
Noname manuscript No.
(will be inserted by the editor)

R. Evans
E-mail: RichardPrideauxEvans@imperial.ac.uk

M. Sergot
E-mail: m.sergot@imperial.ac.uk

A. Stephenson
E-mail: andrew.stephenson@soton.ac.uk

Formalizing Kant’s Rules

A Logic of Conditional Imperatives and Permissives

R. Evans · M. Sergot · A. Stephenson

Forthcoming in the Journal of Philosophical Logic

Received: Sept. 2018 / Accepted: Jul. 2019 — pre-revision version, please do not cite

Abstract This paper formalizes part of the cognitive architecture that Kant 
develops in the Critique of Pure Reason. The central Kantian notion that we 
formalize is the rule. A rule, as we interpret Kant, is not a declarative condi-
tional stating what would be true if such and such conditions hold. Rather, a 
Kantian rule is a general procedure, represented by a conditional impera-tive 
or permissive, indicating which mental acts must or may be performed. 
These mental acts are not propositions; they do not have truth-values. Our 
formalization is related to the input/output logics, a family of logics designed 
to capture relations between elements that need not have truth-values. In this 
paper, we introduce KL3 as a formalization of Kant’s conception of rules as 
conditional imperatives and permissives over mental acts. We explain how it 
differs from standard input/output logics, geometric logic, and first-order 
logic, as well as how it translates natural language sentences not well cap-
tured by first-order logic. Finally, we show how the various distinctions in 
Kant’s much-maligned Table of Judgements emerge as the most natural way 
of dividing up the various types and sub-types of rule in KL3. Our analysis 
sheds new light on the way in which normative notions play a fundamental 
role in the conception of logic at the heart of Kant’s theoretical philosophy.

Keywords Kant · Rules · Conditional imperatives · Input/output logics · 
Modality · Normativity
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1 Introduction

Judgments, insofar as they are regarded merely as the condition of the
unification of given representations in one consciousness, are rules.
[Prolegomena 4:305]1

We will define a logic of conditional imperatives and permissives that was
designed as part of an effort to make sense of what Kant was trying to do in
the Critique of Pure Reason. There were two sources of motivation for designing
this logic. The first came from our long-term project to extract from the Critique
a cognitive architecture that could be realised in a computer.

Consider a simple agent with various sensors, trying to make sense of its2

sensory perturbations. It must, somehow, interpret its motley array of sensory
perturbations as representations of an external world. This world consists of
objects located in space and persisting through time, causally interacting with
each other. What sorts of things must an agent do in order to achieve this?
What must an agent do in order to represent a world at all? This is not an
epistemological question: we are not asking what conditions have to hold in
order for an agent who already believes something to also know something.
This is a pre-epistemological question about intentionality: what conditions
must hold for an agent to even think a thought that is about the world,
irrespective of whether that thought is true or false?

Kant’s cardinal innovation, as we read him, is that the agent makes sense
of its sensory perturbations by constructing and applying rules:

We have above explained the understanding in various ways – through
a spontaneity of cognition (in contrast to the receptivity of the sensibil-
ity), through a faculty of thinking, or a faculty of concepts, or also of
judgements – which explanations, if one looks at them properly, come
down to the same thing. Now we can characterize it as the faculty of
rules. This designation is more fruitful, and comes closer to its essence.
Sensibility gives us forms (of intuition), but the understanding gives
us rules. It is always busy poring through the appearances with the
aim of finding some sort of rule in them. [A126]3

In making sense of its sensory perturbations, the rules an agent constructs
and applies must satisfy various constraints, as yet unspecified. But if they do
satisfy these constraints, then the agent achieves what Kant calls “experience”:

1 Translations are from the Cambridge Edition of the Works of Immanuel Kant (details at the
end), with occasional modifications. With the exception of those to the Critique of Pure Reason,
which take the standard A/B format, references to Kant are by volume and page number in the
Academy Edition [Immanuel Kants gesammelte Schriften, 29 volumes, Berlin: de Gruyter, 1902-],
along with a short English title.

2 ‘It’ will be our default singular third person pronoun: “Through this I, or He, or It (the
thing), which thinks, nothing further is represented than a transcendental subject of thoughts =
x” [A346/B404].

3 See also [A52/B76], [A127], [B143], [A132/B171], [A159/B198], [A302/B359], [Jäsche Logic 9:11-
12], and [Prolegomena 4:318]
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it has constructed a coherent, unified representation of a coherent, unified
external world4.

If rules are to play this fundamental, load-bearing role in Kant’s theory of
intentionality – his theory of experience – then we had better be very clear
what we mean, exactly, by a rule. If a rule is seen as a conditional that relates
propositions that have truth-values, then it cannot be a foundational part of his
architecture. Kant’s project, as we understand it, is to explain intentionality
itself: he wants to explain how an agent can have world-directed thoughts
that are so much as capable of being true or false. If he presupposes rules
that connect propositions that are already true or false, then he has already
presupposed too much. We argue that, for Kant, a rule is a general procedure
relating acts, not propositions. The rule’s constituent acts are mental rather
than physical. They include things like seeing a bruised apple, feeling a heavy
hammer, and hearing a buzzing bee. Crucially, for Kant, such acts do not
themselves have truth-values:

For truth and illusion are not in the object insofar as it is intuited, but
in the judgment about it insofar as it is thought. Thus it is correctly said
that the senses do not err; yet not because they always judge correctly,
but because they do not judge at all. Hence truth, as much as error,
and thus also illusion as leading to the latter, are to be found only in
judgments, i.e., only in the relation of the object to our understanding...
In the senses there is no judgment at all, neither a true nor a false one.
[A293-4/B350] See also [Jäsche Logic 9:53].

In this paper, we will provide a formalization of Kant’s conception of
rules as general procedures, using a logic of conditional imperatives and
permissives over mental acts. We will also sketch how this logic fits into
the larger picture of the Kantian self-legislating agent. We will describe how
these conditional imperatives and permissives can be constructed, on the fly,
by a rule-induction system that makes sense of its sensory perturbations by
spontaneously constructing and applying rules.

We said that there were two sources of motivation for designing this logic.
The first was to formalize the notion of a rule at the heart of Kant’s cognitive
architecture with a view to realising that architecture in a computer. The
second source of motivation is exegetical and defensive.

Although Kant’s Table of Judgements plays an absolutely pivotal role in
his Critical system, it has been roundly criticised. One common objection has
been that it is based on the out-dated Aristotelian term logic. Just as Kant’s
views on nature are based on a defunct conception of Newtonian physics and
his views on mathematics are based on a defunct conception of Euclidean
geometry, so his views on the mind and its acts of judgement are based on
a defunct conception of Aristotelian logic. Yet if the Table of Judgements is
incomplete or arbitrary, then the derivation of the Table of Categories and the

4 Kant uses “experience” (“Erfahrung”) in various ways. For this, which we regard as its
central use, see especially [Bxli], [A110], [A146/B185], [A225/B272], [A229-30/B282]; [Prolegomena
4:292, 320]; [Metaphysical Foundations of Natural Science 4:560].
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subsequent Transcendental Deduction has failed before it has even started. If
the Table of Judgements is based on an incomplete and out-dated logic, then
Kant’s recurrent use throughout his work of the basic structure it provides
is merely the result of an “architectonic mania”5, rather than the persistent
application of a unified template that runs through all our mental activity.

Or so the story goes. Our second motivation for formalizing Kant’s concep-
tion of rules, then, was to design a logic in which the distinctions he introduces
in the Table of Judgements emerge as the most natural way of dividing up the
various types and sub-types of rule.

In Section 2, we briefly outline some of the key elements in our preferred
interpretation of Kant. We define the essential terms and sketch how they fit
together in Kant’s theory of experience, focusing on his conception of rules.

In Sections 3, 4, and 5, we present a logic that formalizes Kant’s rules
as conditional imperatives and permissives over mental acts. We explain
how it handles the major deontic paradoxes and how it differs from standard
input/output logics, geometric logic, and first-order logic. We also explain how
it translates natural language sentences, including those involving multiple
quantification and features not captured by first-order logic, such as predicate
negation and disjunction.

Finally, in Section 6, we show how this logic makes sense of Kant’s Table
of Judgements, not only its particular “moments” and its overall structure,
but also the various finer points of structure that Kant insists upon.

Our analysis sheds new light on the way in which normative notions
play an absolutely fundamental role in the conception of logic at the heart of
Kant’s theoretical philosophy. Apart from its own intrinsic interest, historical
and philosophical, this also provides a clear hint that our analysis might be
extended to Kant’s account of moral rules and practical agency. Consider the
central role that imperatives and permissives play in Kant’s moral philosophy
(e.g. at [Groundwork 4:414ff., 421ff.]), as well as his claim that practical and
theoretical reason share a “common principle” [Axx; Groundwork 4:391]. We
cannot purse this extension here; that is a task for future work.

2 Kant’s cognitive architecture

In this section, we outline our preferred interpretation of Kant. The interpre-
tation will be elaborated on and confirmed throughout (especially in Section
6), but we do not attempt to mount a full defence of it here. Our primary aim
in this paper is to formalize an aspect of Kant’s thought, as we understand it,
and then apply the results in making sense of his Table of Judgements. The
aspects of our interpretation that we do not defend here have been defended
by ourselves or others elsewhere, which we note when relevant6.

5 [Kant and the Capacity to Judge, p.5].
6 We are particularly indebted to the writings of Béatrice Longuenesse [38,39], Wayne Waxman

[56,57], and Robert Brandom [7–9].
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2.1 Mental activity as constituted activity

It is a familiar idea that social activity is constituted activity7. In certain cir-
cumstances, if various constraints are satisfied, then pushing a horse-shaped
object across a chequered board counts as moving a knight to king’s bishop
three; an utterance of the words “I do” counts as an acceptance of marriage
vows; running away counts as desertion; writing your name counts as signing
a contract. Such counts-as claims are constitutive, not merely predicative or
classificatory (as when we say that a horse counts as a mammal). We are say-
ing that doing x just consists in doing y in the right circumstances; that there
is nothing more to doing x than doing y in the right circumstances. In this
sense, social actions are things we can only do mediately, by doing something
else in the right circumstances. The constitution might continue, so that one
constituted social activity in turn constitutes another, as when a move in a
chess game in turn counts as winning the game. But here, too, we do one
thing by doing another, and the circumstances must be appropriate. Neither
playing nor winning at chess are things we can do immediately.

One action can only count as another if the surrounding circumstances
satisfy certain conditions. Just going up to a stranger in the street and saying
“I do” does not count as marrying them. Saying “I do” only counts as marrying
someone in the particular context of a marriage ceremony when the officiator
has asked a particular question. What determines which circumstances are the
right circumstances? It is the constitutive rules of the constituted activity that
determine the subset of circumstances in which doing y also counts as doing
x. These constitutive rules are to be distinguished from regulative rules, like
the driving laws, which merely regulate a pre-existing independent activity.

So we have here a distinction between constituting and constituted activi-
ties, where constituted activities can in turn play a role in constituting further
activities, as well as an attendant distinction between constitutive and regu-
lative rules. And note finally that, when a constituting activity itself consists
in the construction and application of rules, then the constitutive rules that
determine when this activity counts as a further, constituted activity will be
meta-rules: rules that determine how the construction and application of rules
must go if it is to constitute the constituted activity in question.

As we read Kant, the guiding theme of his philosophy of mind is that
mental activity is constituted activity. His primary concern is with the consti-
tuted mental activity experience. This is a complex, high-level activity, itself
constituted by other constituted mental activities, themselves constituted by
yet others, and so on. In each case, we can ask: what constraints must be sat-
isfied for one activity to constitute another? Ultimately, we are asking: what
are the constitutive rules of experience? It is the purpose of Kant’s cognitive
architecture to articulate all of this (and more). He calls it “the conditions for
the possibility of experience” [e.g. at A92ff./B124ff., A158ff./B197ff.].

7 See [47]. For an overview as well as a formal treatment, see [23].
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Two of the mental activities that play a role in constituting experience, if
certain constraints are satisfied, are perception and judgement. The former
includes things like seeing a bruised apple, feeling a heavy hammer, and
hearing a buzzing bee. The latter includes things like forming the thought
that all men are mortal, that some men are non-learned, or that Caius is a
man. Perception and judgement are distinct but interdependent activities.
They are also themselves constituted activities, and it is at this level that we
come to the four elements of Kant’s cognitive architecture that will be essential
for our logic.

2.2 The four elements

An intuition is a mental object, constructed out of given sensations by the
solitary individual agent. Your intuitions are different from my intuitions –
each agent has its own private repository. There is no limit to how many
intuitions an agent can construct. Intuiting is the constituted mental activity
of constructing intuitions8.

A mark is a symbol that can be ascribed to multiple intuitions. Unlike an
intuition which can only be had by a single agent, a mark is public and can
be used by many different agents. (Marks are general in both of these senses.)
A mark has no predefined meaning. Its meaning is determined entirely by its
inferential role (i.e. by the rules in which it figures)9.

A subsumption is the mental activity of assigning a mark to an intuition10

(or tuple of intuitions). As we read Kant, and this is central to everything that
follows, a subsumption is an act that does not itself have a truth-value. It is
not itself a judgement or a thought, still less a belief or knowledge. Although
marks are shared public symbols, intuitions are private mental objects, so
the act of subsuming an intuition under a mark is only performable by the
particular individual who has that particular intuition.

A rule is a general procedure for generating subsumptions from subsump-
tions. There are two basic types of rule. As Kant describes them:

the representation of a universal condition in accordance with which
a certain manifold (of whatever kind) can be posited is called a rule
[Regel], and, if it must be so posited, a law [Gesetz]. [A113]11

8 We have argued for this traditional view of intuition, and against the currently popular
‘relationalist‘ view elsewhere. See [50].

9 See [36].
10 See [Kant and the Capacity to Judge, p.92n] and also [56] p.264 and p.269n.
11 Kant rarely sticks to this rule/law terminology and we do not adopt it here, referring to both

imperatives and permissives simply as rules. See also [B201n], where Kant uses yet other termi-
nology: “All combination (conjunctio) is either composition (compositio) or connection (nexus).
The former is the synthesis of a manifold of what does not necessarily belong to each other... The
second combination (nexus) is the synthesis of that which is manifold insofar as they necessarily
belong to one another”.
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A rule is not a sentence – it is a general procedure. But if it were to be described by
a sentence, it would be described by a conditional imperative or permissive.
For example:

for every intuition x, if you subsume x under mark p, then also subsume
x under mark q!

Or:

for every intuition x, if you subsume x under mark p, then feel free12

to also subsume x under mark r!

Rules are general procedures that apply to all intuitions. Unlike subsumptions,
which are private to the individual, rules are things that the solitary agent can
share with others13. Unlike subsumptions, which bring two heterogenous ele-
ments together (the intuition and the mark), rules bring homogenous elements
(various subsumptions) together.

To reiterate, rules are not themselves conditional imperatives or permissives
like those above. This is important because natural language conditional im-
peratives and permissives have truth-evaluable content in their antecedents,
whereas this is not the case for Kantian rules (for the reasons given in Section
1). Our claim is that Kantian rules, as general procedures, can nevertheless be
formalized using a logic of conditional imperatives and permissives (with a
suitable formal semantics). As a convenience we will often talk as though rules
just are conditional imperative or permissives, but strictly speaking what we
mean is that they can be described or formalized as such.

These, then, are the four basic elements of Kant’s constitutive psychology:
intuitions, marks, subsumptions, and rules. If certain constraints are satisfied,
if everything comes together, then:

– an intuition counts as a representation of a particular external object
– a mark counts as a concept
– a subsuming counts as a perception
– a rule counts as a judgement (with a truth-value)

As we read Kant, these constitutive counts-as claims should not be thought
of as successive or independent stages. An intuition only counts as a repre-
sentation of an external particular insofar as it is subsumed under a mark that
counts as a concept; a mark only counts as a concept insofar as it is involved
in a subsumption that counts as a perception; and a subsumption only counts
as a perception insofar as it is bound to other subsumptions in a rule that
counts as a judgement; thus, in turn, an intuition only counts as a representa-
tion of an external particular and a mark only counts as a concept insofar as

12 This informal way of putting it is not ideal. What we are trying to express here is the permis-
sive that corresponds to the imperative as “may” corresponds to “must”. If English contained a
punctuation mark corresponding to “!” that represented a permissive rather than an imperative,
then we would use that, but there isn’t one.

13 [Kant and the Capacity to Judge, p.88]: “This is how, by virtue of its logical form alone, a judg-
ment lays a claim to holding for any consciousness, whereas a mere coordination of representations
might only hold for my subjective consciousness.”. See also [32] and [51].
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each figures in a rule that counts as a judgement. And a rule only counts as
a judgement insofar as it is bound to other such rules in a coherent, unified
representation of a coherent, unified external world; that is, only insofar as it
is part of experience.

This, in a nutshell, is Kant’s constitutive theory of experience. Its con-
stitutive (meta-) rules – the constraints that must be satisfied for the above
counts-as claims to hold – are what Kant articulates in the Analytic of Princi-
ples14. Its basic elements are intuitions, marks, subsumptions, and rules, all of
which will play a role in our logic. Here we focus on just one of the counts-as
claims: that a rule counts as a judgement.

2.3 Judgements as rules

Recall that a rule is a general procedure that we will formalize as a conditional
imperative or permissive. It might seem strange to think of an imperative or
permissive rule as something that can count as having a truth-value, but this,
we contend, is exactly what Kant has in mind. He says:

All judgements are accordingly functions of unity among our repre-
sentations, since instead of an immediate representation, a higher one,
which comprehends this and other representations under itself, is used
for the cognition of the object, and many possible cognitions are thereby
drawn together into one [A69/B94]

This is exactly the role of rules, on our account. A rule is a “higher repre-
sentation” that binds together subsumptions, which consist of marks and
intuitions, or “immediate representations”. It is “the mediate cognition of an
object, hence the representation of a representation of it” [A68/B93]. Thus:

Judgments, insofar as they are regarded merely as the condition of the
unification of given representations in one consciousness, are rules.
[Prolegomena 4:305]

All rules (judgments) contain objective unity of consciousness of the
manifold of cognition, hence a condition under which one cognition
belongs with another to one consciousness. [Jäsche Logic 9:121]

Consider Kant’s identification of judgements with rules. This identification is
easiest to see in the case of universal judgements. The judgement “All men
are mortal” just is the rule:

for every intuition x, if you subsume x under “man”, then also subsume
x under “mortal”!

