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Abstract-Conventional frequent pattern mining algorithms 

usually considered the databases are static and focused on 

batch mining. In real-world applications, however, new 

records are usually inserted into databases or deleted from 
the database. When new records are added to databases, the 

original association rules may become invalid, or new 

implicitly valid rules may appear in the resulting updated 

databases. In these situations, conventional batch-mining 

algorithms must re-process the entire updated databases to 

find final association rules as a result it was not consider the 

earlier mining results. To overcome this limitation new 

algorithms are proposed to use the earlier mining results and 

to reduce the number of scans and the number of candidate 

itemsets. In this paper we are proposing a new incremental 

mining algorithm which uses the pre-large concept and the 

border itemset. The proposed algorithm can effectively 
handle all the cases arises in incremental mining algorithms, 

in which itemsets are small in an original database but large 

in newly inserted transactions can be considered for 

scanning if and only if it becomes a pre-border itemset., 

although it does need additional storage space to record the 

pre-large itemsets. The algorithm is scalable with respect to 

number of transactions and for different threshold values. 

 

Keywords-Data Mining, Frequent patterns, incremental 

mining algorithm, pre-large itemsets, border-itemset. 

 
I. INTRODUCTION 

Mining of Frequent Patterns (FPM) is essential prerequisite 

to form the knowledge in Knowledge Discovery in 

Databases (KDD) process. In Association Rule Mining, 

patterns are referred with itemsets. Other kinds of patterns 

are used in various Data Mining functionalities such as 

Sequential Pattern Mining, Spatial Pattern Mining, 

Temporal Pattern Mining and Correlated Patterns Mining. 

The candidate-generate-test-paradigm of Apriori kind 

algorithms [1, 2, 3, 8, 19, 25, 26, 27], FP-tree based 

algorithms [13, 14, 15, 30] has motivated several 
researchers to contribute fast methods of extraction of 

frequent itemsets.  Some research was also focused on kinds 

of frequent patterns that includes closed [23, 31, 32, 20], 

maximal [7, 10], utility [4], non-derivable patterns [9] and 

rare item sets [28] for their non-redundancy and 

compactness of association rules useful in decision making. 

Taking temporal information into account, researchers 

proposed various algorithms for mining temporal patterns 

[5, 6, 11, 17, 24, 38] including cyclic patterns [22] and 
calendar-based patterns [18], rare itemsets [28], frequent 

episodes [28], etc. The purpose of extracting frequent 

patterns over a transactional database is to understand the 

hidden knowledge in it and for better decisions to improve 

the business. In the earlier works of frequent pattern mining 

the researchers have proposed solutions for extracting 

frequent patterns over the entire database and the sets of 

patterns extracted were huge. Such a large number of 

patterns are not helpful for analysis purpose. Though early 

researchers have treated all the transactions uniformly in a 

database, but at a later stage, researchers have considered 

the time stamps of the transactions to get more insight into 
frequent patterns. It is also noticed that frequent patterns 

need not uniformly present over the entire transaction 

database, rather present at some part may be enough. This 

observation motivated researchers to design algorithms to 

do micro analysis over the database for better understanding 

of the hidden knowledge. Recently, the researchers are more 

focused on finding temporal knowledge that reveals the 

behaviour of frequent itemsets, such as extracting the 

patterns that are frequent over a specific period; extracting 

the specific timestamps, where the support of the frequent 

itemset before/after the timestamp increases/decreases 
drastically, etc.  Wan and An [29] have introduced 

“Transitional Patterns” which represent patterns whose 

frequency dramatically changes over time in a transaction 

database. Primarily they focused on discovering time points 

at which positive (or negative) transitional patterns 

increases (or decreases) their frequency significantly over 

time. Their study gave scope to disclose the dynamic 

behaviour of the frequent patterns as they considered the 

time-stamps of transactions in the mining process. 

Applications of transitional patterns include tuning the 

marketing strategies in retail environments, analysing the 
time points at which drugs cause the side effects in 

diagnosis, restructuring web links based on frequency of 

visiting the web pages, finding the low and high end points 

of profit in the stock market, etc. TP-Mine Algorithm [29] 

runs in two stages and uses three scans for extracting the 
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transitional patterns. At the first stage, it uses two scans and 

extracts the frequent patters (by using FP-Growth algorithm 

[15]) and in the second stage, an additional scan over the 

database extracts the transitional patterns with their 

significant frequency ascending  and descending milestones 

in the given transaction database. There may exist many 
time points exhibit the behaviour of transitional patterns, the 

