
IJRECE VOL. 5 ISSUE 4 OCT.-DEC. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 122 | P a g e

An Incremental Mining Solution for Over Top K

Queries over Dynamic Databases
Konda Sreenu

Assistant Professor

 Vegesna Usha Praveena

M. Tech Student

vahiduddin sheriff

Assistant Professor

C. R. Reddy College of Engineering, Eluru, West Godavari Dt, AP, India

Abstract-Conventional frequent pattern mining algorithms

usually considered the databases are static and focused on

batch mining. In real-world applications, however, new

records are usually inserted into databases or deleted from
the database. When new records are added to databases, the

original association rules may become invalid, or new

implicitly valid rules may appear in the resulting updated

databases. In these situations, conventional batch-mining

algorithms must re-process the entire updated databases to

find final association rules as a result it was not consider the

earlier mining results. To overcome this limitation new

algorithms are proposed to use the earlier mining results and

to reduce the number of scans and the number of candidate

itemsets. In this paper we are proposing a new incremental

mining algorithm which uses the pre-large concept and the

border itemset. The proposed algorithm can effectively
handle all the cases arises in incremental mining algorithms,

in which itemsets are small in an original database but large

in newly inserted transactions can be considered for

scanning if and only if it becomes a pre-border itemset.,

although it does need additional storage space to record the

pre-large itemsets. The algorithm is scalable with respect to

number of transactions and for different threshold values.

Keywords-Data Mining, Frequent patterns, incremental

mining algorithm, pre-large itemsets, border-itemset.

I. INTRODUCTION

Mining of Frequent Patterns (FPM) is essential prerequisite

to form the knowledge in Knowledge Discovery in

Databases (KDD) process. In Association Rule Mining,

patterns are referred with itemsets. Other kinds of patterns

are used in various Data Mining functionalities such as

Sequential Pattern Mining, Spatial Pattern Mining,

Temporal Pattern Mining and Correlated Patterns Mining.

The candidate-generate-test-paradigm of Apriori kind

algorithms [1, 2, 3, 8, 19, 25, 26, 27], FP-tree based

algorithms [13, 14, 15, 30] has motivated several
researchers to contribute fast methods of extraction of

frequent itemsets. Some research was also focused on kinds

of frequent patterns that includes closed [23, 31, 32, 20],

maximal [7, 10], utility [4], non-derivable patterns [9] and

rare item sets [28] for their non-redundancy and

compactness of association rules useful in decision making.

Taking temporal information into account, researchers

proposed various algorithms for mining temporal patterns

[5, 6, 11, 17, 24, 38] including cyclic patterns [22] and
calendar-based patterns [18], rare itemsets [28], frequent

episodes [28], etc. The purpose of extracting frequent

patterns over a transactional database is to understand the

hidden knowledge in it and for better decisions to improve

the business. In the earlier works of frequent pattern mining

the researchers have proposed solutions for extracting

frequent patterns over the entire database and the sets of

patterns extracted were huge. Such a large number of

patterns are not helpful for analysis purpose. Though early

researchers have treated all the transactions uniformly in a

database, but at a later stage, researchers have considered

the time stamps of the transactions to get more insight into
frequent patterns. It is also noticed that frequent patterns

need not uniformly present over the entire transaction

database, rather present at some part may be enough. This

observation motivated researchers to design algorithms to

do micro analysis over the database for better understanding

of the hidden knowledge. Recently, the researchers are more

focused on finding temporal knowledge that reveals the

behaviour of frequent itemsets, such as extracting the

patterns that are frequent over a specific period; extracting

the specific timestamps, where the support of the frequent

itemset before/after the timestamp increases/decreases
drastically, etc. Wan and An [29] have introduced

“Transitional Patterns” which represent patterns whose

frequency dramatically changes over time in a transaction

database. Primarily they focused on discovering time points

at which positive (or negative) transitional patterns

increases (or decreases) their frequency significantly over

time. Their study gave scope to disclose the dynamic

behaviour of the frequent patterns as they considered the

time-stamps of transactions in the mining process.