But the identification applies equally to particular judgements. The differ-
ence is that particular judgements are permissive rules. “Some men are non-
learned” just is the rule:

14 How exactly this goes has been interpreted in many different ways. See, for example, [10,33,
34,38,56,58]. For our own preferred interpretation, implemented in the aforementioned computer
model, see [17,18].
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for every intuition X, if you subsume X under “man”, then feel free to
also subsume X under “non-learned”!

And it also applies to singular judgements. “Caius is a man” just is the rule:

for every intuition x, if you subsume x under “Caius”, then also sub-
sume x under “man”!

together with a constraint:

for any distinct intuitions x and y, do not subsume both x and y under
“Caius”!

Indeed, after presenting our logic in Sections 3, 4, and 5, we will argue in
Section 6 that our rule-based analysis accounts for all of the different kinds
of judgement that Kant identifies in his Table of Judgements, and we will
also show how it accounts for the Table’s finer points of structure. Note, for
instance, how singular judgements come out above as a sub-type of universal
judgements; how both singular judgements and universal judgements imply
particular judgements, so long as imperatives imply permissives; and how
negation can be applied to a predicate within an atomic (categorical) judge-
ment.

2.4 What Kant meant by “logic”

We have become accustomed to thinking of logic as the study of entailment
relations between sets of linguistic items. We are given a set of sentences, A,
and a further sentence p and we want to find out if A entails p, written A |= p,
where |= is defined in terms of truth: A |= p if any model in which A is true is
also a model in which p is true.

Logic, for Kant, was not primarily about entailment relations between ele-
ments with truth-values. First and foremost, it is a description of how we should
think15. This project will turn out to include an account of entailment relations
between elements with truth-values. But, we contend, it is not exhausted by
such an account.

Our focus in this paper is on what Kant calls “transcendental” logic: a
description of how we should think when our goal is experience16. As we read
Kant, the fundamental question of transcendental logic is: given a collection
of subsumptions that the agent is performing concurrently, and a set of rules
it has adopted, what further subsumptions may/must it also perform, if it is
to achieve experience? Note that this is a question about mental acts: given
that the agent is performing these mental acts, and given that it has adopted
these rules, what further mental acts may/must it perform? These mental

15 See [A52ff./B76ff.], [A131/B170], and [Jäsche Logic 9:14].
16 See [1] for a rather different formalization of transcendental logic. Their inverse systems

are used to model the way objects of intuition are constructed over time through the dynamical
process of synthesis. Though the details differ, the pioneering work of Achourioti and Lambalgen
(see also [2]) has been a significant source of inspiration for the current project.
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acts (subsumptions) do not have truth-values. Transcendental logic is not
primarily a logic relating elements that have truth-values. Rather it tells us
what mental acts we may/must perform.

Suppose, for example, the agent has adopted the following rules:

– If you are seeing yellow and black stripes and hearing a buzzing, then feel
free to perceive a bee!

– If you are seeing yellow and black stripes and hearing a buzzing, then feel
free to perceive a wasp!

– Do not count anything as both a wasp and a bee!

Having adopted the above rules, suppose that the agent now performs the
subsumptions that, in the right circumstances, constitute the antecedents: see-
ing yellow and black stripes and hearing a buzzing. What further subsump-
tions may/must it make? To repeat, this is not yet a question about which
judgements it should adopt. It is not yet a question about which propositions
it should hold for true. Rather, it is a question about what mental acts it should
perform. In the case at hand, it is a question about what it should perceive17.
One permissible subsumption would be to perceive a bee. Another permis-
sible subsumption would be to perceive a wasp. But it is not permissible to
subsume the same intuition under both “bee” and “wasp”. Transcendental
logic describes the sets of permissible mental activities available, given a set
of rules that have already been adopted.

There is, however, so conceived, a further, secondary question for tran-
scendental logic to answer: given a collection of judgements (i.e. rules) that
have been adopted, what other judgements may/must also be adopted? Expe-
rience is constituted by perception and judgement. Now, since judgements do
have truth-values, this secondary aspect of transcendental logic aligns with
Frege’s focus on truth-conditional logic. In this paper, we present a logic that
addresses both aspects of transcendental logic (see Section 3.6). But our logic
begins “one level down” from first-order logic18: it represents (the perceptual)
activities that do not themselves have truth-values but which can contribute
to the constitution of (the judgemental) elements that do have truth-values,
all of which together, if things go right, will constitute experience.

3 KL1

In the following three sections, we present a logic that formalizes Kant’s rules
as conditional imperatives and permissives over mental acts. Our claim is
not, of course, that Kant had this precise logic in mind. Rather, the claim is

17 Note that these mental acts are at the sub-personal level – our ‘agent’ is a sub-personal rule-
induction system. It is not as if the person consciously chooses whether to perceive a bee or a
wasp, but rather that a pre-conscious process makes this “decision”. It does so with the goal of
achieving experience, whence the sense and force of a question about what should be perceived.
But experience, on Kant’s account, is the first level at which there arises anything like a person’s
conscious perspective on a unified, coherent external world. See [49] for further discussion.

18 See [1], p.236 for a related claim.
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that our formalization is based on, compatible with, and helps explain part
of Kant’s view in the Critique of Pure Reason (and associated texts, especially
Jäsche Logik).

From what has already been said, we know this logic must satisfy two
constraints. First, since subsumptions are acts, we need a logic that does not
assume its constituent elements have truth-values. The input/output logics
[41] were designed to capture inferential relations between elements that
do not necessarily have truth-values. They were conceived in response to
Jørgensen’s Dilemma (a trilemma):

1. Logical inference requires that the elements (the premises and conclusions)
have truth-values.

2. Imperatives do not have truth-values. For example, the command “Burn
all the books!” has a satisfaction-condition, but does not have a truth-value.

3. There are valid logical inferences between imperatives. For example:
– Burn all the books in the library!
– The Critique of Pure Reason is a book in the library
– Therefore: burn The Critique of Pure Reason!

The input/output logics resolve this impasse by denying the first claim: they
support inference between elements that do not have truth-values. The logic
we present below is a member of the family of input/output logics (broadly
conceived).

The second constraint on any logic that formalizes Kant’s rules is that it
must support not only conditional imperatives but also conditional permis-
sives. For example:

if you subsume intuition x under mark p, then feel free to also subsume
x under q!

A logic that contains explicit permissives as well as imperatives will generate
multiple acceptable sets of derived subsumptions19.

For ease of exposition, we divide the logic into three parts. The first part,
KL1, is a type of input/output logic with two types of rule: conditional imper-
atives and permissives. The second part, KL2, extends KL1 with a negation
operator. The third part, KL3, extends KL2 by adding variables and quantifiers.

All three logics, KL1, KL2, and KL3, have been implemented and tested in
computer programs. In particular, the soundness, completeness, and mono-
tonicity for KL1 and KL2 have been empirically verified20. The code corre-
sponds closely to the text in Sections 3, 4, and 5 below.

19 The standard input/output logics generate a single set of derived conclusions. The family of
logics we present here are unusual (in the family of input/output logics) in generating multiple
acceptable sets of conclusions. Of course, many non-monotonic formalisms generate multiple
acceptable sets of conclusions. See Section 3.7 for further comparison.

20 See https://github.com/RichardEvans/kl haskell.
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Table 1: Example rules in KL1

Rule Readable version Translation
{p}� {q} p� q If you are doing p, then do q!
{p, q}� {r} p ∧ q� r If you are doing p and q, then do r!
{p}� {q, r} p� q ∨ r If you are doing p, then do q or do r!
{}� {p} >� p Do p!
{p}� {} p� ⊥ Don’t, whatever you do, do p!
{p}� {q} p� q If you are doing p, then feel free to do q!
{p, q}� {r} p ∧ q� r If you are doing p and q, then feel free to do r!
{p}� {q, r} p� q ∨ r If you are doing p, then feel free to do q or r!
{}� {p} >� p Feel free to do p!

3.1 Syntax

LetA be the set of all atoms. A,B,C and X will range over sets of atoms, and
a, b, c will range over individual atoms.

There are two types of rule in KL1:

R ::= B� C | B� C

B is the body of the rule; it is a set of atoms representing a conjunction. C is the
head of the rule; it is a set of atoms representing a disjunction. We use sets, not
sequences or multisets, to avoid various uninteresting inferences involving
duplication and permutation of elements.

For readability, we write the body of the rule as a conjunction, and the
head of a rule as a disjunction. The rule {p, q}� {r, s} is represented as:

p ∧ q� r ∨ s

If the body of the rule is empty, we write > instead of the empty set. For
example, {} � {p} is written as > � p. If the head of the rule is empty,
we write ⊥ for the empty set. For example, {p}� {} is written as p � ⊥.
Rules with empty bodies and singleton heads are called facts, while rules
with empty heads are called constraint rules.

The � rules are intended to be read as conditional imperatives between
actions. For example, the rule p � q ∨ r should be read as “if you are doing
p, then do q or do r!”.

The � rules are intended to be read as conditional permissives between
actions. For example, p � q should be read as “if you are doing p, then feel
free to do q!”. Some example rules are given in Table 1.

Since the elements of rules are actions – not propositions with truth-values
– disjunction should not be interpreted truth-functionally. To say that you
must do p ∨ q is to say there are two available actions, p and q, and you must
choose one of these actions (or both21).

21 Kant’s disjunctions are exclusive ([A73-4,B99], [Jäsche Logic p.106]), while ours are not. We
represent an exclusive disjunction by a non-exclusive disjunction >� p ∨ q plus a constraint
p ∧ q� ⊥.
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It is straightforward to generalise the form of rules to allow disjunctions
of conjunctions of atoms in the head. We will not do that here for ease of
exposition.

3.2 Semantics (part 1)

Given a (countable but not necessarily finite) set R of rules and a (finite) set
A ⊆ A of atoms, the consequences out1(R,A) is a set {X1,X2, . . . } of sets of
atoms, where each Xi ⊆ A is one of the distinct ways in which the rules can
be satisfied.

There are two sources of non-determinism in KL1. The first is disjunc-
tion. Rules that have disjunctive heads can be satisfied in multiple ways. For
example, given:

R =

p� q ∨ r
q� s

with A = {p}, the possible outcomes are:

out1(R,A) =


{p, q, s}
{p, r}
{p, q, r, s}

The second source of non-determinism is� rules. For example, given:

R =


>� p
>� q
p ∧ q� ⊥

the possible outcomes are:

out1(R, {}) =


{}
{p}
{q}

The out1 function is defined in terms of a set cns(R,A) of consequences,
representing the various ways of applying R to A, from which are filtered out
those that do not satisfy the rules in R.

Definition 1 A set X of atoms satisfies a set R of rules, written X |= R, when
X satisfies every rule in R. X satisfies a rule r, written X |= r, when:

X |= B� C if B * X or C ∩ X , ∅
X |= B� C always
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Definition 2 For all sets R of rules and sets A of atoms:

out1(R,A) = {X ∈ cns(R,A) | X |= R}
cns(R,A) is defined inductively as follows:

cns0(R,A) = {A}
cnsn+1(R,A) = {X ∪ {t} | X ∈ cnsn(R,A), t ∈ step(R,X)}

cns(R,A) =
⋃
n≥0

cnsn(R,A)

The step function combines the consequences of the various rules that apply:

step(R,X) = {c | B� C ∈ R or B� C ∈ R, B ⊆ X, c ∈ C}
The step function treats� and� exactly the same; the place where they are
treated differently is in the satisfaction condition X |= R in out1.

Note that, according to this semantics, the permissives are weak in that
they are overridden by the imperatives. If we have p� q and p ∧ q� ⊥, then
the constraint overrides the� rule:

R =

p� q
p ∧ q� ⊥

A = {p}
out1(R,A) = {{p}}

Similarly, if we have p � q and p � r with q and r incompatible (i.e.,
q ∧ r� ⊥), then p� q will trump p� r:

R =


p� q
p� r
q ∧ r� ⊥

A = {p}
out1(R,A) = {{p, q}}

It is also worth observing that the assumptions A can be replaced equiv-
alently by a set of corresponding unconditional � rules. For any set of
assumptions A:

out1(R,A) = out1(R ∪ {>� a | a ∈ A}, ∅)
For readability we sometimes write out1(R) as shorthand for out1(R, ∅).

Note also that out1(R,A) is not monotonic in either R or A.
It remains to confirm that cns and out1 are well-defined and unique for any

set of rules R and assumptions A. We do this in the next section by translating
rules R to a simple form of logic program for which the required properties
are immediate.
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3.3 Semantics (part 2)

In this section, we provide an alternative semantics that is provably equivalent
to the semantics in Section 3.2 above.

A definite clause is a rule of the form

c← b1, . . . , bn (n ≥ 0)

where c and b1, . . . , bn are atoms. We are using standard logic programming
notation: c is the head of the clause; the body b1, . . . , bn is to be read as a
conjunction. As is usual, where the body of a clause is empty we identify a
clause c ← with the the atom c. A definite logic program is a set of definite
clauses.

The idea is that every� and� rule can be translated to a set of definite
clauses, each of which represents one of the ways that the rule can be satisfied;
a set of rules is translated to the set of definite programs obtained by taking
all combinations of the translations of the individual rules.

Definition 3 (Definite clause encoding) Define a function defr from rules to
sets of sets of definite clauses:

defr(B� C) =

 { ∅ } if C = ∅
{ {c← B | c ∈ C′} | C′ ⊆ C, C′ , ∅ } otherwise

defr(B� C) = { {c← B | c ∈ C′} | C′ ⊆ C}
Now define a function def that translates a set of rules into a set of definite
programs (a set of sets of definite clauses):

def ({r1, r2, . . . }) = {D1 ∪D2 ∪ · · · | D1 ∈ defr(r1),D2 ∈ defr(r2), . . . }
Example 1

defr(p� q ∨ r) =


{}
{q← p}
{r← p}
{q← p, r← p}

defr(r� s) =
{
{s← r}

def ({p� q ∨ r, r� s}) =


{s← r}
{q← p, s← r}
{r← p, s← r}
{q← p, r← p, s← r}

Definition 4 (Least model) Let TD : 2A → 2A be the ‘immediate consequence
operator’ [16] of the definite program D:

TD(X) = {c | c← B ∈ D, B ⊆ X}
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For any A ⊆ A, let M(D,A) be defined inductively as follows:

M0(D,A) = A
Mi+1(D,A) = Mi(D,A) ∪ TD(Mi(D,A))

M(D,A) =
⋃
i≥0

Mi(D,A)

The following are all properties of definite logic programs [16] found in
any standard text on logic programming. M(D,A) is the least fixpoint of TD
that contains A. For definite clauses D it always exists and is unique. M(D,A)
is also the least (set inclusion) set of atoms containing A and closed under the
rules D, and the least (Herbrand) model of D∪A. (We are identifying an atom
a with the clause a←.)

Now we can define an alternative version of cns in terms of def and M.

cnsd(R,A) = {M(D,A) | D ∈ def (R)}
In the original semantics of Section 3.2, the inductive definition of cns can

be seen as the construction of a tree rooted in {A}whose leaves are the elements
of cns(R,A). Here in our second, alternative semantics, cnsd(R,A) can be seen
as a set of linear derivations each of which is the application to A of one of the
definite programs in def (R).

Clearly if D ∈ def (R) then M(D,A) satisfies every rule of the form B� C
(C , ∅) in R and (trivially) every� rule in R.

It can be confirmed (e.g., by induction on R) that if R contains no constraint
rules, i.e., no rules of the form B� ⊥, then:

cnsd(R,A) = {X ∈ cns(R,A) | X |= R}
Let R⊥ denote the set of all constraint rules in R. Then:

out1(R,A) = {X ∈ cnsd(R,A) | X |= R⊥}
Putting the above together we have the following alternative characterisation
of out1(R,A).

Proposition 1 Let R be a set of rules and A a set of atoms.

out1(R,A) = {M(D,A) | D ∈ def (R), M(D,A) |= R}
Proof In the preceding discussion. ut
The following corollary will be useful later:

Proposition 2 If R is a set of rules and X a set of atoms, then

if X |= R then X ∈ out1(R,X)

Proof Assume X |= R. We shall provide a definite program D in def (R) such
that M(D,X) = X. For each rule r1, ..., rn in R, construct definite programs
d1, ..., dn as follows. If ri = B � C, then let di = {}. If ri = B � C, consider
two cases. First, if B * X, let di = {}. Second, if B ⊆ X, then since X |= B� C,
X ∩ C , ∅. Let C′ = X ∩ C and define di as {c← B | c ∈ C′}. Let D = {d1, ..., dn}.
We have M(D,X) = X and hence by Proposition 1, X ∈ out1(R,X). ut
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3.4 Entailment

We shall define entailment on KL1 rules using a notion of strong equivalence
between rule sets. It is natural to say that two rule sets R1 and R2 are strongly
equivalent if, for all rule sets R′ and all sets A of assumptions:

out1(R1 ∪ R′,A) = out1(R2 ∪ R′,A)

Since out1(R,A) = out1(R ∪ {> � a | a ∈ A}, ∅), it is equivalent to require
that out1(R1 ∪ R′, ∅) = out1(R2 ∪ R′, ∅) for all rule sets R′. However, for strong
equivalence of KL1 rule sets it is sufficient to restrict attention to sets R′ of
nullary rules (‘facts’), i.e., rules of the form >� a. This is because out1(R, ∅)
can be seen as being defined by a set of definite clause programs def (R). Two
definite clause programs D1 and D2 have the same models, and in particular
the same least models, if and only if D1 ∪A and D2 ∪A have the same models
for all sets A of unit clauses (‘facts’), i.e., clauses of the form a ← >. The
property generalises straightforwardly to comparing sets of definite clause
programs as required here.