TP-Mine algorithm [29] records only those time points 

where the transitional ratio is maximum and each such time 

point gives the knowledge about the behaviour of the 

pattern over the entire database.  Both the Apriori and the 

FP-tree mining approaches belong to batch mining. That is, 

they must process all the transactions in a batch way. In 

real-world applications, new transactions are usually 

inserted into databases or obsolete data is deleted from the 

databases regularly. With the advent of Data Warehouse it is 

now usual every x units of time (usually years) the data in 

the data warehouse is updated. For example a data 
warehouse constructed in 2010 may be updated in 2013, 

2016 and 2017. Every addition of new transactions there 

might be possible an infrequent itemset in the old database 

may become infrequent in the new database or an itemset 

which is frequent in the old database may become 

infrequent in the updated database. The case-1 can be solved 

by reading only the updated part of the database. But for 

case-2 it is required to read the entire database Suppose 

ODB is a database and NDB is a new database of 

transactions to be appended to ODB to get UDB.  It is 

acceptable to read NDB any number of times, but it is not 
acceptable to do more scans on ODB.  

A naive solution would be to rerun the algorithm from 

scratch every time new data arrives. This, however, is 

highly inefficient, as adding even a very small amount of 

new data will require running the association generation 

algorithm on all known transactions. Thus, the researchers 

introduced the new type of algorithms named them as 

“incrementalalgorithm", which allows generating the new 

associations in an incremental manner. Instead of processing 

all the records again, such an algorithm would only perform 

a small fraction of the work on each new set of data and 

thereby provide the results in a timely manner. If the 
changes do not produce any new frequent sets, then there is 

no access to the old data. Thus, that costly scanning of the 

entire database will only be performed when new frequent 

sets are obtained. In case the entire database is scanned, the 

number of passes over the database is should be small, and 

generally the support is required for a few candidates. Many 

incremental mining algorithms proposed in the literature 

[12].  

One noticeable incremental mining algorithm was the Fast-

Updated Algorithm (called FUP), which was proposed by 

Cheung et al. [34] for avoiding the shortcomings mentioned 
above with the conventional algorithms. Although the FUP 

algorithm could indeed improve mining performance for 

incrementally growing databases, original databases still 

needed to be scanned when necessary.  Yonatan Aumann, 

et.al, [33] provide three variants of algorithms: one for the 

case of additions alone, one for additions and deletions, and 

one for the case where the analyst wishes to change the 

support threshold, without having to run the entire algorithm 

anew. These authors use the border itemsetconcept to 

reduce the number of candidate itemsets.  
Hong et al. thus proposed the pre-large concept to further 

reduce the need for rescanning original database [35]. A 

pre-large itemset was defined based on two support 

thresholds. The upper support threshold was the same as 

that used in the conventional mining algorithms. The lower 

support threshold defined the lowest support ratio for an 

itemset to be treated as pre-large. An itemset with its 

support ratio below the lower threshold was thought of as a 

small itemset. The algorithm did not need to rescan the 

original database until a number of new transactions had 

been inserted. Since rescanning the database spent much 

computation time, the maintenance cost could thus be 
reduced in the pre-large-itemset algorithm. 

Hong et al. also modified the FP-tree structure and designed 

the fast updated frequent pattern trees (FUFP-trees) to 

efficiently handle newly inserted transactions based on the 

FUP concept [35]. The FUFP-tree structure was similar to 

the FP-tree structure except that the links between parent 

nodes and their child nodes were bi-directional. Besides, the 

counts of the sorted frequent items were also kept in the 

Header Table of the FP-tree algorithm. In [34] the authors 

proposed the structure of prelarge tree for handling the 

deletion of records based on the concept of pre-large 
itemsets. A structure of prelarge tree is to keep not only 

frequent items but also pre-large items. Based on the pre-

large itemsets, the proposed approach can effectively handle 

cases in which itemsets are small both in an original 

database and deleted records. The proposed algorithm does 

not require rescanning the original databases to construct the 

prelarge tree until a number of deleted records have been 

processed.   

The prelarge concept helps in the incremental mining 

algorithms by reducing the number of scans on the database 

till some specified number of transactions is added or 

deleted. The prelarge concept used algorithms suffers with 
the maintenance of a large set of candidate itemsets. As the 

prelarge concept used algorithms uses a very less support 

threshold for an itemset to become frequent. It is motivated 

us to design an algorithm which uses the prelarge concept 

and maintain the number of candidates very less.  