Applications of transitional patterns include tuning the

marketing strategies in retail environments, analysing the
time points at which drugs cause the side effects in

diagnosis, restructuring web links based on frequency of

visiting the web pages, finding the low and high end points

of profit in the stock market, etc. TP-Mine Algorithm [29]

runs in two stages and uses three scans for extracting the

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 123 | P a g e

transitional patterns. At the first stage, it uses two scans and

extracts the frequent patters (by using FP-Growth algorithm

[15]) and in the second stage, an additional scan over the

database extracts the transitional patterns with their

significant frequency ascending and descending milestones

in the given transaction database. There may exist many
time points exhibit the behaviour of transitional patterns, the

TP-Mine algorithm [29] records only those time points

where the transitional ratio is maximum and each such time

point gives the knowledge about the behaviour of the

pattern over the entire database. Both the Apriori and the

FP-tree mining approaches belong to batch mining. That is,

they must process all the transactions in a batch way. In

real-world applications, new transactions are usually

inserted into databases or obsolete data is deleted from the

databases regularly. With the advent of Data Warehouse it is

now usual every x units of time (usually years) the data in

the data warehouse is updated. For example a data
warehouse constructed in 2010 may be updated in 2013,

2016 and 2017. Every addition of new transactions there

might be possible an infrequent itemset in the old database

may become infrequent in the new database or an itemset

which is frequent in the old database may become

infrequent in the updated database. The case-1 can be solved

by reading only the updated part of the database. But for

case-2 it is required to read the entire database Suppose

ODB is a database and NDB is a new database of

transactions to be appended to ODB to get UDB. It is

acceptable to read NDB any number of times, but it is not
acceptable to do more scans on ODB.

A naive solution would be to rerun the algorithm from

scratch every time new data arrives. This, however, is

highly inefficient, as adding even a very small amount of

new data will require running the association generation

algorithm on all known transactions. Thus, the researchers

introduced the new type of algorithms named them as

“incrementalalgorithm", which allows generating the new

associations in an incremental manner. Instead of processing

all the records again, such an algorithm would only perform

a small fraction of the work on each new set of data and

thereby provide the results in a timely manner. If the
changes do not produce any new frequent sets, then there is

no access to the old data. Thus, that costly scanning of the

entire database will only be performed when new frequent

sets are obtained. In case the entire database is scanned, the

number of passes over the database is should be small, and

generally the support is required for a few candidates. Many

incremental mining algorithms proposed in the literature

[12].

One noticeable incremental mining algorithm was the Fast-

Updated Algorithm (called FUP), which was proposed by

Cheung et al. [34] for avoiding the shortcomings mentioned
above with the conventional algorithms. Although the FUP

algorithm could indeed improve mining performance for

incrementally growing databases, original databases still

needed to be scanned when necessary. Yonatan Aumann,

et.al, [33] provide three variants of algorithms: one for the

case of additions alone, one for additions and deletions, and

one for the case where the analyst wishes to change the

support threshold, without having to run the entire algorithm

anew. These authors use the border itemsetconcept to

reduce the number of candidate itemsets.
Hong et al. thus proposed the pre-large concept to further

reduce the need for rescanning original database [35]. A

pre-large itemset was defined based on two support

thresholds. The upper support threshold was the same as

that used in the conventional mining algorithms. The lower

support threshold defined the lowest support ratio for an

itemset to be treated as pre-large. An itemset with its

support ratio below the lower threshold was thought of as a

small itemset. The algorithm did not need to rescan the

original database until a number of new transactions had

been inserted. Since rescanning the database spent much

computation time, the maintenance cost could thus be
reduced in the pre-large-itemset algorithm.

Hong et al. also modified the FP-tree structure and designed

the fast updated frequent pattern trees (FUFP-trees) to

efficiently handle newly inserted transactions based on the

FUP concept [35]. The FUFP-tree structure was similar to

the FP-tree structure except that the links between parent

nodes and their child nodes were bi-directional. Besides, the

counts of the sorted frequent items were also kept in the

Header Table of the FP-tree algorithm. In [34] the authors

proposed the structure of prelarge tree for handling the

deletion of records based on the concept of pre-large
itemsets. A structure of prelarge tree is to keep not only

frequent items but also pre-large items. Based on the pre-

large itemsets, the proposed approach can effectively handle

cases in which itemsets are small both in an original

database and deleted records. The proposed algorithm does

not require rescanning the original databases to construct the

prelarge tree until a number of deleted records have been

processed.

The prelarge concept helps in the incremental mining

algorithms by reducing the number of scans on the database

till some specified number of transactions is added or

deleted. The prelarge concept used algorithms suffers with
the maintenance of a large set of candidate itemsets. As the

prelarge concept used algorithms uses a very less support

threshold for an itemset to become frequent. It is motivated

us to design an algorithm which uses the prelarge concept

and maintain the number of candidates very less.