We therefore take the following definition of strong equivalence and of
rule entailment.

Definition 5 Two rule sets R1 and R2 are strongly equivalent in KL1 if:

out1(R1,A) = out1(R2,A) for all sets A of atoms

A set R of rules entails a rule r in KL1, written R |=KL1 r, if R and R∪ {r} are
strongly equivalent in KL1. In other words, R |=KL1 r if

out1(R,A) = out1(R ∪ {r},A) for all sets A of atoms

It is also convenient to employ a functional notation. kl1(R) denotes the set of
rules semantically entailed by R in KL1: kl1(R) = {r | R |=KL1 r}. Rule sets R1
and R2 are strongly equivalent in KL1 when kl1(R1) = kl1(R2).

A set R of rules is strongly inconsistent in KL1 if, for every set A of atoms,
out1(R,A) = ∅.
Proposition 3 Let R be a set of rules. out1(R,A) = ∅ for all sets A of atoms if and
only if out1(R, ∅) = ∅. Hence, R is strongly inconsistent in KL1 when out1(R, ∅) = ∅.
Proof We prove that if out1(R,A) , ∅ for some A then out1(R, ∅) , ∅. For
suppose X ∈ out1(R,A). Then there is some definite program DR in the en-
coding def (R) of R such that X = M(DR,A) and X |= R⊥ where R⊥ are the
constraint rules B� ⊥ of R. But M(DR, ∅) ⊆M(DR,A) so M(DR, ∅) |= R⊥, and
M(DR, ∅) ∈ out1(R, ∅). The other direction is trivial. ut

Notice that if out1(R,A) = ∅ for all A then, for all R′, out1(R ∪ R′,A) = ∅ for
all A, and hence R |=KL1 R′. Now suppose R |=KL1 >� ⊥. Then out1(R,A) =
out1(R∪{>� ⊥}, A) for all A, and clearly out1(R∪{>� ⊥}, A) = ∅ because
X 6|= >� ⊥ for any X. So we have the following.

Proposition 4 Let R be a set of rules. R is strongly inconsistent in KL1 iff R |=KL1

>� ⊥.
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>Ñ ?

>Ä ?

pÄ ? >Ä q >Ä p>Ä p _ q

>Ñ p _ q

qÄ ?

p ^ qÄ ?>Ñ q >Ñ p

Fig. 1: The entailment lattice for {p, q}. If there is a line between two nodes,
then the lower node entails the higher node.

3.5 Inference rules

The inference rules for KL1 are given in Figure 2.
Note that, since the left- and right-hand sides of rules are sets of atoms,

not sequences or multisets, a finite set R of rules has only a finite number of
inferential consequences.

Given a set R of rules, the derived rules deriv(R) are the rules generated by
repeated application of the inference rules in Figure 2. We also write R `KL1 r
if r ∈ deriv(R).

Example 2 One can check that {p� q, p� r} |=KL1 p� p ∨ q ∨ r. Here is a
derivation using the inference rules:

p� q
MAY-MUSTp� q p� r

MAY-UNIONp� q ∨ r
-

MAY-IDp� p
MAY-UNIONp� p ∨ q ∨ r

Example 3 It can also be confirmed that {p � q ∨ r, q � ⊥} |=KL1 p � r.
Here is a derivation using the inference rules:

q� ⊥
QUOD-LIBETq� r

MUST-SIp ∧ q� r

-
MUST-IDr� r

MUST-SIp ∧ r� r p� q ∨ r
MUST-TRANSp� r

Proposition 5 (Soundness) KL1 is sound: R `KL1 r implies R |=KL1 r. That is,
deriv1(R) ⊆ kl1(R).
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MUST-ID
−

A� A
A , ∅ MUST-SI

A� B
A′� B

A ⊂ A′

MUST-UNION
A� B A� C

A� B ∪ C

MUST-TRANS
A� b1 ∨ . . . ∨ bn A ∧ b1 � C . . . A ∧ bn � C

A� C

QUOD-LIBET
A� ⊥
A� B

MAY-ID
−

A� A
MAY-SI

A� B
A′� B

A ⊂ A′

MAY-UNION
A� B A� C

A� B ∪ C

MAY-TRANS
A� b1 ∨ . . . ∨ bn A ∧ b1 � C . . . A ∧ bn � C

A� C
if for every c ∈ C, A ∧ c� bi for some bi ∈ {b1, . . . , bn}

MAY-SO
A� B
A� B′

B′ ⊂ B

MAY-MUST
A� B
A� B

MAY-FALSUM
A ∧ b� ⊥

A� b

Fig. 2: Inference rules of KL1

Proof We show that if r ∈ deriv1(R) then, for all A, out1(R,A) = out1(R∪ {r},A).
The proof is by induction on the length of the derivation. The base case is
trivial. For the inductive step, suppose r was derived in one step from r1 and
r2. By the inductive hypothesis out1(R ∪ {r1, r2},A) = out1(R,A) for all A. We
must show that, for all A:

out1(R ∪ {r1, r2, r}, A) = out1(R ∪ {r1, r2}, A)

By Proposition 1, if X ∈ out1(R ∪ {r1, r2, r}, A) then X = M(D,A) for some
definite program D ∈ def (R ∪ {r1, r2, r}) and X |= R ∪ {r1, r2, r}.

Suppose r was derived from r1 and r2 using MUST-UNION. (The other cases
are similar and are omitted22). Let r1 = A� B, r2 = A� C, r = A� B∪C.

22 For other inference rules it is not always the case that def ({r1, r2, r}) = def ({r1, r2}). However,
for the first half of the proof it is sufficient to show that for every D ∈ def ({r1, r, 2, r}) there exists
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It can be checked that def ({A� B ∪ C}) = def ({A� B, A� C}), and so:

def (R ∪ {r1, r2, r}) = def (R ∪ {r1, r2})

This establishes that out1(R ∪ {r1, r2, r}, A) ⊆ out1(R ∪ {r1, r2}, A) for all A. To
show the other inclusion, that out1(R ∪ {r1, r2} A) ⊆ out1(R ∪ {r1, r2, r}, A), it
remains to show that if X |= R∪ {r1, r2} then X |= R∪ {r1, r2, r}. To see this, note
that if X |= A� B then X |= A� B ∪ C. ut

Conjecture 1 (Completeness) KL1 is complete: R |=KL1 r implies R `KL1 r. That is,
kl1(R) ⊆ deriv1(R).

We do not have a proof of this although we have strong reasons to believe
it is true. Moreover we have tested it empirically using a computer imple-
mentation23 of the definitions and results in Sections 3, 4, and 5. For KL1, we
sample randomly generated sets R of KL1 rules, and individual rules r such
that R |=KL1 r. Then we generate all inferential consequences of R (always fi-
nite for a finite set of rules) and test if r is among the consequences. Extensive
empirical testing, from sample sets of the order of 100,000 rules, suggests that
KL1 is indeed complete. We would of course prefer the full confidence of a
formal proof.

3.5.1 A comparison between� and� inference rules

The MUST-TRANS and MAY-TRANS rules are very similar. But there is one extra
condition in MAY-TRANS which does not appear in MUST-TRANS. The reason for
the extra condition is this. Consider the simpler variant:

MAY-TRANS-BAD
A� b1 ∨ . . . ∨ bn A ∧ b1 � C . . . A ∧ bn � C

A� C

This rule is exactly parallel to MUST-TRANS but it is unsound: it would allow
us to infer p� r from p� q and q� r.

Let p � q be “if you visit the south of France, then feel free to enter a
naturist resort!”. Let q� r be “if you enter a naturist resort, then feel free to
disrobe entirely!”. We do not want to infer “if you visit the south of France,
then feel free to disrobe entirely!”.

To avoid this, there is an extra condition in MAY-TRANS that insists that
each c in C requires some bi in {b1, . . . , bn}: for every c ∈ C, there must be a rule
A ∧ c� bi for some bi ∈ {b1, . . . , bn}.

D′ ∈ def ({r1, r, 2}) such that D and D′ have the same models (and therefore the same minimal
model). This is straightforward for all the inference rules of Figure 2.

23 See https://github.com/RichardEvans/kl haskell.
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3.6 The primary and secondary aim of logic

In Section 2.4 above, we claimed that, for Kant, transcendental logic’s primary
question is: given a set of subsumptions, and a set of rules, what further
subsumptions may/must I perform? This question is answered by the out1
function defined in Section 3.2 above and the further characterised by the
results of the sections that follow.

Transcendental logic’s secondary question is: given a set of rules I have
adopted, what further rules may/must I adopt? This question is answered by
the rule entailment (|=KL1 ) and inference rules (`KL1 ) defined in Sections 3.4
and 3.5 above.

3.7 Comparing KL1 with other input / output logics

The family of input/output logics, broadly conceived, are logics that operate
on elements that do not (necessarily) have truth-values, and in which infer-
ences are not closed under contraposition. KL1 is a member of the family of
input/output logics, very broadly conceived. However, there are a number
of essential differences between KL1 and the particular input/output logics
described in [41].

There is the obvious notational difference. Standard input/output logics
use the pair notation (p, q) to indicate implication from p to q. That in itself is
a trivial difference but KL1 needs two distinct arrows, p� q and p� q, for
the two different types of rule (see Section 2.2).

That aside, the first major difference is that, in the standard input/output
logics, a rule (φ,ψ) relates arbitrarily complex expressions that are closed un-
der the Boolean connectives. In KL1, by contrast, the elements are conjunctions
and disjunctions of atoms only.

In KL1, the left hand side (antecedent) of a rule is a set of atoms represent-
ing a conjunction, while the right hand side (consequent) is a sets of atoms
representing a disjunction. In a standard input/output logic, if we apply the
rule (p, q ∨ r) to the premises {p}, we get the single result {q ∨ r}. In KL1, by
contrast, if we apply the rule p � q ∨ r to the premises {p}, we get three
possible answers:

out1({p� q ∨ r}, {p}) = {{p, q}, {p, r}, {p, q, r}}
The second major difference, then, is that the output out1 of a set of rules in
KL1 is a set of sets of atoms, representing different possible ways to satisfy
the rules, while the output in a standard input/output logic is a single set of
propositions.

A third major difference is that KL1 does not have an inference rule for
weakening the output. Although there is a rule for strengthening the input
(MUST-SI), there is no corresponding rule for weakening the output (WO):

WO
A� B

A� B ∪ C
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This rule is not valid in KL1 because it would license activities that were
arbitrary24. Suppose, for example, the agent is performing the action p and
has the rule:

p� q

If we are allowed to infer, using WO, that

p� q ∨ r

then there will be two possible sets of actions that are compatible with the
original rule plus the derived rule: {p, q} and {p, q, r}. The trouble is that the
action r that is introduced in the second answer is arbitrary in the sense that it
is not itself grounded in a rule.

Throughout his mature writings, Kant assumes that all activity must be
grounded in a rule in order to count as activity at all. Consider the following
difference: some of the movements my body performs are mere spasms, while
other movements count as actions. The difference between the two, according
to Kant, is that actions are movements that are grounded in a rule I have
adopted. Kant’s fundamental normative step is to characterise the subset of
my bodily movements that count as actions as those which are subsumed
under a rule. This is as true of mental activity as it is of physical activity:

Like all our powers, the understanding in particular is bound in its
actions to rules [Jäsche Logic §1] 25

Therefore, in any logic that tries to capture Kant’s normative theory of mental
activity, weakening output (WO) should not be valid (see Section 3.9). KL1 has
only the following restricted form:

MUST-UNION
A� B A� C

A� B ∪ C

The final difference between KL1 and the standard input/output logics is
that KL1 allows what is called “throughput” in input/output logics: for each
X ∈ out1(R,A), A ⊆ X. The inference rule corresponding to throughput is
MUST-ID, allowing us to infer p � p: “if you are doing p, then do p!”, for all
actions p. The reason why this inference rule is valid in KL1 is again because
of the particular intended application: KL1 is a logic of concurrent activity,
prescribing the activities that we must perform conditional on the activities
we are already performing. It is for the agent to produce a package of activities
that together satisfy the various rules. If it is already performing action p, then
p must be part of any complete package of activity. If you are already doing p,
there is no point trying to undo the performance of p – that ship has already
sailed.

24 [1] and [2] make a similar point, for different reasons. They argue that B∨C may not constitute
a “whole”. See footnotes 10 and 41 of [1].

25 Or to put it another way, mental occurrences not grounded in a rule “would then belong to
no experience, and would consequently be without an object, and would be nothing but a blind
play of representations, i.e., less than a dream.” [A112], see also [A156/B195]. See [18] for further
elaboration.
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3.8 Comparing KL1 to other logics of imperatives

Many logics of imperatives26 start with a base truth-functional logic and
extend it with one or more imperatival operators (e.g. “!”). For example, given
a set Σ of sentences that have a truth-functional semantics (e.g. sentences of
classical propositional logic or first-order logic), with S ranging over sentences
in Σ, define an imperative language L as:

L := S | !S
Given such a framework, imperatival inference can be explained using Du-
bislav’s trick [25]: !p entails !q whenever p entails q.

We stress, however, that KL1 does not use this framework. We do not pre-
suppose an existing base language Σ in which truth-conditions have already
been assigned27. In KL1, the atomsA represent actions that do not have truth-
values. In this crucial respect, KL1 is closer to the input/output logics than it
is to most logics of imperatives.

[12] identifies three sets of requirements that any logic of imperatives must
satisfy:

1. imperatives can stand in inconsistency relations
2. imperatives can stand in inferential relations
3. imperatives can be embedded

Requirement 1: A set R of rules is strongly inconsistent in KL1 if, for every set
A of atoms, out1(R,A) = ∅. A set R of rules is weakly inconsistent if there is
some set A of atoms such that out1(R,A) = ∅.
Example 4

R1 =

>� p
p� ⊥ R2 =


p� q
p� r
q ∧ r� ⊥

Here, R1 is strongly inconsistent but R2 is only weakly inconsistent. When
A = {}, out1(R2, {}) = {∅} , ∅.

[12] insists that an imperative requiringφ is inconsistent with a permissive
allowing ∼φ. In KL2, where we add a form of negation to KL1, the following
set R5 is not inconsistent (not even weakly inconsistent):

R5 =

p� q
p� ∼q

This is because the permissive� rule is weak and is overridden by a� rule.

26 For example, [13,27,12].
27 In this respect, our approach follows the pragmatist order of explanation, in which rules

specifying what to do are explanatorily prior to rules specifying what is the case. See Sections 2.4
and 6.
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Of course, differences of intuition are to be expected here because [12] is
developing a semantics for conditional imperatives in natural language, while
our project is to provide a logic of conditional imperatives for describing rules
of thought.

Requirement 2: inferential relations in KL1 are defined in terms of a semantic
(|=KL1 ) and syntactic (`KL1 ) notion of entailment. We have commented on the
relationship (soundness and completeness) between them.

Requirement 3: the central motivating cases of embedding in [12] are condi-
tional imperatives and permissives. These are precisely the types of imper-
ative that KL1 is designed to model. Although we agree that other forms of
embeddedness are also important, we do not have space to do justice to a
full discussion here. We have developed an extension of KL1 that includes
embedded rules (e.g. (p� q)� r), but we leave a full description to further
work.

3.9 The deontic paradoxes in KL1

Ross’s paradox [46] was first described for von Wright’s deontic logic, but it
also applies to logics of conditional imperatives. Suppose we are given the
order:

Post the letter!

Now the declarative proposition “x posts the letter” entails the proposition
“either x posts the letter or x burns it.” But we do not want to infer from this
entailment and the original order that:

Therefore: post the letter or burn it!

One way of seeing the problem with this conclusion is by inferring (via the
inference that if you must do something, then you may do it):

Therefore: you may post the letter or burn it!

and then inferring (since permission distributes over disjunctions):

Therefore: you may burn it!

The absurdity in this chain of reasoning comes out even more clearly if the
newly introduced disjunct is something altogether irrelevant to posting the
letter, and altogether unacceptable. For example:

Post the letter!
Therefore: post the letter or set fire to the school!
Therefore: you may post the letter or set fire to the school!
Therefore: you may set fire to the school!
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In the usual input/output logics, the rule for weakening the output is:

WO
A� B

A� B ∨ C

KL1 avoids this paradox because it does not have the troublesome WO infer-
ence rule (see Section 3.7).

There is a paradox that is closely related to Ross’s paradox, that involves
conjunction rather than disjunction. Suppose you are permitted to wipe your
feet and enter the house. It does not follow that you are permitted to enter
the house simpliciter28. This troublesome inference does not go through in
KL1. Letting w stand for “wipe your feet”, e stand for “enter the house”, and
c stand for the conjunction of both activities, the conjunctive permission is
represented by the set R of rules29:

R =


>� c
c� w
c� e

Here there are two acceptable packages of actions: doing nothing, or doing
both w and e:

out1(R, {}) =

{}{e,w, c}
Note that neither {e} nor {c, e} are elements of out1(R, {}).

There is a third, related paradox involving implication. Suppose we have:

You must do a or b!
If you do a then you must do c!

We do not want to infer from these rules that:

You may do b and c!

The trouble with this inference is that doing c is only conditionally permissible:
it is only if you are doing a that you must (and hence may) do c. Consider the
concrete example:

You must either leave the dinner early or stay until the end.
If you leave early, then you must interrupt the conversation to tell
everyone you are going early.