The objective of this paper is proposing a newsolution for 

extracting frequent patterns in dynamic databases by using 

the prelarge concept and border itemsetconcept. This paper 

is organized into five sections including the introduction 

section. Section two gives the detailed paper on incremental 

mining algorithms, section three presents the proposed 
algorithm and the pseudo code of the algorithm and the 

databases used for implementations, section four presents 

the results obtained by applying the proposed algorithm, and 

section five gives the conclusion of this paper. 
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II. RELATED WORK 

The conventional frequent pattern mining algorithms 

usually considered the database size static and focused on 

batch mining. In real-world applications, however, new 

records are usually inserted into databases, and designing a 

mining algorithm that can maintain association rules as a 
database grows is thus critically important When new 

records are added to databases, the original association rules 

may become invalid, or new implicitly valid rules may 

appear in the resulting updated databases. In these 

situations, conventional batch-mining algorithms must re-

process the entire updated databases to find final association 

rules. Two drawbacks may exist for conventional batch-

mining algorithms in maintaining database knowledge: 

(a) Nearly the same computation time as that spent in 

mining from the original database is needed to cope with 

each new transaction. If the original database is large, much 

computation time is wasted in maintaining association rules 
whenever new transactions are generated 

(b) Information previously mined from the original 

database, such as large itemsets and association rules, 

provides no help in the maintenance process. 

 

Cheung et al. [34] proposed an incremental mining 

algorithm, called FUP (Fast Update algorithm), for 

incrementally maintaining mined association rules and 

avoiding the shortcomings mentioned above. The FUP 

algorithm modifies the Apriority mining algorithm and 

adopts the pruning techniques used in the DHP (Direct 
Hashing and Pruning) algorithm. It first calculates large 

item sets mainly from newly inserted transactions, and 

compares them with the previous large item sets from the 

original database. According to the comparison results, FUP 

determines whether re-scanning the original database is 

needed, thus saving some time in maintaining the 

association rules. Although the FUP algorithm can indeed 

improve mining performance for incrementally growing 

databases, original databases still need to be scanned when 

necessary. A good rule maintenance algorithm should thus 

accomplish the following. 

 
1. Evaluate large item sets in the original database and 

determine whether they are still large in the updated 

database; 

2. Find out whether any small item sets in the original 

database may become large in the updated database; 

3. Seek item sets that appear only in the newly inserted 

transactions and determine whether they are large in the 

updated database. These are accomplished by the FUP 

algorithm [34]. 

The FUFP-tree construction algorithm is based on the FP-

tree algorithm [15]. The links between parent nodes and 
their child nodes are, however, bi-directional. Bi-directional 

linking will help fasten the process of item deletion in the 

maintenance process. Besides, the counts of the sorted 

frequent items are also kept in the Header Table. An FUFP 

tree must be built in advance from the original database 

before new transactions come. When new transactions are 

added, the FUFP-tree maintenance algorithm will process 

them to maintain the FUFP tree. It first partitions items into 

four parts according to whether they are large or small in the 

original database and in the new transactions. Each part is 

then processed in its own way. The Header Table and the 
FUFP-tree are correspondingly updated whenever 

necessary. Consider an original database and some 

transactions to be deleted, the following cases may arise: 

1. Case 1: An itemset is frequent both in original database 

and in deleted transactions. 

2. Case 2: An itemset is frequent in an original database 

but not frequent in deleted transactions 

3. Case 3: An itemset is not frequent in original database 

but is frequent in deleted transactions 

4. Case 4: An itemset is not frequent in both original 

database and in deleted transactions. 

Case 2 and 3 will not affect the final frequent itemsets. 

Itemsets in case 1 are frequent in both the original database 

and deleted transactions. Thus, some existing frequent 

itemsets may be removed from the after the database is 

updated. At last, itemsets in case 4 are infrequent in both 

original database and in deleted transactions. Some frequent 

item sets may thus be added it however, requires the 

original database to be rescanned for rebuilding the FUFP-
tree of the final updated database. After that, the FP-growth 

algorithm must be used to mine all FIs [15]. 

In order to reduce the need for rescanning the original 

database, Lin et al. [35] proposed a pre-large tree structure 

and designed an algorithm to rebuild the pre-large tree 

based on the concept of pre-large item sets. The pre-large 

tree is similar to the FUFP-tree. When some transactions are 

deleted from the database, the pre-large-tree-based approach 
will process them to maintain the pre-large tree. Unlike the 

FUFP-tree-based approach, it partitions items into nine 

cases according to whether they are large or pre-large or 

small in the original database and in deleted transactions. 

The summary of the nine cases and their results is given in 

Table 1. The algorithm does not require the original 

database to be rescanned until a number of deleted 

transactions have been processed. When some transactions 

are deleted from the database, some nodes are removed 

from or inserted into the pre-large tree. After that, the FP-

growth algorithm is applied for the pre-large tree of the 
entire database to mine all frequent item sets. So, the pre-

large-tree-based approach does not utilize item sets which 

have been mined from the original database. 

Hong et al. proposed the pre-large concept to reduce the 

need of rescanning original database [35] for maintaining 

association rules. A pre-large itemset is not truly large, but 

may be large with a high probability in the future. A pre-

large itemset is not truly large, but may be large with a high 

probability in the future. Two support thresholds, a lower 

support threshold and an upper support threshold, are used 

to realize this concept. The upper support threshold is the 
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same as that used in the conventional mining algorithms. 

