) D_{\rho}^{d} f(\underline{A})$ is in $\overline{\mathbb{Q}}$ for any CM abelian variety \underline{A} defined over $\overline{\mathbb{Q}}$.
(Can generalize to case of vector-valued automorphic forms)

p-adic Differential operators

Let R be an \mathcal{O}_{K}-algebra together with embeddings $R \hookrightarrow \mathbb{C}$ and $R \rightarrow \mathbb{C}_{p}$. Let f be an automorphic form defined over R. Let \underline{A} be an ordinary CM point defined over R.

Theorem (E, 2012)
There's a p-adic differential operator θ_{ρ}^{d} such that

$$
\theta_{\rho}^{d} f(\underline{A}) \in R .
$$

(Can generalize to case of vector-valued automorphic forms)

p-adic Differential operators

Let R be an \mathcal{O}_{K}-algebra together with embeddings $R \hookrightarrow \mathbb{C}$ and $R \rightarrow \mathbb{C}_{p}$. Let f be an automorphic form defined over R. Let \underline{A} be an ordinary CM point defined over R.

Theorem (E, 2012)
There's a p-adic differential operator θ_{ρ}^{d} such that

$$
\theta_{\rho}^{d} f(\underline{A}) \in R .
$$

(Can generalize to case of vector-valued automorphic forms)
Theorem ((E, 2012 for automorphic forms on unitary groups), generalizes (Katz, 1978 for Hilbert modular forms))
Furthermore,

$$
\left(*^{\prime}\right) \theta_{\rho}^{d} f(\underline{A})=(*) D_{\rho}^{d} f(\underline{A}) .
$$

Comparison of action of differential operators: general case

- e $e E$ is a classical automorphic form.
- e $D_{\infty} E=\operatorname{ehol}\left(D_{\infty} E\right)$ on $U \times U$, where hol denotes the holomorphic projection

Comparison of action of differential operators: general case

- e $e E$ is a classical automorphic form.
- e $D_{\infty} E=\operatorname{ehol}\left(D_{\infty} E\right)$ on $U \times U$, where hol denotes the holomorphic projection
- Because these are holomorphic forms that agree at CM points and since CM points are Zariski dense, these forms agree everywhere.

Comparison of action of differential operators: general case

- e $e E$ is a classical automorphic form.
- e $D_{\infty} E=\operatorname{ehol}\left(D_{\infty} E\right)$ on $U \times U$, where hol denotes the holomorphic projection
- Because these are holomorphic forms that agree at CM points and since CM points are Zariski dense, these forms agree everywhere.
- Note that the $e D_{\infty} f=\operatorname{ehol}\left(D_{\infty} f\right)$ follows from the fact that $U_{p} D_{\infty} f=U_{p} \operatorname{hol}\left(D_{\infty} f\right)+p \cdot($ nearly holo terms) for any classical form f.

p-adic Differential operators

Key Feature: The p-adic differential operators have a "nice" action on q-expansions.

Four related results

(1) Scalar-weight (2015, J. Reine Angew. Math.)

Four related results

(1) Scalar-weight (2015, J. Reine Angew. Math.)
(2) Vector-weight (2014, Algebra Number Theory)

Four related results

(1) Scalar-weight (2015, J. Reine Angew. Math.)
(2) Vector-weight (2014, Algebra Number Theory)
(3) Pullbacks, under certain restrictions on the signature (2016, Annales Math. Québec)

Four related results

(1) Scalar-weight (2015, J. Reine Angew. Math.)
(2) Vector-weight (2014, Algebra Number Theory)
(3) Pullbacks, under certain restrictions on the signature (2016, Annales Math. Québec)
(9) Pullbacks without restrictions on the signature, joint work together with J. Fintzen, E. Mantovan, and I. Varma (submitted)

Four related results

(1) Scalar-weight (2015, J. Reine Angew. Math.)
(2) Vector-weight (2014, Algebra Number Theory)
(3) Pullbacks, under certain restrictions on the signature (2016, Annales Math. Québec)
(9) Pullbacks without restrictions on the signature, joint work together with J. Fintzen, E. Mantovan, and I. Varma (submitted)
(5) See also related results on differential operators - but in a different direction (p inert, $G=U(2,1)$) - in recent work by E . Goren and E . De Shalit

Thank you

A picture of Kubota L-series

A picture of Kubota L-series

Figure: Kubota standard L-series (from Shreveport Tractor)

For more information, see http://www.townlineequipment.com/ product-spotlights/kubota-standard-l-series.aspx