28 See the related “Window paradox” in [25].
29 It is straightforward to extend the form of rules in KL1 to allow disjunctions of conjunctions

of atoms in the heads (consequents) of rules. In that version, the example would be represented
by R′ = {>� (w ∧ e)} with out1(R′, {}) = {{}, {w.e}}. The details are straightforward but we have
omitted them here to shorten the presentation.
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It would not be acceptable to both stay until the end but also interrupt the con-
versation to tell everyone that you were leaving. This troublesome inference
does not go through in KL1:

out1({>� a ∨ b, a� c}, {}) =


{a, c}
{b}
{a, b, c}

Note that {b, c} is not an element of out1({>� a ∨ b, a� c}, {}).
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4 KL2: extending KL1 with negation

We define KL2 by adding a negation operator to KL1. This negation operator
applies to an atom a to generate a literal ∼a. It can only be applied to atoms;
we do not allow expressions such as ∼∼p, ∼(p ∧ q) or ∼(p ∨ q).

Henceforth, a, b, c range over literals and A,B,C and X range over sets of
literals. Where c is a literal we write c for the complement of c: if c is an atom
then c = ∼c and ∼c = c. When C is a set of literals C = {c | c ∈ C}.

The rules of KL2 are:

R ::= B� C | B� C

as for KL1 except that now B and C are sets of literals (representing conjunc-
tions and disjunctions respectively).

A set of literals X satisfies a set R of rules, X |= R, and satisfies an individual
rule r, X |= r, just as in KL1 except that now the elements of a rule are sets
of literals rather than atoms: X |= B � C always; X |= B � C if B * X or
C ∩ X , ∅.

4.1 Minimal requirements on a Kantian negation operator

Kant describes a variety of properties that negation must satisfy throughout
the Jäsche Logic30. As minimal requirements, we pick out two fundamental
properties that he insists on.

The operator ∼ from atoms to literals is our negation operator. First, p and
∼p must be incompatible31. Second, ∼p must be the most general proposition
that is incompatible with p32: for any q, if p and q are incompatible, then q
must entail ∼p.

To motivate the second requirement, consider the following example. Sup-
pose Jill can support at most one of three football teams: Arsenal, Barnet, or
Chelsea. She cannot support more than one: supporting Barnet is incompat-
ible with supporting Arsenal. But “Jill supports Barnet” (b) cannot be the
negation of “Jill supports Arsenal” (a) because it is too specific. The negation
∼a of “Jill supports Arsenal” is the most general claim that is incompatible
with her supporting Arsenal, and “Jill supports Chelsea” (c) is also incompat-
ible with her supporting Arsenal. All we can say about ∼a is that b entails ∼a
and c entails ∼a.

30 See [Jäsche Logic p.51, 103-4, 109, 117-19, 124ff.].
31 See the principle of contradiction in [A150ff./B189ff.] and [Jäsche Logic p.51].
32 Kant makes this precise claim in [Jäsche Logic §49]: “one of [a pair of contrary judgements] says

more . . . than the mere negation of the other.” In other words, a claim that is incompatible with p
entails (but is not necessarily entailed by) the negation of p. See also Brandom [7], Humberstone
[28], p.1170.
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4.2 Inference rules

The extra inference rules for KL2 are given in Figure 3. They are chosen to
capture the two requirements on the negation operator described above. Here
we are assuming that the mutual incompatibility of a (non-empty) set A of
literals is expressed by the rule A� ⊥.

∼-LEFT
−

c ∧ ∼c� ⊥ ∼-RIGHT
A ∧ b� ⊥

A� b

Fig. 3: Additional inference rules for KL2

Example 5 Here we use p� q to derive ∼q� ∼p:

p� q
MUST-SIp ∧ ∼q� q

∼-LEFTq ∧ ∼q� ⊥
MUST-SIp ∧ q ∧ ∼q� ⊥
MUST-TRANSp ∧ ∼q� ⊥

∼-RIGHT∼q� ∼p

Example 6 Here we derive >� ∼q from p ∧ q� ⊥ and ∼p ∧ q� ⊥:

p ∧ q� ⊥
∼-RIGHTq� ∼p ∼p ∧ q� ⊥

MUST-TRANSq� ⊥
∼-RIGHT>� ∼q

It is instructive to look at some derived rules of KL2. Those in Figure 4 are
all derivable using only ∼-LEFT and the rules of KL1. TRANSPOSE is obtained
from ∼-LEFT using MUST-SI and MUST-TRANS. MUST-⊥ is obtained by repeated
application of TRANSPOSE. (The case of MUST-⊥ where C = ∅ is vacuous but
harmless.) INCONS generalises∼-LEFT. We do not show the derivations in detail.
They are very straightforward and will be shown in detail when we present
their KL3 versions in Section 5.

Of particular interest is the following pair:

REDUCE-⊥ B ∧ c� ⊥ B ∧ ∼c� ⊥
B� ⊥ RESOLVE-⊥ A ∧ c� ⊥ B ∧ ∼c� ⊥

A ∪ B� ⊥
The first is a special case of the second. They will be discussed in more detail
in the treatment of KL3. Unlike the inference rules in Figure 4 their derivation
relies on ∼-RIGHT.

Example 7 Here is how the earlier Examples 5 and 6 look with these derived
inference rules.

To derive ∼q� ∼p from p� q:
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MUST-⊥ B� C

B ∪ C� ⊥
TRANSPOSE

B� b ∨ C

B ∧ b� C

INCONS
A� c B� ∼c

A ∪ B� ⊥

Fig. 4: Some derived inference rules for KL2

p� q
MUST-⊥p ∧ ∼q� ⊥
∼-RIGHT∼q� ∼p

To derive >� ∼q from p ∧ q� ⊥ and ∼p ∧ q� ⊥:

p ∧ q� ⊥
∼-RIGHTq� ∼p

∼p ∧ q� ⊥
∼-RIGHTq� p

INCONSq� ⊥
∼-RIGHT>� ∼q

With RESOLVE-⊥ it is even easier:

p ∧ q� ⊥ ∼p ∧ q� ⊥
RESOLVE-⊥q� ⊥

∼-RIGHT>� ∼q

4.3 Semantics

A set X of literals is consistent if it does not contain a pair of complementary
literals a and ∼a for any atom a. It is inconsistent otherwise.
A denotes the set of atoms. Let CA denote the set of constraint rules

CA = {a ∧ ∼a� ⊥ | a ∈ A}
We omit the subscriptAwhere it is obvious from context. Clearly the set X of
literals is consistent when X |= C.

We write VA for the set of maximal consistent sets of literals from A, i.e.,
VA is the set of sets Xm such that Xm is consistent and, for every a ∈ A, either
a ∈ Xm or ∼a ∈ Xm.

Definition 6 Given a set R of rules, a set X of literals is a violating set of R if
there is no maximal consistent Xm ∈ VA such that Xm ⊇ X and Xm |= R.

One can see that an inconsistent set of literals is, by definition, a violating
set of every set of rules. And if X is a violating set of R then so is every X′ ⊇ X.
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A violating set X of R cannot be extended to a maximal consistent set
Xm ⊇ X that satisfies every rule in R. If B � ⊥ is a rule in R then X is a
violating set of R when B ⊆ X. For a rule of the form B � C (C , ∅) and
without the consistency requirement, a set X of literals can always be extended
to a set X′ ⊇ X that satisfies that rule (the set of all literals satisfies it). With
the consistency requirement, X cannot be extended to a consistent X′ ⊇ X that
satisfies B� C when B∪C ⊆ X. (Indeed that condition applies to constraint
rules also: X cannot be extended to satisfy B � ⊥ when B ∪ ∅ ⊆ X.) It is
possible that X is a violating set of a set R of rules even though X is not a
violating set of any of them individually. A rule B� C is satisfied by every
set X of literals: only inconsistent sets of literals are violating sets of� rules.

Example 8
R = { p� q, p� ∼q }

The consistent sets {p}, {p,∼q} and {p, q} are violating sets of R. All inconsistent
sets are also violating sets of R.

Compare:
R′ = { p ∧ q� ⊥, p ∧ ∼q� ⊥ }

Again, {p}, {p,∼q} and {p, q} are violating sets of R′.

Example 9
R′′ = { p ∧ q� r, p ∧ ∼q� r, p ∧ r� ⊥ }

{p} is a violating set of R′′.

Example 10

R′′′ = { p ∧ q� r, p ∧ ∼q� r, r ∧ s� ⊥ }
Here {r, s}, {p, s} and {p,∼r} are the minimal consistent violating sets.

Definition 7 Given a set R of rules, we define an auxiliary set of rules aux(R).
The outcome function out2 for KL2 is defined using aux(R).

aux(R) = {A − {a}� a | A is a finite violating set of R, a ∈ A}
out2(R,A) = out1(R ∪ C ∪ aux(R),A)

Example 11 If R = {p� ⊥}, then {p} and {p,∼p} are violating sets of R, and

aux(R) = { >� ∼p, p� p, ∼p� ∼p, . . . }
Note the close parallel between the inference rules and the semantics. In

out2(R,A), the check for consistency, expressed by the rules C, matches ∼-LEFT,
while the set of rules aux(R) provides the additional inferences afforded by
∼-RIGHT. Indeed, we will show (below) that X is a (finite) violating set of R if,
and only if, the rule X � ⊥ is entailed by R in KL2. That will establish the
connections between semantic and syntactic entailment in KL2.

Rule entailment is defined as in KL1.
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Definition 8 Two rule sets R1 and R2 are strongly equivalent in KL2 if:

out2(R1,A) = out2(R2,A) for all sets A of atoms

A set R of rules entails a rule r in KL2, written R |=KL2 r, if R and R ∪ {r} are
strongly equivalent in KL2.

We write kl2(R) for the set of rules semantically entailed by R in KL2:
kl2(R) = {r | R |=KL2 r}. Rule sets R1 and R2 are strongly equivalent in KL2
when kl2(R1) = kl2(R2).

For brevity, we will write KL1(C) for KL1 extended with the inference rule
∼-LEFT and say that R KL1(C)-entails r when R ∪ C |=KL1 r.

Proposition 6 (Decomposition) A set R of rules semantically entails a rule r in
KL2 if and only if R ∪ C ∪ aux(R) semantically entails r in KL1. That is, for all rule
sets R:

kl2(R) = kl1(R ∪ C ∪ aux(R))

Proof kl2(R) = kl1(R ∪ C ∪ aux(R)) for all R is equivalent to saying that two
rules sets R1 and R2 are strongly equivalent in KL2, kl2(R1) = kl2(R2), iff
R1 ∪C∪ aux(R1) and R2 ∪C∪ aux(R2) are strongly equivalent in KL1, kl1(R1 ∪
C ∪ aux(R1)) = kl1(R2 ∪ C ∪ aux(R2)).

kl2(R1) = kl2(R2)
iff out2(R1,A) = out2(R2,A) for all A
iff out1(R1 ∪ C ∪ aux(R1), A) = out1(R2 ∪ C ∪ aux(R2), A) for all A
iff kl1(R1 ∪ C ∪ aux(R1)) = kl1(R2 ∪ C ∪ aux(R2))

ut
The following is a general property of KL1.

Proposition 7 Let R be a set of rules and A a (finite) set of literals:

out1(R,A) = ∅ iff R |=KL1 A� ⊥
Proof We need to show that out1(R,A) = ∅ iff out1(R ∪ {A � ⊥}, A′) =
out1(R,A′) for all sets A′ of literals.

For left-to-right: suppose out1(R,A) = ∅. First observe that out1(R ∪ {A�
⊥}, A′) ⊆ out1(R,A′) for all A′. (Because if X ∈ out1(R ∪ {A � ⊥},A′) then
X is computed from assumptions A′ using the non-constraint rules of R and
X |= R ∪ {A� ⊥}. Since X |= R, that means X ∈ out1(R,A′) also.)

It remains to show that out1(R,A′) ⊆ out1(R ∪ {A � ⊥},A′) for all A′.
Assume X ∈ out1(R,A′); we shall show X ∈ out1(R ∪ {A � ⊥},A′). Since
X ∈ out1(R,A′), there is a D in def (R) such that X = M(D,A′). We will prove,
first, that D is one of the definite programs of R ∪ {A� ⊥}, and second, that
X |= R ∪ {A� ⊥}. First, since de fr(A� ⊥) = {∅}, D ∈ def (R ∪ {A� ⊥}). So
D, as well as being one of the definite programs of R, is also one of the definite
programs of R∪ {A� ⊥}. Second, since X ∈ out1(R,A′), X |= R. We just need
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to show X |= A� ⊥. Since out1(R,A) = ∅, A 2 R by Proposition 2. Now, since
X |= R, A * X, hence X |= A� ⊥. These two claims entail, using Proposition
1, that X ∈ out1(R ∪ {A� ⊥},A′).

For the other direction: suppose out1(R,A) , ∅. We need to show that there
is some A′ such that out1(R∪ {A� ⊥}, A′) , out1(R,A′). Take A′ = A: clearly
out1(R ∪ {A� ⊥}, A) = ∅. ut

It is a corollary of the above that R is strongly inconsistent in KL1 if and
only if R |=KL1 >� ⊥. This was Proposition 4.

Now we are ready to prove what we want, that X is a (finite) violating set
of R precisely when X� ⊥ is KL2-entailed by R. Informally, if X is a (finite,
non-empty) violating set of R then

{X − {a}� a | a ∈ X} ⊆ aux(R)

And aux(R) ⊆ kl1(R ∪ C ∪ aux(R)). So straight away:

{X − {a}� a | a ∈ X} ⊆ kl2(R)

Now X � ⊥ ∈ kl2(R) because (for any non-empty finite set X of literals)
X� ⊥ is entailed in KL1(C) by X − {a}� a, any a ∈ X. Syntactically, that is
easy to see. It is just an instance of MUST-⊥:

B� c
B ∧ c� ⊥

which is a derived rule of KL1(C). Semantically, we want to confirm that
B ∧ c� ⊥ ∈ kl1({B� c} ∪ C). That is very easy (see proof below).

Proposition 8 Let R be a set of rules. If X is a finite violating set of R then:

X� ⊥ ∈ kl1(aux(R) ∪ C)

Proof If X = ∅ (∅ is a violating set of R) then {a} and {∼a} are also violating
sets of R, any atom a, and {>� a, >� ∼a} ⊆ aux(R). Clearly aux(R) ∪ C is
strongly inconsistent in KL1 and so aux(R) ∪ C |=KL1 >� ⊥ (Proposition 4).

Suppose X , ∅. If X is a (finite) violating set of R then {X − {a}� a |
a ∈ X} ⊆ aux(R). We show that X � ⊥ ∈ kl1(C ∪ aux(R)) by showing that
out1(C ∪ {X − {a}� a}), X) = ∅.

Consider any rule X − {a}� a, a ∈ X. Suppose, for contradiction, that
X′ ∈ out1(C∪ {X − {a}� a}), X). Then X′ ⊇ X and X′ |= C∪ {X − {a}� a}. In
order to satisfy X − {a}� a, X′ must contain a. But a ∈ X so X′ also contains
a, and X′ 6|= C. ut
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Remark The proof above shows that if ∅ is a violating set of R then aux(R)∪C
is strongly inconsistent in KL1. We can also show that if R ∪ C is strongly
inconsistent in KL1 then ∅ is a violating set of R. (Because then out1(R∪C,X) = ∅
for every set X of literals including every maximal consistent set X, and ∅
is thus a violating set of R.) The converse however is not true. Consider
R = {p � ⊥, ∼p � ⊥}. ∅ is a violating set of R but R is not strongly
inconsistent: out1(R, ∅) = {∅} , ∅.
Proposition 9 Let R be a set of rules and X a finite set of literals.

R |=KL2 X� ⊥ iff X is a violating set of R

Proof One half follows from the preceding result: if X is a (finite) violating set
of R then X� ⊥ ∈ kl1(C ∪ aux(R)); kl1(C ∪ aux(R)) ⊆ kl1(R ∪ C ∪ aux(R)) and
so X � ⊥ ∈ kl2(R). It remains to prove that if X � ⊥ ∈ kl2(R) then X is a
violating set of R. We will prove that if out1(R∪C∪ aux(R), X) = ∅ then X is a
violating set of R.

Consider any definite logic program DR in the encoding def (R) of R. Let
def (aux(R)) = {Daux} (all rules in aux(R) are� rules with singleton heads and
so there is a single definite program encoding aux(R)). M(DR ∪ Daux, X) |=
aux(R) so it must be that M(DR ∪Daux, X) 6|= R∪C, i.e., either M(DR ∪Daux, X)
is inconsistent or B ⊆M(DR ∪Daux, X) for some rule B� ⊥ in R.

If X is inconsistent then X is a violating set of R. If X is consistent then
consider any maximal consistent Xm ⊇ X. M(DR∪Daux, Xm) ⊇M(DR∪Daux, X),
and since Xm is maximal, Xm ⊇ M(DR ∪ Daux, Xm) ⊇ M(DR ∪ Daux, X). If
M(DR ∪ Daux, X) is inconsistent then so is Xm, and that cannot be. So B ⊆
M(DR∪Daux, X) for some rule B� ⊥ in R. But then B ⊆ Xm, and Xm 6|= R. ut

Note that according to the above, ∅ is a violating set of R if and only if
R |=KL2 >� ⊥.

Two refinements are immediately available.
First, any inconsistent set of literals is a violating set of any set R of rules.

(It has no consistent superset.) But an inconsistent set of literals contributes
nothing useful to aux(R). The inconsistent set {c,∼c} produces only the pair
{c � c, ∼c � ∼c} in aux(R). These are merely instances of MUST-ID. More
generally, an inconsistent set A ∪ {c,∼c} contributes the following rules to
aux(R):

right({A ∧ c ∧ ∼c� ⊥}) =


A ∧ c� c
A ∧ ∼c� ∼c
(A − {a}) ∧ c ∧ ∼c� a (all a ∈ A)

The first two rules are merely consequences of MUST-ID and MUST-SI. The
others are entailed by c ∧ ∼c� ⊥ in KL1 by MUST-SI and QUOD-LIBET. So if X
is an inconsistent set of literals, then right({X � ⊥}) ⊆ kl1(C): X contributes
nothing to out2(R,A) and can be ignored.