The support ratio of an itemset must be larger than the 

upper support threshold in order to be considered large. On 

the other hand, the lower support threshold defines the 

lowest support ratio for an itemset to be treated as pre-large. 

An itemset with its support ratio below the lower threshold 
is thought of as a small itemset. Pre-large itemsets act like 

buffers and are used to reduce the movements of itemsets 

directly from large to small and vice-versa. 

Considering an original database and some records to be 

deleted by the two support thresholds, itemsets may fall into 

one of the following nine cases illustrated in Figure 2.1. 

Cases 2, 3, 4, 7 and 8 will not affect the final association 

rules. Case 1 may remove some existing association rules, 

and cases 5, 6 and 9 may add some new association rules. If 

we retain all large and pre-large itemsets with their counts 

after each pass, then cases 1, 5 and 6 can be handled easily. 

Also, in the maintenance phase, the ratio of deleted records 
to old transactions is usually very small. This is more 

apparent when the database is growing larger. It has been 

formally shown that an itemset in case 9 cannot possibly be 

large for the entire updated database as long as the number 

of transactions is smaller than the number f shown below 

[35]: 

 

Fig 2.1: Nine cases arising from original database and the 

deleted records 

f = (Su - Sl) * d / Su 

Where f is the safety number of deleted records, Su is the 

upper threshold, Sl is the lower threshold, and d is the 

number of original transactions.  The concept of pre-large 

item sets was proposed by Hong et al. [5]. It uses two 

thresholds, namely the upper threshold and the lower 

threshold, to set the pre-large item sets. The upper threshold 
is similar to min sup. The lower threshold defines the lowest 

support ratio for an itemset that is to be treated as pre-large. 

An itemset with a support ratio below the lower threshold is 

seen as small. Hong et al. [35] also proposed the pre-large-

itemset algorithm. It is based on a safety number f of 

inserted transactions to reduce the need for rescanning the 

original database for the efficient maintenance of the large 

item sets. A summary of the nine cases and their results are 

given in Table 2.1. 

Table 2.1: Nine cases and their results 

Case: Original - Deleted Results 

Case 1: Large - Large Large or pre-large or 

small, determined from 

existing information. Case 2: Large - Pre-Large Always large. 

Case 3: Large - Small Always large. 

Case 4: Pre-Large Large Pre-large or small, 

determined from 

existing information. Case 5: Pre-Large - Pre-
Large 

Large or pre-large or 
small, determined from 

existing information. Case 6: Pre-Large - Small Large or pre-large, 

determined from 

existing information. Case 7: Small - Large Always small. 

Case 8: Small - Pre-Large Always small. 

Case 9: Small - Small Pre-large or small, 

determined from 

existing information. 

 

IT-tree-based approach [36] is one of the famous 

approaches for mining FIs in static transaction databases. It 

is based on equivalence classes, scans the database only 

once, uses the depth-first traversal technique to generate 

item sets and to compute the supports of the item sets fast 
by tidset intersections. This paper proposes an incremental 

algorithm for handling of deleted transactions based on the 

IT-tree structure and pre-large item sets. Like the pre-large-

tree-based approach, when transactions are deleted from the 

database, the proposed approach will partition items into 

nine cases according to whether they are large or pre-large 

or small in the original database and in deleted transactions. 

The summary of the nine cases and their results is given in 

Table 1. Its main idea is to use the depth-first traversal 

technique to update the final supports of the item sets from 

their tidsets in deleted transactions. The supports of the item 
sets in deleted transactions are computed by tidset 

intersections. All FIs are mined using depth-first order 

traversal. The advantage of the IT-tree-based approach is to 

utilize item sets which have been mined from the original 

database. The proposed algorithm only processes deleted 

transactions for rebuilding the final IT-tree. Besides, the 

concept of pre-large item sets is used to reduce the need for 

rescanning the original database to save maintenance cost. 

The algorithm does not require the original database to be 

rescanned until many deleted transactions have been 

processed. 

The Borders algorithm is based on the notion of border sets, 

introduced in [33]. A set X is a border set if all its proper 

subsets are frequent sets (i.e., sets with at least minimum 

support), but it itself is not a frequent set. Thus, the 
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collection of border sets defines the borderline between the 

frequent sets and non-frequent sets, in the lattice of attribute 

sets. The Border algorithm maintains the count information 

for all frequent sets and all border sets in the current 

relation. When an increment, RN, arrives, the increment 

alone is scanned to obtain its support for all (previous) 
frequent and border sets. From this information, we 

compute (with no extra data access), the support of all 

frequent and border sets in the combined relation. 

Additional scans of the entire relation are performed only if 

the support of some border set has reached the minimum 

support threshold (thus turning into a frequent set). This 

policy guarantees that the full relation is never scanned if 

there is no new frequent set. Furthermore, even when 

additional scans are required; monitoring the border sets 

minimizes the amount of counting work performed during 

these scans. The Borders algorithm also extended to handle 

the case of deletions as well as when the support threshold 
is changed. 

III. INCREMENTAL DATA MINING ALGORITHM 

USING PRE-LARGE AND BORDER ITEMSETS 

Although the FUP algorithm [34] focuses on the newly 
inserted transactions and thus saves much processing time 

by incrementally maintaining rules, it must still scan the 

original database to handle case 3 in which a candidate 

itemsets is large for new transactions but is not recorded in 

large itemsets already mined from the original database. 

This situation may occur frequently, especially when the 

number of new transactions is small. In an extreme 

situation, if only one new transaction is added each time, 

then all items in the transaction are large since their support 

rations are 100% for the new transaction. Thus, if case 3 

could be efficiently handled, the maintenance time could be 
further reduced. 

In [35] the authors proposed the concept of pre-large 

itemsets to solve the problem represented by case 3. A pre-

large itemset is not truly large, but promises to be large 

in the future. A lower support threshold and an upper 

support threshold are used to realize this concept. The upper 

support threshold is the same as that used in the 

conventional mining algorithms. The support ratio of an 

itemset must be larger than the upper support threshold in 

order to be considered large. On the other hand, the lower 

support threshold defines the lowest support ratio for an 
itemset to be treated as pre-large. Pre-large itemsets act like 

buffers in the incremental mining process and are used to 

reduce the movements of itemsets directly from large to 

small and vice-versa. Considering an original database and 

transactions newly inserted using the two support 

thresholds, itemsets may thus fall into one of the following 

nine cases illustrated in Figure 3.1.  

Cases 1, 5, 6, 8 and 9 above will not affect the final 

association rules. Cases 2 and 3 may remove existing 

association rules, and cases 4 and 7 may add new 

association rules. If we retain all large and pre-large 

itemsets with their counts after each pass, then cases 2, 3 

and case 4 can be handled easily. Also, in the maintenance 

phase, the ratio of new transactions to old transactions is 

usually very small. This is more apparent when the database 

is growing larger. An itemset in case 7 cannot possibly be 

large for the entire updated database as long as the number 
of transactions is small compared to the number of 

transactions in the original database.  

 

Fig 3.1 - The cases arises from adding new transactions 

The algorithm proposed in [35] by using the pre-large 

itemset is described as follows:  The large and pre-large 

itemsets with their counts in preceding runs are recorded for 

later use in maintenance. As new transactions are added, the 

proposed algorithm first scans them to generate candidate 1-

itemsets (only for these transactions), and then compares 

these itemsets with the previously retained large and pre-

large 1-itemsets. It partitions candidate 1-itemsets into three 

parts according to whether they are large or pre-large for the 

original database. If a candidate 1-itemset from the newly 

inserted transactions is also among the large or pre-large 1-

itemsets from the original database, its new total count for 
the entire updated database can easily be calculated from its 

current count and previous count since all previous large 

and pre large itemsets with their counts have been retained. 

Whether an originally large or pre-large itemset is still large 

or pre-large after new transactions have been inserted is 

determined from its new support ratio, as derived from its 

total count over the total number of transactions. On the 

contrary, if a candidate 1-itemset from the newly inserted 

transactions does not exist among the large or pre-large 1-

itemsets in the original database, then it is absolutely not 

large for the entire updated database as long as the number 
of newly inserted transactions is within the safety threshold. 

In this situation, no action is needed. When transactions are 

incrementally added and the total number of new 

transactions exceeds the safety threshold, the original 

database is re-scanned to find new pre-large itemsets in a 

way similar to that used by the FUP algorithm. The 

algorithm can thus find all large 1-itemsets for the entire 

updated database. After that, candidate 2-itemsets from the 

newly inserted transactions are formed and the same 

procedure is used to find all large 2-itemsets. This 
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procedure is repeated until all large itemsets have been 

found. 

3.1 Limitation of the incremental algorithm proposed in 

[37]:  

Once the number of added transactions crosses the safety 

threshold value, the algorithm scans the database in level by 

level. At each level it is considering all the large or 

prelargeitemsets in the added database. The limitation of the 

algorithm in [37] is the number of candidate itemsets are 

very large at each level because of the number of 
transactions added to the database is very less and the 

threshold is used to qualify an itemset as a pre-large itemset 

is also very small. The number of scans is also more as it is 

level by level approach.   