Second, if X is a violating set of R and X′ ⊇ X then X′ is also a violating
set of R. Moreover, every rule in right({X′� ⊥}) can be derived in KL1 from
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a rule in right({X� ⊥}). For suppose X′ = X ∪ Y, X and Y disjoint. Then the
rules in right({X′� ⊥}) are of the following two forms:

right({X ∪ Y� ⊥}) =

(X − {a}) ∪ Y� a (all a ∈ X)
X ∪ (Y − {a})� a (all a ∈ Y)

Rules in the first group are derived by MUST-SI from (X − {a}) � a. Rules in
the second group are derived from X � ⊥ by MUST-SI and QUOD-LIBET. So if
X′ ⊇ X then right({X′� ⊥}) ⊆ kl1(right({X � ⊥})). This means that in the
construction of aux(R) it is enough to consider the minimal violating sets of R.

Definition 9 Let R be a set of rules. Define:

auxm(R) = {A − {a}� a | A is a minimal consistent violating set of R, a ∈ A}
Proposition 10 Let R be a set of rules and A a set of literals.

auxm(R) ⊆ aux(R) ⊆ kl1(auxm(R) ∪ C)

and hence

out2(R,A) = out1(R ∪ C ∪ auxm(R), A)

Proof In the preceding discussion. ut
Note that if R ∪ C is strongly inconsistent then ∅ is the only minimal

consistent violating set of R. In that case auxm(R) = ∅ and out2(R,A) = out1(R∪
C,A) = ∅ for all sets A of literals. (The converse does not hold, as observed
earlier.)

Example 12
R = { >� p ∨ q, p ∧ q� ⊥ }

{∼p,∼q}, {p, q} are the only minimal consistent violating sets of R. (There are
other violating sets, but they are either inconsistent or non-minimal.)

auxm(R) =

{∼p� q p� ∼q
∼q� p q� ∼p

}
out2(R, ∅) = out1(R ∪ C ∪ auxm(R), ∅) = {{p,∼q}, {q,∼p}}

Example 13
R = { p ∧ q� ⊥, ∼p ∧ q� ⊥ }

{q}, {p, q}, {∼p, q} are consistent violating sets of R. (There are others.) {q} is the
only minimal consistent violating set.

auxm(R) = { >� ∼q }
out2(R, ∅) = out1(R ∪ C ∪ auxm(R), ∅) = {{∼q}}
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Example 14
R = { p� q, p� r, q ∧ r� ⊥ }

{p}, {p, q}, {p,∼q}, {p, r}, {p,∼r}, {p, q, r}, {p, q,∼r}, {p,∼q, r}, {p,∼q,∼r}, {q, r},
{∼p, q, r} are consistent violating sets of R. (There are others.) {p} and {q, r}
are the minimal violating sets.

auxm(R) = { >� ∼p, q� ∼r, r� ∼q }
out2(R, ∅) = out1(R ∪ C ∪ auxm(R), ∅) = {{∼p}}

out2(R, {q}) = out1(R ∪ C ∪ auxm(R), {q}) = {{∼p, q,∼r}}
Finally we confirm that out2(R,A) is well-defined for non-empty sets A of

assumptions.

Proposition 11 Let R be a set of rules and A a set of literals.

out2(R,A) = out2(R ∪ {>� a | a ∈ A}, ∅)
Proof The result follows from the previous minimality result. It is enough to
consider a singleton set of assumptions A = {a}. The general result follows by
repeated application.

If R∪{>� a}∪C is strongly inconsistent the result holds trivially. Suppose
it is not strongly inconsistent. We need to show that:

out1(R ∪ {>� a} ∪ C ∪ aux(R ∪ {>� a})) = out1(R ∪ {>� a} ∪ C ∪ aux(R))

We will show that auxm(R ∪ {>� a}) = auxm(R) ∪ {>� a}.
Clearly {a} and all violating sets of R are violating sets of R ∪ {>� a}.

Further, right(a� ⊥) = {>� a}. So aux(R) ∪ {>� a} ⊆ aux(R ∪ {>� a}).
Now (assuming R∪ {>� a} ∪C is not strongly inconsistent) {a} is a minimal
consistent violating set of R∪{>� a}. If X is a minimal consistent violating set
of R and a ∈ X then X is not a minimal consistent violating set of R∪{>� a};
if a < X then X is a minimal consistent violating set of R ∪ {> � a}. So
auxm(R ∪ {>� a}) = auxm(R) ∪ {>� a}. ut

4.4 An alternative characterisation of out2

It is possible to construct alternative, equivalent characterisations of the aux-
iliary rules aux(R). The following will be used in discussions of KL3 to come
and for completeness of KL2.

Observation 1 X is a violating set of R iff X is a violating set of rules R⊥∪must⊥(R)
where R⊥ is the set of constraint rules of the form B� ⊥ in R and must⊥(R) is the
set of rules obtained by applying MUST-⊥ to the rules in R:

must⊥(R) = {B ∧ c1 ∧ . . . ∧ ck � ⊥ | (B� c1 ∨ . . . ∨ ck) ∈ R}
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Observation 2 Let R1 and R2 be sets of rules. If X is a violating set of R1 ∪R2 then
X ⊆ X1 ∪ X2 for some X1 and X2 such that X1 is a violating set of R1 and X2 is a
violating set of R2.

The following is a derived rule of KL2:

REDUCE-⊥ B ∧ c� ⊥ B ∧ ∼c� ⊥
B� ⊥

Its derivation requires ∼-RIGHT and so it is an inference rule of KL2 not of
KL1(C). We can also give a semantic justification by appeal to violating sets.
If B ∪ {c} and B ∪ {∼c} are both violating sets of R then clearly so is B.

The following more general rule is also easily derived in KL2:

RESOLVE-⊥ A ∧ c� ⊥ B ∧ ∼c� ⊥
A ∪ B� ⊥

Semantically, if A∪{c} and B∪{∼c} are both violating sets of R then so is A∪B.
(We cannot extend consistently by either c or ∼c.) These rules will feature
prominently in KL3 and we will present their derivation there.

We can reformulate RESOLVE-⊥ as a rule applying to violating sets, exactly
as stated in the semantic argument. We will call that V-RESOLVE.

Definition 10 Let Γ be a set of sets of literals, where each component set of
literals is a violating set. Then V-RESOLVE(Γ) = Γ∪{A∪B | A∪{a} ∈ Γ,B∪{a} ∈ Γ}.

Now we shall use V-RESOLVE to provide an alternative version of aux,
called auxm which provides the minimal set of auxiliary rules that are needed
to derive all the consequences we want.

Definition 11

v(R) = {B ∪ C | B� C ∈ R, B ∪ C consistent}

(As observed earlier, that also covers the case of constraint rules, where C = ∅.)
v(R) are all consistent violating sets of R (though there may be others). Now
define v∗(R) as the closure of v(R) under V-RESOLVE. Let v∗m(R) be the set of the
minimal elements of v∗(R). Assuming the construction is complete (see below)
we define auxm as follows:

auxm(R) = {A − {a}� a | A ∈ v∗m(R), a ∈ A}

We could reformulate RESOLVE-⊥ so that it does not generate rules with
inconsistent bodies and V-RESOLVE so that inconsistent sets are discarded. We
could also make the computation of v∗(R) more efficient by discarding non-
minimal elements as soon as they are constructed during the computation of
the closure v∗(R). These are details.
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Example 15
R = { p ∧ q� ⊥, p ∧ ∼q� ⊥ }

v(R) = {{p, q}, {p,∼q}}
v∗(R) = {{p, q}, {p,∼q}, {p}}

v∗m(R) = {{p}}
auxm(R) = { >� ∼p }

Example 16
R = { p� q, p� r, q ∧ r� ⊥ }

v(R) = {{p,∼q}, {p,∼r}, {q, r}}
v∗(R) = v(R) ∪ {{p, r}, {p, q}, {p}}

v∗m(R) = {{p}, {q, r}}
auxm(R) = { >� ∼p, q� ∼r, r� ∼q }

Example 17
R = { p ∧ q� r, p ∧ ∼q� r, p ∧ r� ⊥ }

v(R) = {{p, q,∼r}, {p,∼q,∼r}, {p, r}}
v∗(R) = v(R) ∪ {{p,∼r}, {p, q}, {p,∼q}, {p}}

v∗m(R) = {{p}}
auxm(R) = { >� ∼p }

Now we can define an alternative set of auxiliary rules auxe(R) to be used
in out2(R,A) that will be useful in establishing completeness and in KL3.

Definition 12 For all rule sets R, let:

auxe(R) = {A − {a}� a | A ∈ v∗(R), a ∈ A}
In order to use auxe(R) in the computation of out2(R,A), and to preserve

semantic entailment |=KL2 , it is not necessary that auxe(R) generates all elements
of aux(R) – only that it generates at least all minimal elements auxm(R) of aux(R)
and nothing that is not in aux(R).

Proposition 12 Let R be a set of rules and X a set of literals. If X is a violating set
of R and X < v∗(R) then either X is inconsistent or there exists X′ ⊂ X such that
X′ ∈ v ∗ (R).

Proof By induction on the number of rules in R, and Observation 2. ut
This does not say that all elements of v∗(R) are consistent or minimal, but only
that all minimal consistent violating sets of R are elements of v∗(R), which is
all we need.

Clearly auxm(R) ⊆ auxe(R). Further, since the set of all violating sets of R
is closed under V-RESOLVE, auxe(R) ⊆ aux(R). We also have (Proposition 10)
aux(R) ⊆ kl1(auxm(R) ∪ C). Putting these observations together gives the fol-
lowing.
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Proposition 13 Let R be a set of rules.

auxm(R) ⊆ auxe(R) ⊆ aux(R) ⊆ kl1(auxm(R) ∪ C)

and hence

kl1(R ∪ C ∪ aux(R)) = kl1(R ∪ C ∪ auxe(R))

Now we shall provide an alternative characterisation of auxe(R) in terms
of inference rules of KL2.

Definition 13 Let right+(R) denote the results of applying inference rule
∼-RIGHT to rules R keeping only those rules whose bodies are consistent:

right+(R) = {A − {a}� a | A� ⊥ ∈ R, A is consistent, a ∈ A}

Let resolve∗⊥(R) denote the closure of rules R under derived rule RESOLVE-⊥,
i.e., the closure of R under:

resolve⊥(R) = {B ∪ B′� ⊥ | B ∧ c� ⊥ ∈ R,B ∧ c� ⊥ ∈ R}

Let must⊥(R) denote the application of derived rule MUST-⊥ to R:

must⊥(R) = {B ∪ C� ⊥ | B� C ∈ R}

Now we can provide an alternative characterisation of auxe:

Proposition 14 Let R be a set of rules.

auxe(R) = right+(resolve∗⊥(R ∪must⊥(R)))

Proof This follows from the definitions. must⊥(R) is the set of constraint rules
implied by rules of the form B� C (C , ∅) in R. R may also contain constraint
rules of the form B� ⊥. So (by definition) X ∈ v(R) when X � ⊥ is a rule
in R ∪ must⊥(R) and X is consistent. X ∈ v∗(R) when X � ⊥ is a rule in
resolve∗⊥(R ∪ must⊥(R)) and X is consistent. So auxe(R) = right+(resolve∗⊥(R ∪
must⊥(R))). ut

Now this is going to be used in establishing completeness, because all
the inference rules used in the construction of auxe(R) are (derived) inference
rules of KL2.
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4.5 Soundness and completeness

The inference rules of KL2 are those of KL1 together with ∼-LEFT and ∼-RIGHT.
We write deriv2(R) to denote the set of rules that can be derived from the set
R of rules by repeated application of the inference rules of KL2. We write
R `KL2 r if r ∈ deriv2(R).

Proposition 15 (Soundness of KL2) For all sets R of rules:

deriv2(R) ⊆ kl2(R)

Proof We need to show soundness of the inference rules of KL1, ∼-LEFT and
∼-RIGHT with respect to semantic entailment in KL2. Since kl2(R) = kl1(R∪C∪
aux(R)) (Proposition 6) and KL1 is sound with respect to kl1, the soundness of
KL1 inference rules is immediate. Soundness of ∼-LEFT is just C ⊆ kl2(R) which
also follows trivially.

It remains to show that ∼-RIGHT is sound: if r ∈ right(R) then R |=KL2 r, or
more generally, that right(R) ⊆ kl2(R). We want to show:

right(R) ⊆ kl1(R ∪ C ∪ aux(R))

We will show that right(R) ⊆ aux(R) (which implies the above). In full: if
r ∈ right(R) then r is a rule of the form B � c where B ∧ c � ⊥ is a rule in
R. In that case B∪ {c} is a (not necessarily minimal or consistent) violating set
of R, and aux(R) contains the rule B� c. ut

We would expect that if KL1 is complete with respect to out1 then KL2 is
complete with respect to out2. That is indeed the case.

Proposition 16 (Completeness of KL2) If KL1 is complete with respect to out1
then KL2 is complete with respect to out2. That is: if, for all sets R of rules kl1(R) ⊆
deriv1(R) then, for all sets R of rules kl2(R) ⊆ deriv2(R).

Proof

r ∈ kl2(R) ⇒ r ∈ kl1(R ∪ C ∪ aux(R))
⇒ r ∈ kl1(R ∪ C ∪ auxe(R)) (Proposition 13)
⇒ r ∈ deriv1(R ∪ C ∪ auxe(R)) (completeness of KL1)
⇒ r ∈ deriv2(R)

The final step is because all the inference rules used in the construction of
auxe(R) in Proposition 14 are inference rules of KL2. ut

Proposition 17 (Decomposition of KL2) If KL1 is complete with respect to out1
then

deriv2(R) = deriv1(R ∪ C ∪ auxe(R))
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Proof Right-in-left inclusion is noted in the proof of Proposition 16. The other
inclusion is similar:

r ∈ deriv2(R) ⇒ r ∈ kl2(R) (soundness of KL2)
⇒ r ∈ kl1(R ∪ C ∪ aux(R))
⇒ r ∈ kl1(R ∪ C ∪ auxe(R)) (Proposition 13)
⇒ r ∈ deriv1(R ∪ C ∪ aux(R)) (completeness of KL1)

ut

4.6 Conservative extension

We have established that:

kl2(R) = kl1(R ∪ C ∪ aux(R))
deriv2(R) = deriv1(R ∪ C ∪ auxe(R))

One can see that KL2 is a conservative extension of KL1, both semantically
and syntactically.

Proposition 18 (Conservative extension) KL2 is a conservative extension of KL1:
If R is a set of rules containing no negative literals, and rule r also contains no negative
literals, then r ∈ kl2(R) iff r ∈ kl1(R), and r ∈ deriv2(R) iff r ∈ deriv1(R).

We can see this claim is true by looking at the aux(R) construction: if R
contains no negative literals, then all violating sets of R are sets of atoms. All
the rules in aux(R) are therefore rules with singleton heads where the head
is a negative literal and the body contains only positive atoms, i.e., rules of
the form B � ∼c where c is an atom and B is a set (possibly empty) of
atoms. Any rule r containing only positive atoms can only be derived from
R ∪ aux(R) (syntactically or semantically) if it can be derived from the rules
R. The constraint rules C have no effect if neither R nor the entailed rule r
contain negative literals.

Indeed, KL1(C) is a conservative extension of KL1 and KL2 is a conservative
extension of KL1(C). kl1(R∪C) is a conservative extension of kl1(R) and kl2(R)
is a conservative extension of kl1(R ∪ C).

KL2 can also be seen as a conservative extension of KL1 in the following
rather different sense. Given a set X of literals, let X+ be the largest subset of
X containing only positive literals. In other words, let X+ be the set of atoms
obtained by removing all negative literals from X. If∆ is a set of sets of literals,
let ∆+ = {X+ | X ∈ ∆}.
Proposition 19 Let R be a set of rules and A a set of assumptions, both containing
no negative literals. Then:

out2(R,A)+ = out1(R,A)
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Proof We can see this again by looking at the rules in aux(R): if R contains
no negative literals, all rules in aux(R) are of the form B � ∼c where c and
all of B are atoms. These rules have no effect on the outcomes computed
from R except possibly to add negative literals. This is clear if we look at
the translation to definite logic programs: every definite program D in the
encoding def (R ∪ C ∪ aux(R)) has the form DR ∪ Daux where DR ∈ def (R)
and def (aux(R)) = {Daux} (all rules in aux(R) are � rules with singleton
heads and so there is a single definite program encoding aux(R)). Moreover,
since none of the heads of clauses in Daux appear in DR the least model
M(DR ∪ Daux,A) = M(DR,M(Daux,A)) (indeed that is true whether the set A
of assumptions contains negative literals or not). If A contains no negative
literals, then this least model also satisfies the constraints C. ut

In other words: out2 does not add or remove from the set of solutions to
out1 – all it does is possibly add some negative literals to the existing solutions.

Example 18 Let R = { p� q, p� r, q ∧ r� ⊥}. Then out2(R) = {{∼p}} and
out1(R) = {∅}.

4.7 Entailments

Some examples of entailments and non-entailments are given in Table 2. Note
that the rule corresponding to the law of excluded middle (>� p ∨ ∼p) is
not a theorem of KL2.

Table 2: Some entailments and non-entailments in KL2

Entailments Non-entailments
{} |=KL2 p ∧ ∼p� q {} 2KL2 >� p ∨ ∼p
p� ⊥ |=KL2 >� ∼p p ∧ q� ⊥ 2KL2 >� ∼p ∨ ∼q
p� q |=KL2 p� q ∨ ∼q p� q 2KL2 p� q ∨ r
p� q |=KL2 ∼q� ∼p p� q 2KL2 ∼p� ∼q
∼q� ∼p |=KL2 p� q ∼p� ∼q 2KL2 p� q
>� ∼p ∨ q |=KL2 p� q p� q 2KL2 >� ∼p ∨ q

4.8 Concluding remarks on negation

The treatment of negation in KL2 derives from two starting assumptions: that
complementary literals c and ∼c are mutually incompatible (∼-LEFT), and that
the negation of c is the most general proposition that is incompatible with c (∼-
RIGHT). These two assumptions embedded in KL1 produce a form of negation
in which the rules B ∧ c � ⊥ and B � c turn out to be equivalent33. It is

33 This equivalence only holds at the propositional level. We shall see in Section 5.1 below that
the two rules are not equivalent when one of them contains existentially quantified variables.