3.2 PROBLEM STATEMENT  

Given a database D with n transactions, the set of large 

itemsets, the prelargeitemsetsand borderitemsets, in D, the 

lower and upper thresholds (Sl and Su) and the set of 

transactions T. The algorithm must find the all the frequent 

itemsets in the database U (where U = D + T ) by using less 

number of scans and with the less number of candidate 

itemsets used at each level compared to the algorithm 

proposed in [38]. 

3.3 NEW INCREMENTAL MINING ALGORITHM 

BASED ON PRE-BORDER ITEMSET 

Pre-Border Itemset- Anyitemset X is called pre-border 

itemset if it is not a pre-large itemset and it is not a large 

itemset, but all its proper subsets are either large itemsets or 

pre-large itemsets. 

The proposed new incremental mining algorithm  

INPUT: A lower support threshold Sl, an upper support 

threshold Su, a set of large itemsets L, pre-large itemsets 

PL, and set of border itemsets B in the original database 
consisting of (d + c) transactions (where d is the number of 

transactions in the original database and c is the transactions 

added previously to the original database), and a set of new 

|T| transactions. 

OUTPUT:  A set of final frequent itemsets for the updated 

database U (U = D + T). 

STEP 01:   Calculate the safety number f of new 

transactions by using the following formulae: 

  f = (Su - Sl) * |T| / 1-Su. 

STEP 02:     Scan T and find the count C(X, T), for all X ϵ 

L U PL U B. 

STEP 03:     For all X ϵ B U L U PL {          

STEP 04:        C (X, DUT) = C( X, D) + C(X, T). 

 STEP 05:          S(X, DUT) = C(X, DUT) / |D| + |T|  } 

STEP 06:      PB = {X ϵ B | S(X, DUT) ≥ Sl} 

STEP 07:      L = {X ϵ L U PL U PB| S(X, DUT) ≥ Su} 

STEP 08:      PL = {X ϵ L U PL U PB | S(X, DUT) <Su  

AND S(X, DUT) ≥ Sl} 

STEP 09:      B = {X | for all x ϵ X, X - {x} ϵ  L U PL} 

STEP 10:    m = max{i | PB(i) <> Φ} 

STEP 11:    L0 = Φ, PL0 = Φ, i = 1. 
STEP 12:    while (Li<> Φ or PL0<>Φ  i ≤  m AND c + |T| > 

f } {             

STEP 13:        Ci+1 = { X |   |X| = i+1,  for some x, X -{x} ϵ 

PB U L or X-{x} ϵ L(i) U Li} 

STEP 14:       Scan {DUT} and obtain C(X, DUT} for all X 

ϵ Ci+1 

STEP 15:        Li+1 = {X | X ϵ Ci+1,  S(X, DUT) ≥ Su} 

STEP 16:        PLi+1 = {X | X ϵ Ci+1,  S(X, DUT) < Su  AND 

S(X, DUT) ≥ Sl} 

STEP 17:         L = L U Li+1,  PL = PL U PLi+1,  B = B U 

(Ci+1 - Li+1 - PLi+1}    

STEP 18:         i = i + 1.  } 
STEP 19:    If |T| + c > f then set c = 0; Otherwise set c = c 

+ |T|. Update D (D= DUT). 

  

Where T is a new data added to old data D. We assume that 

for each border or frequent set X in old data D, the count 

c(X, D) is already known from the previous stage. (We may 

assume starting from the empty set, with Φ as the only 

frequent set). The algorithm starts by scanning the new 

relation D and updating the counters of all large itemsets, 

pre-large itemsets and pre-border item sets (line 2-5). The 

new support of a set X is its count divided by the new total 
size. Note that since the size of the relation is now larger, 

some previous large or pre-large sets may not be large or 

pre-large any longer. Thus, the new large or prelarge and 

pre-border sets are determined (lines 7–9). Beforehand, the 

set of promoted pre-borders is determined (in step 6). A pre-

border set X (of D) is said to be promoted pre-border if after 

the increment T its support reaches the minimum support 

threshold Sl,  (and hence became large of pre-large item 

sets). Next, the candidates are generated (lines 13). Their 

count is obtained by scanning the entire database  (line 14). 

Based on the count, the new large or pre-large sets and pre-

border sets are determined (line 17). Candidate generation 
and counting works in a sequence of rounds, where in round 

i candidates of size i are generated and checked. The 

candidates of size i+1, denoted by Ci+1, are generated based 

on the new sets of size i (Li), the promoted pre-borders of 

size i, and the old large or prelarge sets of size i. The 

notation PB(i) denotes the promoted pre-borders of size i. 

Similarly, L(i), denotes the  large item sets of size i. The 

procedure is based on the fact, that a set need be considered 

as a candidate only if it has a subset that is a promoted pre-

border. 