42 R. Evans et al.

possible to devise some more elaborate technical constructions which weaken
this equivalence, such that the rule B� c entails B∧ c� ⊥ but not the other
way round. We have not presented any such alternatives here. The technical
constructions are not difficult but we have not found support for them in
Kant’s writings.

5 KL3: extending KL2 with variables and quantifiers

KL3 extends KL2 by adding quantified rules to KL2, including rules in which
the head may have existentially quantified variables. In KL3, an atom has
internal structure; it is composed of a predicate and a list of terms.

Given a set P of predicate symbols with associated arities34:

P+/− = P ∪ {∼p | p ∈ P}
The negation of a predicate p means ”un-p”. For example, ∼clear means “un-
clear”. The formula p(x)� ∼q(x) does not mean “if p(x) then do not subsume
x under q!”. Rather, it means: “if p(x) then do subsume x under un-q!”.

Given a set P+/− of predicate symbols, a setK of constants, and a set X of
variables, the set LK of ground literals is:

LK ::= {p(k1, . . . , kn) | p ∈ P+/−, ki ∈ K , arity(p) = n}
The set LX of unground literals is:

LX ::= {p(x1, . . . , xn) | p ∈ P+/−, xi ∈ X, arity(p) = n}
The set L of literals is:

L ::= {p(t1, . . . , tn) | p ∈ P+/−, ti ∈ K ∪ X, arity(p) = n}
Note that predicates of arity 0 are allowed. A literal of arity 0 is both a
grounded literal and an ungrounded literal.

In what follows, constants and variables are written in lower case. Con-
stants are a, b, c, while variables are x, y, z, possibly with subscripts. To avoid
cluttering the syntax, we take it to be obvious from context whether a, b, c are
to be read as constants or as ranging over literals.

Note that both LK and LX are proper subsets of L, and there are literals
in L that are not in LK nor LX: any literal that contains a mixture of variables
and constants is in neither LK nor LX. p(x, k) is not in LK nor in LX.

In KL3, rules are made up entirely of unground literals from LX. No constants
are allowed in any of the literals in any of the rules. This is essential. Since rules
are intended to be public and shareable between agents, while intuitions are
private mental objects, rules must not contain constants (intuitions) or they
would not be public (see Section 2.2).

34 Some commentators believe Kant’s logic only allowed monadic predicates. But [1] and [2]
argue convincingly that Kant always had n-ary predicates in mind.
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There are two forms of rule in KL3, as in KL1 and KL2 but with B and C
ranging over sets of unground literals from LX:

R ::= B� C | B� C

Variables that appear in both the body and the head of a rule are read as
universally quantified. For example, p(x) � q(x) means: “for any x, if you
perform p(x), then you must perform q(x)!”. Variables that appear in the head
but not in the body are existentially quantified35. For example, p(x)� q(x, y)
means: “for any x, if you perform p(x), then you may construct a y and
perform q(x, y)!”. p(x) � q(x, y) means: “for any x, if you perform p(x), then
you must construct a y and perform q(x, y)!”. To emphasise this reading, we
write such rules with explicit existential quantifiers in the head, as in e.g.
p(x)� ∃y q(x, y) and p(x)� ∃y q(x, y).

A rule such as p(x) � q(x, y) ∨ r(x, y) where there is a shared variable y
in the head can be read either as p(x)� ∃y (q(x, y) ∨ r(x, y)) or (equivalently)
as p(x) � ∃y q(x, y) ∨ ∃y r(x, y). Notice that the latter is also equivalent to
p(x)� ∃y q(x, y) ∨ ∃z r(x, z), and therefore to the rule p(x)� q(x, y) ∨ r(x, z)
without explicit quantifiers.

As explained below, however, for simplicity of presentation and for prac-
tical reasons we will restrict the language so that existential rules have only
singleton heads. This does not restrict the expressive power of the language.

5.1 Preliminaries

Where θ is a substitution (an assignment of variables and/or constants to
variables) and c is a literal, the expression c.θ denotes the application of θ to
c. Where C is a set of literals C.θ = {c.θ | c ∈ C}. A substitution θ is ground
when all variables in θ are assigned to constants. Where C is a set of unground
literals and C.θ are ground literals we say that C.θ is a ground instantiation
of C.

Example Suppose θ = {x/a} and θ′ = {y/b}. Then

p(x).θ = p(a)
q(x, y).θ.θ′ = q(a, y).θ′ = q(a, b)

Suppose θ = {x/a, y/b, z/c} and θ′ = {} (the identity substitution). Then

p(x).θ = p(a)
q(x, y).θ.θ′ = q(a, b).θ′ = q(a, b)

35 Rules with existentials in the head are common in geometric logic [14] (also known as
coherent logic [5,6]), existential datalog [11], and in agent languages [35]. See Section 5.5 for
further comparison.
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Definition 14 A set X of ground literals satisfies a set of rules R, written
X |= R, when X satisfies every rule in R. X satisfies a rule r, written X |= r,
when:

X |= B� C if for every ground instantiation B.θ of B, if B.θ ⊆ X then
there exists a ground instantiation C.θ.θ′ of C.θ such that
C.θ.θ′ ∩ X , ∅

X |= B� C always

Note in the above that if there are no existential variables in the head C of
a rule B � C then C.θ is ground and θ′ is the identity substitution. If there
are existentially quantified variables in C and θ instantiates all the variables
in C to constants (i.e., if C.θ is already a ground instantiation of C) then θ′ is
the identity substitution.

Rules in KL3 are quantified and unground. Leaving aside rules with ex-
istential heads, it is clear that formally all ground instances of KL3 rules are
– syntactically and semantically – rules of KL2 where the positive ground
literals of KL3 are treated as positive literals (atoms) of KL2, and negative
ground literals of KL3 as negative literals of KL2, i.e., as atoms prefixed by the
negation operator. We can see that, for rules without existential heads:

X |= B� C if X |= B.θ� C.θ for every ground instantiation B.θ of B
X |= B� C always

Universally quantified rules without existentially quantified heads behave
exactly in KL3, syntactically and semantically, as the set of all their ground
instances in KL2.

Rules with existentially quantified heads however are a different kind of rule
and have to be treated specially. Consider the very simplest example:

p� ∃x q(x)

At first sight it might seem that this rule cannot be violated, that there
is (apparently) no consistent violating set because we can always extend a
(consistent) set of ground literals by finding a new candidate q(ki) atom.

But that is not so. The set {p,∼q(a0),∼q(a1), . . . } (infinitely many ∼q(ai)
literals) is a violating set, as are all of its supersets. Ordinarily, in the semantics
adopted for negation in KL2, if X is a violating set of rule set R then R entails the
rule X� ⊥. That does not work here: X in this example would represent an
infinite conjunction, which is not well-formed. Put another way, the derived
inference rule MUST-⊥ which we rely on in the construction of auxe(R) in KL2,
would look as follows:

p� ∃x q(x)
p ∧ ∼q(x)� ⊥

That rule does not hold for existential rules. The quantification is wrong. To
make it valid we would need

p� ∃x q(x)
p ∧ ∼∃x q(x)� ⊥
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but the consequent is not an allowed rule form in KL3.
What about ⊥-RIGHT? Could the following be valid?

p ∧ q(x)� ⊥
p� ∃x∼q(x)

Clearly not. “You must not perform p and q(x) for any x!” should not imply
“if you perform p you must also construct an x and perform ∼q(x)!”. For KL3
we will need a restricted form of ⊥-RIGHT, as discussed in the next section. For
example, the following inference is valid:

p ∧ ∼q(x)� ⊥
∼q(x)� ∼p

Further, notice that the following rules>� ∃x q(x)
q(x)� ⊥

are strongly inconsistent (with the obvious definition). And that the following
pair p� ∃x q(x)

q(x)� ⊥
is weakly inconsistent and has a violating set {p}.

Now this is key, because we will want to construct a set auxq
e (R) of auxiliary

rules for KL3 in analogy to the construction of auxe(R) in KL2. auxe(R) employs
a combination of MUST-⊥, to derive constraint rules from non-constraint rules,
and then RESOLVE-⊥ to process constraint rules. That is not available here –
we do not have MUST-⊥ for existential rules. For existential rules we need (the
general form of) the following inference rule, a generalisation of the example
above:

A� ∃x q(x) B ∧ q(x)� ⊥
A ∪ B� ⊥

In the next section we will call the general form of the above inference rule
EXISTS-⊥. In KL2 its propositional analogue can be derived from MUST-⊥ fol-
lowed by an application of RESOLVE-⊥. In KL3 it can be given a semantic
justification in terms of violation sets, as sketched above for the example. It is
also derivable from the inference rules for KL3 to be presented in the next sec-
tion – however, as we show there, the derivation imposes certain restrictions
on variables that limit its applicability in KL3. Similarly, we are also going
to need the KL3 analogue of RESOLVE-⊥; its derivation likewise will impose
certain restrictions in order to deal correctly with quantifiers.

For ease of exposition, we restrict attention to the special case of existential
rules with singleton heads. Note that this restriction causes no loss of expres-
sive power: we can express rules with existentially quantified disjunctive
heads by introducing auxiliary predicates if necessary.

In summary we have:
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– universally quantified rules without existentially quantified heads; they
have exactly the same meaning – the same semantics and inference rules
– as sets of all their ground instances in KL2;

– inference rules for converting existential rules to constraint rules, which
we can justify by appeal to violation sets, and which are derivable from the
inference rules for KL3 to be presented in the next section. The inference
rule EXISTS-⊥ for existential rules with singleton heads is simple.

5.2 Inference Rules

The inference rules for KL3 are provided in Figure 5. As explained above,
for simplicity we deal only with the case of universally quantified rules and
existential rules with singleton heads. In Figure 5, a, b, c range over unground
literals, and A, B, C, A′, B′, C′ range over sets of unground literals. The
inference rules are of two types: those that are valid for all rules, and those that
are valid only for universally quantified rules without existential variables in
the head. In the figure they are distinguished by specifying restrictions on
variables.

SUB-1 and SUB-2 are specific to KL3. They allow the uniform replacement of
variables by variables, enabling, for example, the inference from p(x)� q(x)
to p(y) � q(y). In SUB-1 and SUB-2, the substitution θ must be injective on
the existential variables (the variables in B −A). Without this restriction, they
would allow the inference from p(x)� ∃y q(x, y) to p(x)� q(x, x), which is
invalid.

In MUST-SI and MAY-SI, the new literals in A′ − A must not bind any of the
existential variables in B − A. Without this restriction, we would be able to
infer from p(x)� ∃y q(x, y) to p(x) ∧ r(y)� q(x, y), which is invalid.

In ∼-RIGHT, we insist that var(c) ⊆ var(B). Without this restriction, we would
be able to infer wrongly from p(x) ∧ q(x, y)� ⊥ to p(x)� ∃y∼q(x, y).

Figure 6 shows three derived inference rules. They will be used, as in KL2,
in the construction of auxiliary rules auxq

e (R) used in the definition of the out
function for KL3.

MUST-⊥was used in KL2. It is valid for universally quantified rules without
existentially quantified heads but not for rules with existentially quantified
heads. Its derivation is presented below in order to show how the restrictions
on variables are inherited from MUST-SI. For brevity we only show the deriva-
tion for the special case of a rule with singleton head. The derivation of the
general form is easily reconstructed.

B� c
MUST-SI var(c) ⊆ var(B)

B ∧ c� c

∼-LEFT
c ∧ c� ⊥

MUST-SI
B ∧ c ∧ c� ⊥

MUST-TRANS
B ∧ c� ⊥

EXISTS-⊥, also discussed informally in the previous section, gives the con-
ditions under which we can derive a universally quantified constraint rule
from an existential rule. We present only the version for existential rules with
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SUB-1
A� B

A.θ� B.θ
when θ injective on var(B − A)

SUB-2
A� B

A.θ� B.θ
when θ injective on var(B − A)

MUST-ID
−

A� A
A , ∅ MUST-UNION

A� B A� C
A� B ∪ C

MUST-SI
A� B
A′� B

A ⊂ A′, var(A′ − A) ∩ var(B − A) = ∅

MUST-TRANS
A� b1 ∨ . . . ∨ bn A ∧ b1 � C . . . A ∧ bn � C

A� C

QUOD-LIBET
A� ⊥
A� B

MAY-ID
−

A� A
MAY-UNION

A� B A� C
A� B ∪ C

MAY-SI
A� B
A′� B

A ⊂ A′, var(A′ − A) ∩ var(B − A) = ∅

MAY-TRANS
A� b1 ∨ . . . ∨ bn A ∧ b1 � C . . . A ∧ bn � C

A� C
if for every c ∈ C, A ∧ c� bi for some bi ∈ {b1, . . . , bn}

MAY-SO
A� B
A� B′

B′ ⊂ B

MAY-MUST
A� B
A� B

MAY-FALSUM
A ∧ b� ⊥

A� b

∼-LEFT
−

c ∧ ∼c� ⊥ ∼-RIGHT
A ∧ b� ⊥

A� b
var(b) ⊆ var(A)

Fig. 5: Inference rules for KL3

singleton heads. The rule can be justified semantically, by reference to viola-
tion sets, and also derived from the inference rules in Figure 5: the derivation
uses MUST-SI and MUST-TRANS and for this reason EXISTS-⊥ inherits restrictions
on variables from MUST-SI. Notice in particular that none of the existentially
quantified variables in A� c may appear in the literals B of B ∧ c� ⊥.
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MUST-⊥ A� C

A ∪ C� ⊥
var(C) ⊆ var(A)

EXISTS-⊥ A� c B ∧ c� ⊥
A ∪ B� ⊥ (var(c) − var(A)) ∩ var(B) = ∅

RESOLVE-⊥ A ∧ c� ⊥ B ∧ c� ⊥
A ∪ B� ⊥ var(c) ⊆ var(A) or var(c) ⊆ var(B)

Fig. 6: Three derived inference rules of KL3

A� c
MUST-SI (var(c) − var(A)) ∩ var(B) = ∅

A ∪ B� c
B ∧ c� ⊥

MUST-SI
(A ∪ B) ∧ c� ⊥

MUST-TRANS
A ∪ B� ⊥

RESOLVE-⊥was introduced in its quantifier free form in the section on KL2.
Although it deals with universally quantified constraint rules its derivation
relies on EXISTS-⊥ and ∼-RIGHT from which it inherits restrictions on variables:

A ∧ c� ⊥∼-RIGHT var(c) ⊆ var(A)
A� c B ∧ c� ⊥

EXISTS-⊥
A ∪ B� ⊥

(and the symmetric form, which gives the variable restrictions quoted for
RESOLVE-⊥ in Figure 6).

5.3 Semantics

A set of ground literals is consistent when it contains no complementary pair
of literals p(k1, . . . , kn) and ∼p(k1, . . . , kn). Violation sets (sets of ground literals)
are defined as in KL2.

Given a (countable but not necessarily finite) set R of rules and a (finite)
set A of ground literals, the consequences out3(R,A) are defined, as in KL2, in
terms of a set auxq

e (R) of additional rules representing the consequences of the
inference rules for negation, ∼-LEFT and ∼-RIGHT. We will have:

out3(R,A) = outq
1(R ∪ CP ∪ auxq

e (R), A)

CP is the set of rules corresponding to ∼-LEFT:

{p(x1, . . . , xn) ∧ ∼p(x1, . . . , xn)� ⊥ | p ∈ P, xi ∈ X, arity(p) = n}
As usual we omit the subscript Pwhen it is obvious from context.

outq
1(R,A) is the set of all possible outcomes obtained by applying the

rules in R to the assumptions A. Each element of outq
1(R,A) is a set (finite if R
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is finite) of ground literals. The definition is essentially the same as for KL1
but adjusted to deal with variables in rules.

Notice that since R is a set of unground rules with variables and A is a set of
grounded literals, it is no longer the case that assumptions A can be replaced
by ‘facts’ (unconditional� rules with singleton head). An expression>� a
where a is a grounded literal is not a valid rule in KL3 (unless a is a 0-ary term).

Definition 15 Let R be a set of KL3 rules and A a set of ground literals.

outq
1(R,A) = {X ∈ cnsq(R,A) | X |= R}

cnsq
0(R,A) = {A}

cnsq
n+1(R,A) = {X ∪ {t} | X ∈ cnsq

n(R,A), t ∈ stepq(R,X)}
cnsq(R,A) =

⋃
n≥0

cnsq
n(R,A)

stepq(R,X) = {c.θ | B� C ∈ R or B� C ∈ R, B.θ ⊆ X, c ∈ C, c.θ is ground}
The stepq function takes a set of rules and a set of ground literals and

produces all the ground literals that can be inferred in a single step using a
single rule from R. stepq is exactly like the step function in the definition of
cns and out1 for KL1, except for the need to instantiate variables in rules to
constants in the ground literals of argument X. The substitution θ can include
new fresh constants that do not appear in A that can serve as witnesses for
existentially quantified variables.

Example 19 Suppose R = {p(x)� ∃y q(x, y)} and A = {p(a)}.

stepq(R,A) = {q(a, a), q(a, ν0), q(a, ν1), . . . }

Here, ν0 and ν1 are new fresh constants. We assume we have an infinite stock
of such constants ν0, ν1, . . . .

auxq
e (R) is defined analogously to auxe(R) in KL2. For rules without exis-

tential heads this will be exactly as for KL2 with universal rules treated as
standing for the set of their ground instances. The additional ingredient for
existential rules is an application of the inference rule EXISTS-⊥ as discussed
informally in the previous section.