3.4 AN EXAMPLE 

In this section, an example is given to illustrate the 

proposed new incremental data mining algorithm. Suppose 

a database with eight transactions such as the one shown in 

Table 3.1 is to be mined. The database has two features, 
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transaction identification (TID) and transaction 

description(Items). For Sl=30% and Su=50%, the sets of 

large itemsetsand pre-large itemsets for the given data are 

shown in Tables 3.2 and 3.3, respectively. 

Table 3.1 - An original database with TID and Items 

TID Items 

100 ACD 

200 BCE 

300 ABCE 

400 ABE 

500 ABE 

600 ACD 

700 BCDE 

800 BCE 

 

Table 3.2 -The Large itemsets for the original database 

Large Itemsets 

1-item Count 2 items Count 3 

items 

Count 

A 5 BC 4 BCE 4 

B 6 BE 6   

C 6 CE 4   

E 6     

 

Table 3.3 -The Pre-Large itemsets for the original database 

Pre- Large Itemsets 

1-

item 

Count 2 items Count 3 items Count 

D 3 AB 3 ABE 3 

  AC 3   

  AE 3   

  CD 3   

 

Table 3.4 -The Pre-Border itemsets for the original database 

Pre- Border Itemsets 

1-item Count 2 items Count 3 

items 

Count 

  AD 2 ABC 1 

  BD 1   

  DE 1   

      

 

Using a conventional mining algorithm such asApriori 

algorithm, all large itemsets with counts larger than or equal 

to 4 (8∗50%) are found, as shown in Table 3.2 and the all 

pre-large itemsets (which are not large itemsets) with their 
support count larger than or equal to 3 (8*30%) are found 

and shown in table 3.3.  Table 3.4 shows the all the border 

itemsets in the given original database shown in table 3.1. 

 

Table 3.5 - An incremental database with TID and Items 

TID Items 

900 ABCD 

1000 BCD 

1100 ABCDE 

1200 BCD 

 

Assume the four new transactions shown in Table 3.5 are 

inserted after the initial data set is processed. The proposed 

incremental mining algorithm proceeds as follows. The 
variable c  is initially set at 0. 

STEP 1: The safety number f for new transactions is 

calculated as: 

 f  = (Su - Sl) * d / 1-Su          =   ((0.5 - 0.3) * 8 / (1-
0.5)   = 3. 

STEP2: Find the count of large itemsets, pre-large itemsets 

and border itemsets in T. 

              Table 3.6 -Count of Large itemsets in T 

Large Itemsets 

1-item Count 2 items Count 3 

items 

Count 

A 2 BC 4 BCE 1 

B 3 BE 1   

C 4 CE 1   

E 1     

 

Table 3.7 - Count of Pre-Large itemsets in T 

Pre- Large Itemsets 

1-
item 

Count 2 
items 

Count 3 
items 

Count 

D 4 AB 2 ABE 1 

  AC 2   

  AE 1   

  CD 4   

 

Table 3.8 - Count of Pre-Border itemsets in T 

Pre- Border Itemsets 

1-

item 

Count 2 items Count 3 

items 

Count 

  AD 2 ABC 2 

  BD 4   

  DE 1   

 

Table 3.9 - Promoted Pre-Border itemsets 

Promoted Pre- Border Itemsets 

1-

item 

Count 2 items Count 3 

items 

Count 

  AD 4   

  BD 5   
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After updating all the sets the resultants large, pre-large and 

pre-border set are like the following: 

L = {A, B, C, D, E, BC, BE, CD} 

PL = {AB, AC, AD, BD, AE, CE, ABE, BCE} 

Pre-Border = {DE, ABC, ABD, ACD, ACE, BCD} 

As the value of f is less than the number of transactions T so 
the algorithm runs steps 12 to 19 and these steps runs twice. 

First time it verifies whether DE become large or pre-large 

and second time it verifies the remaining three length 

itemsets become large or pre-large and only ACE and BCD 

will move from border itemsets to pre-large itemsets. At the 

end the set of large, prelarge and pre-border itemsets are 

shown in the tables 3.10 to 3.11.             

Table 3.10 -The Large itemsets for the updated database 

Large Itemsets 

1-item Count 2 items Count 3 

items 

Count 

A 7 BC 8   

B 9 BE 7   

C 10 CD 7   

D 7     

E 7     

 

Table 3.11 -The Pre-Large itemsets for the updated database 

Pre- Large Itemsets 

1-

item 

Count 2 items Count 3 items Count 

  AB 5 ACE 4 

  AC 5 BCD 5 

  AE 4   

  AD 4   

  BD 5   

 

Table 3.12 -The Pre-Border itemsets for the updated 

database 

Pre- Border Itemsets 

1-item Count 2 items Count 3 

items 

Count 

  DE 2 ABC 3 

    ABD 2 

    ACD 2 

 

In this section, we have proposed designed a novel, 

efficient, incremental mining algorithm based on pre-large 

itemset and border itemset.. Using two user-specified 

upper and low support thresholds, the pre-large itemsets act 

as a gap to avoid small itemsets becoming large in the 

updated database when transactions are inserted. Our 

proposed algorithm also retains the following features of the 

FUP algorithm  

1. It avoids re-computing large itemsets that have already 

been discovered. 