Definition 16 Let R be a set of KL3 rules. must⊥(R), resolve∗⊥(R) and right+(R)
are the three derived rules in Figure 6, defined as for KL2 (and in accordance
with the relevant KL3 variable restrictions). Let exists∗⊥(R) denote the closure
of rules R under EXISTS-⊥. Define:

auxq
e (R) = right+(resolve∗⊥(exists∗⊥(R ∪must⊥(R))))
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R∪auxq
e (R) is the closure of R under RIGHT-∼, EXISTS-⊥ and MUST-⊥. In auxq

e (R)
it is sufficient to perform a single application of MUST-⊥, which deals with non-
existential rules, and then the closure under EXISTS-⊥ and RESOLVE-⊥. The latter
can be done in two separate steps, first the closure under EXISTS-⊥ and then the
closure under RESOLVE-⊥. This is because (as was shown earlier) RESOLVE-⊥ is
derivable as RIGHT-∼ followed by EXISTS-⊥: resolve⊥(R) = exists⊥(R ∪ right(R))
for any R. resolve⊥(R), for any R, is already closed under exists⊥.

Example 20 Suppose:

R =

p(x)� q(x)
>� ∃x∼q(x)

A = {}

Then

auxq
e (R) =


p(x)� q(x)
∼q(x)� ∼p(x)
p(x) ∧ ∼q(x)� ⊥

out3(R,A) =


{∼p(ν0),∼q(ν0)},
{∼p(ν0),∼q(ν0),∼p(ν1),∼q(ν1)},
{∼p(ν0),∼q(ν0),∼p(ν1),∼q(ν1),∼p(ν2),∼q(ν2)},
. . .

Note that the existentially quantified variable x in the rule > � ∃x∼q(x)
of R appears in the body of the inferred constraint rule p(x) ∧ ∼q(x) � ⊥
of auxq

e (R). The variable restrictions in EXISTS-⊥ however do not sanction the
inference of the rule p(x)� ⊥.

5.4 Equality

We add an extra binary logical operator ,. The expression x , y does not
represent the act of subsuming x and y under the mark of inequality. Rather,
, is a testing operator that is different from the act of subsumption: to test if
x , y is just to see whether the denotations of x and y are distinct. Expressions
of the form x , y can appear only in the body of a rule; x and y must be
variables appearing in the body.

One can think of a rule as having two distinct components (T, r) where r is
an expression of the form B � C or B � C, and T is a set, possibly empty,
of , tests on variables appearing in B. However, for readability, we allow the
inequality tests in T to be written in the body of a rule as if they were atoms.
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Example 21 Suppose R = {p(x)� ∃y q(x, y)} and A = {p(a)}.

out3(R,A) =



{p(a), q(a, a)}
{p(a), q(a, ν0)}
{p(a), q(a, a), q(a, ν0)}
{p(a), q(a, ν0), q(a, ν1)}
. . .

If we add an extra rule containing,, then we can constrain the set of witnesses.

R =

p(x)� ∃y q(x, y)
q(x, y) ∧ q(x, z) ∧ y , z� ⊥

A = {p(a)}

out3(R,A) =



{p(a), q(a, a)}
{p(a), q(a, ν0)}
{p(a), q(a, ν1)}
{p(a), q(a, ν2)}
. . .

Note that ⊥-RIGHT does not allow us to infer from the rule q(x, y) ∧
q(x, z) ∧ y , z � ⊥ in R to the rule q(x, z) ∧ y , z � ∼q(x, y). In the
(T, r) representation described above, that would be an inference from ({y ,
z}, q(x, y) ∧ q(x, z) � ⊥) to ({y , z}, q(x, y) � ∃z q(x, z) ), which does not
satisfy the variable restrictions of ⊥-RIGHT.

To handle inequality, we modify what it means for a set X of ground literals
to satisfy the body of a rule to take into account the possible presence of ,
tests. Let us think of the inequality tests as belonging to the body, B. We will
say that X satisfies B with ground instantiation of variables θ, written X |=θ B,
if for every literal b in B, b.θ ∈ X, and for every expression x , y in B, the
constants x.θ and y.θ are distinct. We are thereby making a unique names
assumption on constants: two constants denote distinct objects when they are
lexicographically distinct.

The adjustment for stepq is as follows:

stepq(R,X) = {c.θ | B� C ∈ R or B� C ∈ R, X |=θ B, c ∈ C, c.θ is ground}
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Example 22 This example shows how the natural numbers can be constructed.
The rules R are:

>� ∃x zero(x)
zero(x)� nat(x)

zero(x) ∧ zero(y) ∧ x , y� ⊥
nat(x)� ∃y succ(x, y)

succ(x, y) ∧ succ(x, z) ∧ y , z� ⊥
succ(x, y)� nat(y)

succ(x, x)� ⊥
succ(x, y)� less(x, y)

succ(x, y) ∧ less(y, z)� less(x, z)
less(x, x)� ⊥

Note the� rule for constructing successors. These rules allow us to create
any finite subset of the natural numbers.

For example, one of the members of out3(R, ∅) is:

nat(ν0)
nat(ν1)
nat(ν2)

zero(ν0) ∼zero(ν1)
succ(ν0, ν1) ∼zero(ν2)
succ(ν1, ν2) ∼succ(ν1, ν1)

less(zero, ν1) ∼succ(ν1, ν0)
less(zero, ν2) ∼succ(ν0, ν2)

less(ν1, ν2) ∼succ(ν0, ν0)

5.5 Comparing KL3 with geometric logic

All rules in KL3 are of the form ∀x̄φ(x̄) ◦→ ∃ȳψ(x̄, ȳ), where x̄ and ȳ are tuples
of variables and ◦→ is either� or�. These rules have the same quantifier
structure as the rules of geometric logic36.

The geometric formulae (also known as the “coherent implications”) are
the implications C→ D where

C ::= > | C ∧ P
D ::= ⊥ | D ∨ E
E ::= ∃x̄ C

36 The importance of geometric logic for understanding Kant’s thought is stressed in the pio-
neering papers by Theodora Achourioti and Michiel van Lambalgen [1,2]. For geometric logic in
general, see [14], [24], [5], [6], [44].
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and P ranges over L37.
Although the rules of KL3 have the same quantifier structure as the rules

of geometric logic, there are a number of differences. First, KL3 has two types
of rule,� and�, while geometric logic has only one. Second, KL3 has pred-
icate negation, while geometric logic does not include any sort of negation.
Third, weakening the output is valid in geometric logic38, but not in KL3.

The fourth difference between the two systems is the way in which the
tree of nodes39 is generated. In KL3, to generate the successors stepq(R,X) of
a set X of atoms, we consider all rules in R whose bodies are satisfied. When
we have finished constructing the nodes, we filter them to accept only those
that satisfy all the � rules. In geometric logic, the dynamical proof tree is
generated by considering only violated rules: rules whose body is satisfied
but whose head is unsatisfied. To see the difference, consider the rule-set R
consisting of only one rule:

>� ∃xφ(x)

In geometric logic, the proof tree contains one node with the single atom φ(a0)
for some constant a0. Once the rule’s head has been satisfied, it is no longer
available to generate further nodes. In KL3 by contrast, the stepq function al-
lows a rule to be applied whenever its body is satisfied, so out3(R, {}) contains
infinitely many possible solutions: {φ(a0)}, {φ(a0), φ(a1)}, {φ(a0), φ(a1), φ(a2)}, . . . .

A final difference is that KL3 is a logic of conditional imperatives relat-
ing actions that do not have truth values, while geometric logic is a truth-
functional logic.

All of these differences are crucial to the intended application of our logic
in understanding Kant (see Sections 2, 3.7, and 6).

5.6 Translating natural language into KL3

Finally in this section, and before returning to Kant’s texts, we shall spend
a little time showing how natural language sentences can be translated into
KL3. This exercise is important because the translation guidelines for KL3 are
rather different from those for translating natural language into first-order
logic.

5.6.1 Singular judgements

In first-order logic, a singular judgement, such as “Caius is mortal,” is trans-
lated into an atom:

mortal(caius)

37 Note that geometric logic, unlike KL3, does allow constants as terms in rules.
38 See the classical evaluation rule for disjunction on page 3 of [14]: X 
 φ1 ∨ φ2 if X / U and

for all Y ∈ U, Y 
 φ1 or Y 
 φ2.
39 Each “node” is a set of literals in outq

n(R,A) at depth n.
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where mortal is a one-place predicate and caius is a constant representing the
individual Caius.

In KL3, by contrast, an atom represents a subsumption – the act of sub-
suming a private mental intuition under a mark. So in KL3, declarative sen-
tences are never translated into atoms (subsumptions). Instead, the judgement
“Caius is mortal” is rendered as a rule:

caius(x)� mortal(x)

This is a conditional imperative that relates actions. It says: for all intuitions x,
if you are subsuming x under the mark “caius”, then also subsume x under
the mark “mortal”!

Now a proper noun, such as “Caius,” is normally taken to imply existence
(there is at least one individual denoted by “Caius”) and uniqueness (there is
at most one individual denoted by “Caius”). If we wish to express existence
and uniqueness in KL3, we write:

>� ∃x caius(x)
caius(x) ∧ caius(y) ∧ x , y� ⊥

Judgements involving binary predicates are represented similarly. “Jack loves
Jill” is rendered as:

jack(x) ∧ jill(y)� loves(x, y)

plus existence and uniqueness constraints, as needed.

5.6.2 All and some

Universally quantified judgements, such as “All men are mortal,” are ren-
dered directly into KL3 as:

man(x)� mortal(x)

Recall, once more, that this rule is a conditional imperative stating what
actions you must do: if you are subsuming private mental intuition x under
the mark “man” then also subsume x under “mortal“!

Judgements involving “some” can be translated into KL3 in two different
ways. “Some men are fickle,” for example, can be translated into:

man(x)� fickle(x)

This is a permissive rule: if you are subsuming intuition x under “man”, then
feel free to also subsume x under “fickle”! This way of translating the sentence
has no existential import whatsoever. It is fully compatible with there actually
being no men at all. The other way of translating “Some men are fickle,” by
contrast, provides existential import:

>� ∃x p1(x)
p1(x)� man(x)

p1(x)� fickle(x)
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Here, p1 is a new predicate mark introduced to represent the conjunction of
man and fickle, since conjunctions cannot be expressed directly in the conclu-
sions of rules. These rules mean: you must construct at least one intuition x
and subsume x under both “man” and under “fickle.”

In [Jäsche Logic §46], Kant says that universal judgements (“all” judge-
ments) imply particular judgements (“some” judgements). He is clearly think-
ing here of the inference from:

man(x)� mortal(x)

to:

man(x)� mortal(x)

which is valid in KL3 (using the MUST-MAY inference rule). He is not thinking
of the inference from

man(x)� mortal(x)

to40 :

>� ∃x man(x) ∧ mortal(x)

which is invalid (see Section 6).
One of the key strengths of first-order logic is its ability to handle multiply

quantified sentences. We can infer, for example, from “there is some (particu-
lar) prince who has offended every delegate”, that “for every delegate, there
is some prince who has offended her”. Aristotle’s two-term logic has been
rightly criticised for its inability to deal with inferences involving multiply
quantified sentences. KL3 does not suffer from the inadequacies of Aristotle’s
logic. A single rule in KL3 is implicitly of the form:

∀x̄φ(x̄) ◦→ ∃ȳψ(x̄, ȳ)

where x̄ and ȳ are tuples of variables, and ◦→ is either� or�. A single rule
cannot capture a sentence of the form ∃x̄∀ȳφ(x̄, ȳ). However, a set of rules
in KL3 can capture this. For example, “there is some (particular) prince who
has offended every delegate” can be rendered as R1 below, while “for every

40 Strictly speaking, the consequent is ill-formed as conjunctions are not permitted in the con-
clusions of rules. But rules with conjunctive conclusions can always be translated by introducing
an auxiliary predicate, for example:

>� ∃x p(x)

p(x)� man(x)

p(x)� mortal(x)
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delegate, there is some prince who has offended her“ can be rendered as R2:

R1 =


>� ∃x p1(x)
p1(x)� prince(x)
p1(x) ∧ delegate(y)� offended(x, y)

R2 =


delegate(y)� ∃x p2(x, y)
p2(x, y)� prince(x)
p2(x, y)� offended(x, y)

In the above example R2 is a conservative extension of R1 in the following
sense:

1. for all A and X, if X ∈ out3(R1,A) then ∃Y ∈ out3(R1 ∪ R2,A) such that
X ∩ Y = X;

2. for all A and Y, if Y ∈ out3(R1 ∪ R2,A) then ∃X ∈ out3(R1,A) such that
X ∩ Y = X.

More generally, [15] shows that, for each set F of first-order sentences, there
is a set of sentences of geometric logic that is a conservative extension of F41.

5.6.3 The “is” of identity and the “is” of predication

In first-order logic, the sentence “Phosphorus is bright” is translated as a
predication:

bright(phosphorus)

where bright is a one-place predicate and phosphorus is a constant. The sen-
tence “Hesperus is Phosphorus,” by contrast, involves the “is” of identity and
should be translated as:

hesperus = phosphorus

If we wish to infer that, therefore, Hesperus is bright, we need to use Leibniz’s
law. This is an (infinite) axiom schema licensing, for every sentence φ(x) with
one free variable x the inference:

Leibniz Law
φ(x) x = y

φ(y)

In KL3, by contrast, the two senses of “is” do not come apart. “Phosphorus
is bright” is translated as:

phosphorus(x)� bright(x)

41 Many commentators (for example, MacFarlane [40], p.26; also [19] and [53]) assume or claim
that Kant’s logic does not support nested quantifiers, while our formalization presupposes that
his logic does have this expressive power. Our main evidence that this common view is wrong
is the systematic support our account gets from making sense of Kant’s otherwise notoriously
obscure and problematic Table of Judgements (section 6). But for compelling textual evidence,
see [1], pages 260-2.
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“Hesperus is Phosphorus” is rendered as:

hesperus(x)� phosphorus(x)

together with the symmetric rule:

phosphorus(x)� hesperus(x)

The inference to hesperus(x) � bright(x) does not require any infinite axiom
schema. It just involves the standard MUST-TRANS inference rule.

5.6.4 Two types of negation

Natural language distinguishes between sentence-negation (e.g. “It is not the
case that Jack is tall”) and predicate-negation42 (e.g. “Jack is not tall”). First-
order logic, of course, cannot capture these two distinct interpretations. The
only negation in first-order logic is sentential negation. But KL3 can capture
the two distinct readings. “It is not the case that Jack is tall” is rendered as:

jack(x) ∧ tall(x)� ⊥
“Jack is not tall” is rendered as:

jack(x)� ∼tall(x)

Now in KL3 these two particular claims are provably equivalent – but in gen-
eral, when existentially quantified variables are involved, sentence-negation
and predicate-negation are not equivalent in KL3. Consider “Jack is not mar-
ried to anyone”:

jack(x) ∧ married(x, y)� ⊥
Compare with “There is someone who Jack is not married to”:

jack(x)� ∃y∼married(x, y)

Neither claim entails the other.

6 Recovering the Table of Judgements

The Table of Judgements [A70/B95] is divided into four “titles”: Quantity,
Quality, Relation, and Modality. Kant clearly thought this division was fun-
damental because it appears as an organising framework throughout the
critical works43. Each title represents one structural feature of a judgement.

42 As does Kant (in transcendental logic), e.g. at [A71-3/B97-8], [Jäsche Logic p. 103-4]. See also
[56] p.268.

43 See, for example, the Table of Categories [A80/B106], the four aspects of time determination
[A145/B184], the four principles [A161/B200], the four ways of comparing concepts [A263/B319],
the four aspects of the concept of nothing [A291-2/B348]. For Kant on the importance of his
table, see [A80-1/B107-7], Prolegomena 4: 306. Kant also employs the four titles as an organising
framework in the Critique of Practical Reason and in the Critique of the Power of Judgement. For a
comprehensive visual representation of the extent of this organizing structure in the first Critique,
see [REFERENCE REMOVED FOR ANONYMITY].
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In Kant’s table, there are three possible values for each structural feature, so
there are at most 34 possible types of judgement44. The four titles were in
widespread use in the logic textbooks of the time45, but Kant’s particular use
of them was unusual.

The Quantity of a categorical subject-predicate judgement indicates whether
the extension of the subject is partly or wholly contained in the extension of the
predicate. If the extension of the subject S is wholly contained in the extension
of the predicate P, then we say “all S are P”, and the judgement has universal
quantity. If the extension of S is only partly contained in the extension of P,
then we say “some S are P”, and the judgement has particular quantity. If
the extension of S is a singleton, and this single element is a member of the
extension of P, then we say “the individual S is P”, and the judgement has
singular quantity.

One problem with this way of characterising Quantity is that it only applies
to categorical judgements involving monadic predicates. But we shall see,
below, how to extend this idea naturally to all other types of judgement,
including hypothetical and disjunctive judgements involving binary or n-ary
predicates.

Kant claimed that singular judgements are a sub-type of universal judge-
ments [A71/B96] [Jäsche Logic 9:102]. This was a common claim for logicians
working within the Aristotelian two-term logic. But note that this claim is
obviously false if universal and singular judgements are interpreted in terms
of first-order logic. The singular judgement p(a) is not a sub-type of universal
judgement (∀x) a(x) ⊃ p(x).