2. It focuses on newly inserted transactions, thus greatly 

reducing the number of  candidate itemsets. 

3. It uses a simple check to further filter the candidate 

itemsets in inserted transactions. 

 
Moreover, the proposed algorithm can effectively handle 

different cases; in which itemsets 

are small in an original database but large in newly inserted 

transactions can be considered for scanning if and only if it 

becomes a pre-border itemset, although it does need 

additional storage space to record the pre-large itemsets. 

Note that the FUP algorithm needs to rescan databases to 

handle such cases. The proposed algorithm does not require 

rescanning of the original databases until a number of new 

transactions determined from the two support thresholds 

and the size of the database have been processed. If the size 

of the database grows larger, then the number of new 
transactions allowed before rescanning will be larger too. 

Therefore, as the database grows, our proposed approach 

becomes increasingly efficient. This characteristic is 

especially useful for real-world applications. 

 

IV. RESULTS 

All the datasets used in our experiments are synthetic 

datasets generated by using a random function. In each of 

the experiments we fixed an initial database, consisting of 

100 transactions. We then added an increment set, again by 

randomly generating the transactions, and measured the 
performance of the algorithms when producing the frequent 

set for the combined data set.In our first experiment, we 

measured the performance of the algorithms with varying 

increment sizes. The support threshold was set to 8%. We 

varied the increment size from 25 records (25% the size of 

the original set) to 50 records (50%), in increments of 

25.The average times are depicted in graphs (each point is 

averaged over ten experiments).The new incremental 

algorithm exhibits improved performance throughout the 

entire range. Theperformance gain ranges from over 30-fold 

for the small increments (25%), to 3–4 fold for very large 

(25-50%) increments.The main advantage of the algorithm 
is due to the small number of times the entiredatabase (old 

and new) must be scanned. Figure 7 depicts the average 

number of fulldatabase passes each of the algorithms 

required for the different increment sizes.  

The first experiment we conducted on the synthetic 

database of size 100 and incremental size increases from 25, 

30, 35, 40, 45, and 50, the number of items we considered 

in this data set is 15. The following are the statistics we 

obtained by applying this dataset on our proposed 

algorithm. 
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Fig 4.1 - #passes Vs # transactions on synthetic dataset -1 

 

 

Fig 4.2 - Running time Vs # transactions on synthetic 

dataset -1 

 
Fig 4.3 - #passes Vs # transactions on synthetic dataset -2 

 
Fig 4.4 - Running time Vs # transactions on synthetic 

dataset -2 

The graphs 4.1 to 4.4 show the algorithms scalable if the 

number of transactions and the increments are also 

increases. The running time of the algorithms are also 

shows the time it takes for executing the program is an 

acceptable one.  

V. CONCLUSION 
In this paper, we have presented the detailed literature 

survey on different incremental mining algorithms and also 

we studied the different cases need to be consider in 

designing the incremental mining algorithms. We proposed 

a novel, efficient, incremental mining algorithm based on 

pre-large itemset and border itemset. It uses the following 

thresholds. 

1. Upper threshold 

2. Lower threshold. 

The pre-large itemsets act as a gap to avoid small itemsets 

becoming large in the updated database when transactions 

are inserted. Our proposed algorithm also retains the 
following features of the FUP algorithm. It avoids re-

computing large itemsets that have already been discovered. 

It focuses on newly inserted transactions, thus greatly 

reducing the number of candidateitemsets. It uses a simple 

check to further filter the candidate itemsets in inserted 

transactions. Moreover, the proposed algorithm can 

effectively handle the different cases, in which itemsetsare 

small in an original database but large in newly inserted 

transactions can be considered for scanning if and only if it 

becomes a pre-border itemset; although it does need 

additional storage space to record the pre-large itemsets. 
Note that the FUP algorithm needs to rescan databases to 

handle such cases. The proposed algorithm does not require 

rescanning of the original databases until a number of new 

transactions determined from the two support thresholds 

and the size of the database have been processed. If the size 

of the database grows larger, then the number of new 

transactions allowed before rescanning will be larger too. 

Therefore, as the database grows, our proposed approach 

becomes increasingly efficient. This characteristic is 

especially useful for real-world applications. 
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