The Quality of a judgement indicates whether the predicate is affirmed or
denied of the subject. If the predicate is affirmed of the subject, as in “All men
are mortal”, then the judgement is affirmative. If the predicate is denied of
the subject, as in “It is not the case that the soul is mortal”, then the judgement
is negative. But if the negation of the predicate is affirmed of the subject,
as in “The soul is non-mortal”, then the judgement is infinite46. The infinite
judgements are, according to Kant, a sub-type of the affirmative judgements:

If I had said of the soul that it is not mortal, then I would at least have
avoided an error by means of a negative judgement. Now by means
of the proposition “The soul is non-mortal” I have certainly made an
actual affirmation as far as logical form is concerned, for I have placed
the soul within the unlimited domain of undying things. [A72/B97]

Note that both the distinction between negative and infinite judgements, and
the claim that the infinite judgements are a sub-type of affirmative judgements,
make no sense within first-order logic. In Frege’s logic and its descendants,
there is only one type of negation: sentence-level negation.

44 In practice, there will be slightly fewer, since some combinations are incompatible. For
example, a judgement cannot both be negative and disjunctive. Nor can it be both negative and
particular. See [2].

45 See in particular The Port-Royal Logic [4].
46 “In negative judgements the negation always affects the copula; in infinite ones it is not the

copula but rather the predicate that is affected” [Jäsche Logic 9:104]
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Kant’s use of Relation is very different from its current meaning. In modern
logic, a relation is a n-ary predicate where n > 1. For Kant, the Relation is a
structural feature of a judgement indicating how the various subsumptions
in the judgement are related to each other:

All relations of thinking in judgement are either those a) of the predicate
to the subject, b) of the ground to the consequence, and c) between the
cognition that is to be divided and all of the members of the division.
[A73/B98]

In case (a), when a judgement involves just two subsumptions (e.g. “all men
are mortal”), then the judgement is categorical. In case (b), when a judgement
has a condition that must be satisfied (e.g. “If there is perfect justice, then
obstinate evil will be punished”), then the judgement is hypothetical. In case
(c), when a judgement has a disjunctive conclusion (e.g. “The world exists
either through blind chance, or through inner necessity, through an external
cause”), then the judgement is disjunctive47 [A73-4/B98-9].

Strawson [53] criticised Kant’s use of Relation for being neither exhaustive
nor exclusive. The three types of Relation are not exhaustive since some
types of judgement (e.g. conjunctions) are not present at all. The three types
of Relation are not exclusive since hypotheticals and disjunctions can, in
standard propositional logic, be inter-defined using negation: p ⊃ q if and
only if ¬p ∨ q. However we shall see, below, that in KL3, Kant’s threefold
division is very natural.

The fourth title, Modality, is a different type of feature than the others.
While Quantity, Quality, and Relation are structural features of an individ-
ual judgement, Modality (as we read Kant) is a feature indicating how the
judgement relates to the rest of the judgements held by an agent:

The modality of judgements is a quite special function of them, which is
distinctive in that it contributes nothing to the content of the judgement
(for besides quantity, quality, and relation there is nothing more that
constitutes the content of the judgement), but rather concerns only the
value of the copula in relation to thinking in general. [A74/B100]

The Modality of a judgement can be either problematic, assertoric, or apodic-
tic. These are not the alethic modalities of possibility, actuality, and necessity.
They are more like epistemic modals that relate us to the alethic modalities in
particular ways:

Problematic judgments are those in which one regards the assertion or
denial as merely possible (arbitrary). Assertoric judgments are those
in which it is considered actual (true). Apodictic judgments are those
in which it is seen as necessary. [A74-5/B100]

In the [Jäsche Logic 9:108-9], Kant goes on to explain his modalities of judge-
ment in terms of the very same normative notions (may/must) that have been

47 Disjunctions for Kant are exclusive disjunctions (see Section 3.1).
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so central to KL3. The difference, we shall see, is that they function at a different
level.

In each of the four titles, the third moment is defined as a sub-type of the
first moment. A singular judgement is a sub-type of universal judgement; an
infinite judgement is a sub-type of affirmative judgement; a disjunctive judge-
ment is a sub-type of categorical judgement, and an apodictic judgement is
a sub-type of problematic judgement. According to Kant, the third moment
in each title entails a judgement of the second moment. A singular judge-
ment entails a particular judgement; an infinite judgement entails a negative
judgement; a disjunctive judgement entails a hypothetical judgement, and an
apodictic judgement entails an assertoric judgement.

Kant’s Table of Judgements has been roundly criticised for being incom-
plete, confused, or for being based on an impoverished expressively-limited
logic. In this paper we argue, by contrast, that KL3 is a powerful and expressive
logic in which Kant’s table emerges as the most natural way of categorising
rules.

6.1 KL3 Makes sense of Kant’s Table of Judgements

Since Kant sees a judgement as a type of rule (see Sections 1 and 2), a way of
classifying rules will also be a way of classifying judgements. In this section,
we shall provide four ways of classifying rules in KL3, and show how each
classification corresponds to one of the four titles in the Table of Judgements.

Quantity. In KL3, there are two types of rule : conditional imperatives and
conditional permissives. An imperative of the form p� q means: “if you are
performing p, then also perform q!” A permissive of the form p� q means:
“if you are performing p, then feel free to also perform q!”

We propose the following simple identification: a rule (judgement) has
universal quantity if it is a conditional imperative, while a rule has particu-
lar quantity if it is a conditional permissive. So, for example, the universal
judgement “all men are mortal” would be rendered as:

man(x)� mortal(x)

while the particular judgement “some men are fickle” would be rendered as:

man(x)� f ickle(x)

A singular judgement is a sub-type of universal judgement in which there
is at most one object falling under the subject term. “Caius is mortal”, for
example, would be rendered by a pair of rules:

caius(x)� mortal(x)
caius(x) ∧ caius(y) ∧ x , y� ⊥
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This way of characterising Quantity has three appealing features. First, it
shows how a singular judgement can be a type of universal judgement. In
first-order logic, by contrast, a singular judgement is typically not rendered as
a type of universal judgement. Second, it shows how Quantity can apply to
all types of judgement. Recall that Quantity is normally defined for affirma-
tive categorical judgements involving monadic predicates (subject-predicate
sentences of the form “S is P”), and there is a problem how to extend this
definition to all types of judgement. If Quantity is based on the distinction
between conditional imperatives and conditional permissives, then it applies
to all types of rule. Finally, this way of defining Quantity shows why Kant
thought48 that the inference from universal to particular quantity is valid.
Consider the inference:

All S are P
Therefore, some S are P

If these statements are translated into first-order logic, the inference is obvi-
ously invalid: we cannot infer from ∀x s(x) ⊃ p(x) that ∃x s(x)∧p(x) since there
may be no objects whatsoever satisfying s(x). However, when we translate into
KL3, we get:

s(x)� p(x)
s(x)� p(x)

We can infer s(x) � p(x) from s(x) � p(y) using the MUST-MAY inference
rule.

In Kant’s Table of Judgements, the third moment always entails a judge-
ment of the second moment. In the case of Quantity, a singular judgement
is a type of universal judgement, which itself entails a particular judgement,
using the MUST-MAY inference rule.

Quality. In KL3, a conditional imperative has the form p1∧...∧pn � q1∨...∨qm.
In particular, if the disjunction is empty, then the imperative acts as a constraint:
p1 ∧ ... ∧ pn � ⊥, in other words: whatever you do, do not perform all of
p1, ..., pn. Constraints can be used to represent negative judgements49:

jack(x) ∧married(x)� ⊥
represents the judgement that it is not the case that Jack is married. Recall
from Section 5 that the set of predicates in KL3 contains positive and negative
marks. Given a set P of predicate marks, the complete set P+/− of signed
predicates is:

P+/− = P ∪ {∼p | p ∈ P}
An infinite judgement is an affirmative judgement in which the conclusion
involves a negated mark. To say that Jack is un-married, we write:

jack(x)� ∼married(x)

48 See e.g. [Jäsche Logic 9:116].
49 “Negative judgements have the special job of preventing error” [A709/B737].
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Note that the negation binds to the mark married and not to the subsumption
married(x).

Unlike first-order logic, KL3 is able to distinguish between negative and
infinite judgements, and is able to characterise infinite judgements as a sub-
type of affirmative judgements.

In Kant’s Table of Judgements, the third moment always entails a judge-
ment of the second moment. In the case of Quality, an infinite judgement (e.g.
p � ∼q) entails a negative judgement (e.g. p ∧ q � ⊥) using the following
inference:

p� ∼q
SIp ∧ q� ∼q

∼-LEFTq ∧ ∼q� ⊥
SIp ∧ q ∧ ∼q� ⊥
MUST-TRANSp ∧ q� ⊥

Relation. In KL3, imperatives of the form p1 ∧ ... ∧ pn � q1 ∨ ... ∨ qm and
permissives of the form p1∧ ...∧pn � q1∨ ...∨qm can be categorised based on
how many conjuncts n they have in the antecedent, and how many disjuncts
m they have in the consequent. If there is one element in the antecedent, then
the rule is categorical. If there are many elements in the antecedent, then the
rule is hypothetical50. If there is one element in the antecedent, but many
elements in the consequent, then the rule is disjunctive [A93-4, B98-9].

Note that Strawson’s criticism of Kant’s three moments of Relation (that
they are not exhaustive) does not apply to this formalization in KL3. The first
two types of rule are exhaustive as long as n > 0.

Recall that in Kant’s Table of Judgements, the third moment of each title is
a sub-type of the first moment, and entails a judgement of the second moment.
In the case of Relation, the disjunctive judgement (because it has one element
in the antecedent) is a sub-type of the categorical and entails a hypothetical
judgement (using MUST-SI or MAY-SI).

Modality. The Kantian agent makes sense of its sensory perturbations by con-
structing and applying rules. These rules are conditional imperatives and
permissives relating mental acts, e.g., for all private mental intuitions x, if you
are subsuming x under mark p, then also subsume x under mark q!

50 Compare [Kant and the Capacity to Judge, p. 103n] where Longuenesse characterises categor-
icals as implications of the form ∀x b(x) ⊃ d(x) and hypotheticals as implications of the form
∀x b(x) ∧ c(x) ⊃ d(x). There are three important differences between her approach and ours. First,
Longuenesse (p.93n) is forced to retreat to the claim, unsupported by the text, that only universal
judgements are rules, whereas we can make sense of Kant’s claim that all judgements are rules.
Second, with support from the text, we make use of conditional permissives, which Longuenesse
does not consider. Third, and most importantly, her formalization uses first-order logic, relating
propositions that have truth-values, while the rules in KL3 are conditional imperatives relating ac-
tions that do not have truth-values. In [A73-4, B98-9] and [B141], Kant uses a slightly different form
for hypothetical judgements, in which a hypothetical judgement contains other judgements as
constituents. This is different from how hypotheticals are treated in KL3 and in [Kant and the Ca-
pacity to Judge, p. 103n], where they are treated as rules with multiple elements in the antecedent
or consequent. We have explored an extension of KL3 that includes embedded rules, and will
describe this fully in future work.
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p(x)Ä q(x)

p(x)Ñ q(x)

p(x) ^ p(y) ^ x , yÄ ?

p(x) ^ q(x)Ä ?

p(x)Ä ⇠ q(x)

p(x) ^ q(x)Ä r(x)

p(x)Ä q(x) _ r(x)

Universal

Particular

Apodictic

Problematic

Assertoric
The agent has adopted the rule

The agent may adopt the rule

The agent must adopt the rule

Affirmative

Negative

Infinite

Categorical

Hypothetical

Disjunctive

p(x)Ä q(x)

Singular

p(x)Ä q(x) p(x)Ä q(x)

Quantity

Quality Relation

Modality

Fig. 7: Interpreting the Table of Judgements in KL

At any moment, the Kantian agent has a set A of subsumptions that it is
performing, and a set R of rules that it has adopted. Given the subsumptions
A and rules R, there are various different bundles of mental activity that are
compatible with A and R. These are the various sets X ∈ out(R,A), the various
sets of subsumptions it may perform. There is also the one distinguished set
of subsumptions it is actually performing. If we take the intersection of all the
X such that X ∈ out(R,A), then we get the subsumptions it must perform.

As well as the collections of subsumption acts that it may or must perform,
however, there are also the rules that it may or must adopt. These are the
selfsame normative notions at work in both cases – they have their force and
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content relative to the agent’s goal of achieving experience. But they function
at different levels. Whereas the normative characterizations of subsumptions
within rules were the basis of the types of Quantity, Quality, and Relation in the
Table of Judgements, it is the normative characterizations of rules themselves
that are the basis of the types of Modality.

Given a set A of subsumptions it is performing, and a set R of rules it has
adopted, there are various further rules that it may adopt. Of course, not every
set of rules can be added. Some rules may be incompatible with one of the
existing rules in R. Or some rule may be incompatible with some of its current
subsumptions. For example, if it is subsuming an intuition k under mark p,
and also is subsuming k under q, then it may not adopt the rule:

p(x) ∧ q(x)� ⊥
We propose that the problematic judgements are the rules an agent may
adopt51:

Problematic judgements are those in which one regards the assertion
or denial as merely possible. [A74/B100]

Given a set R of rules that an agent has already adopted, the assertoric judge-
ments are the rules in R that it has already committed to:

The assertoric proposition ... indicates that the proposition is already
bound to the understanding according to its laws. [A76/B101]

Further, the apodictic judgements are the rules that it must adopt52, given R:

Apodictic judgements are those in which it [the judgement] is seen as
necessary. [A75/B100]

These are the rules in deriv(R), in Section 3.5 above. A summary of our inter-
pretation of Kant’s Table of Judgements in KL is given in Figure 7.

There are, then, two different levels in Kant’s theory at which the same
normative notions play a key role: there are the subsumptions that may /
must be performed, and there are the judgements (i.e. rules) that may / must
be adopted. These two levels can come apart: an agent may choose to adopt a
rule saying that it must perform a particular subsumption. In this case, there
is a sense in which the subsumption is necessary, even though the rule that
prompted it need not have been adopted and is, hence, contingent:

this word [the copula “is”] designates the relation of the representa-
tions to the original apperception and its necessary unity, even if the
judgement itself is empirical, hence contingent [B142]

This passage brings to the fore a topic that has been latent in much of the
preceding, but which we can only discuss very briefly here insofar as it relates
to an important simplification in the present account of Kant’s modalities of

51 See also [Jäsche Logic 9:109]: “The soul of man may be immortal.”
52 See also [Jäsche Logic 9:109]: “The soul of man must be immortal.”
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judgement. The topic is unity of apperception. The simplification is that we
have so far avoided the question of whether, and how, the Kantian agent can
reject or revise rules it has previously adopted.

For Kant, unity of apperception and experience are two sides of the same
coin. On our interpretation, the Kantian agent “binds” itself in two distinct
but related senses when it constructs and applies its rules in constructing ex-
perience. First, it binds itself to its rules: it commits to up-holding those rules.
Second, it binds itself together: it forms itself into a unity by up-holding its
rules53. Now, the agent can only do either of these things insofar as it also
binds its subsumptions into a unity, since the rules to and by which it binds
itself just are procedures for generating subsumptions from subsumptions.
And as we’ve said, if various (meta-) constraints on this activity are satisfied,
this rule-bound unity of subsumptions will constitute experience. It is in this
way that a unity of consciousness arises alongside and necessarily accompa-
nies that consciousness of unity that is our experience of a coherent, unified
external world. Unity of apperception and experience are two sides of the
same coin. Both are the upshot of self-legislation.

So how does this relate to rule-revision? Above we assumed that the set R of
rules an agent has adopted is fixed. Our prototype computer simulations [17,
18] of the Kantian cognitive architecture make the same assumption. But what
if we consider the set of rules to be changing – what if we consider adding to
or removing from R? Clearly some sort of revision will sometimes be required
in the light of new information. Indeed, the Kantian agent will always be
changing its rules to best account for the stream of sensory data. The pattern
is new in every moment, constantly requiring revision in making coherent,
unified sense of the on-going stream of sensory perturbations. However, if
the Kantian agent can reject or revise any rule whenever it sees fit, then this
makes a nonsense of the idea that the agent has previously committed to that
rule (and with it, the quoted notion of necessary unity of apperception even
in contingency of judgement). In what sense is the agent really bound to
its rules or together into a unity? Kant’s notion of spontaneity cannot just
be a free-for-all – rather, it must be compatible with self-legislation properly
so-called.

A thorough model of rule revision must answer two questions. First, under
what circumstances is the agent permitted to revise a rule? Second, when it
is in one of these special circumstances in which it is permitted to revise
a rule, what is the proper procedure for revision? What are the constraints
on acceptable revision? We do not here have space for a full answer or its
formal implementation – that is a task for future work. But in brief: first, the
agent is permitted to revise a rule when its current rules cannot make sense
of its current sensory stimulations; second, the only acceptable revisions of
a ruleset are revisions in which all previous subsumptions are still licensed.
The end towards which the agent’s activity is directed is experience (and

53 Note that there is also a sense in which the agent binds others (and itself to others) in this
way, in that its rules quantify over all intuitions (see Sections 2.2 and 5).
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apperception), a coherent, unified representation. It cannot revise a rule-set
if the new rule-set no longer legitimizes one of the activities it has already
performed. (See Section 3.11.)

7 Conclusion

The Kantian agent is a self-legislating rule-induction system. It makes sense of
its sensory perturbations by spontaneously constructing and applying rules.
If this activity satisfies various constraints, the agent achieves experience:
it has constructed a coherent, unified representation of a coherent, unified
external world. We have defined a logic of conditional imperatives and per-
missives that was designed as a formalization of Kant’s conception of rules
relating mental acts that do not have truth-values. This logic includes but is
not exhausted by an account of entailment relations between elements with
truth-values. At its heart are the normative notions captured by conditional
imperatives and permissives, rather than the notion of truth.

In this paper, we showed how the rules formalized in our logic have
structural features that correspond precisely to those displayed in Kant’s
Table of Judgements. We also explained how this logic handles the major
deontic paradoxes, how it differs from related logics, and how it translates
natural language sentences. Of course our claim has not been that Kant had
this precise logic in mind, but rather that it is based on, compatible with,
and helps to explain part of Kant’s view in the Critique of Pure Reason (and
associated texts).
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