The objective of this paper is proposing a newsolution for

extracting frequent patterns in dynamic databases by using

the prelarge concept and border itemsetconcept. This paper

is organized into five sections including the introduction

section. Section two gives the detailed paper on incremental

mining algorithms, section three presents the proposed
algorithm and the pseudo code of the algorithm and the

databases used for implementations, section four presents

the results obtained by applying the proposed algorithm, and

section five gives the conclusion of this paper.

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 124 | P a g e

II. RELATED WORK

The conventional frequent pattern mining algorithms

usually considered the database size static and focused on

batch mining. In real-world applications, however, new

records are usually inserted into databases, and designing a

mining algorithm that can maintain association rules as a
database grows is thus critically important When new

records are added to databases, the original association rules

may become invalid, or new implicitly valid rules may

appear in the resulting updated databases. In these

situations, conventional batch-mining algorithms must re-

process the entire updated databases to find final association

rules. Two drawbacks may exist for conventional batch-

mining algorithms in maintaining database knowledge:

(a) Nearly the same computation time as that spent in

mining from the original database is needed to cope with

each new transaction. If the original database is large, much

computation time is wasted in maintaining association rules
whenever new transactions are generated

(b) Information previously mined from the original

database, such as large itemsets and association rules,

provides no help in the maintenance process.

Cheung et al. [34] proposed an incremental mining

algorithm, called FUP (Fast Update algorithm), for

incrementally maintaining mined association rules and

avoiding the shortcomings mentioned above. The FUP

algorithm modifies the Apriority mining algorithm and

adopts the pruning techniques used in the DHP (Direct
Hashing and Pruning) algorithm. It first calculates large

item sets mainly from newly inserted transactions, and

compares them with the previous large item sets from the

original database. According to the comparison results, FUP

determines whether re-scanning the original database is

needed, thus saving some time in maintaining the

association rules. Although the FUP algorithm can indeed

improve mining performance for incrementally growing

databases, original databases still need to be scanned when

necessary. A good rule maintenance algorithm should thus

accomplish the following.

1. Evaluate large item sets in the original database and

determine whether they are still large in the updated

database;

2. Find out whether any small item sets in the original

database may become large in the updated database;

3. Seek item sets that appear only in the newly inserted

transactions and determine whether they are large in the

updated database. These are accomplished by the FUP

algorithm [34].

The FUFP-tree construction algorithm is based on the FP-

tree algorithm [15]. The links between parent nodes and
their child nodes are, however, bi-directional. Bi-directional

linking will help fasten the process of item deletion in the

maintenance process. Besides, the counts of the sorted

frequent items are also kept in the Header Table. An FUFP

tree must be built in advance from the original database

before new transactions come. When new transactions are

added, the FUFP-tree maintenance algorithm will process

them to maintain the FUFP tree. It first partitions items into

four parts according to whether they are large or small in the

original database and in the new transactions. Each part is

then processed in its own way. The Header Table and the
FUFP-tree are correspondingly updated whenever

necessary. Consider an original database and some

transactions to be deleted, the following cases may arise:

1. Case 1: An itemset is frequent both in original database

and in deleted transactions.

2. Case 2: An itemset is frequent in an original database

but not frequent in deleted transactions

3. Case 3: An itemset is not frequent in original database

but is frequent in deleted transactions

4. Case 4: An itemset is not frequent in both original

database and in deleted transactions.

Case 2 and 3 will not affect the final frequent itemsets.

Itemsets in case 1 are frequent in both the original database

and deleted transactions. Thus, some existing frequent

itemsets may be removed from the after the database is

updated. At last, itemsets in case 4 are infrequent in both

original database and in deleted transactions. Some frequent

item sets may thus be added it however, requires the

original database to be rescanned for rebuilding the FUFP-
tree of the final updated database. After that, the FP-growth

algorithm must be used to mine all FIs [15].

In order to reduce the need for rescanning the original

database, Lin et al. [35] proposed a pre-large tree structure

and designed an algorithm to rebuild the pre-large tree

based on the concept of pre-large item sets. The pre-large

tree is similar to the FUFP-tree. When some transactions are

deleted from the database, the pre-large-tree-based approach
will process them to maintain the pre-large tree. Unlike the

FUFP-tree-based approach, it partitions items into nine

cases according to whether they are large or pre-large or

small in the original database and in deleted transactions.

The summary of the nine cases and their results is given in

Table 1. The algorithm does not require the original

database to be rescanned until a number of deleted

transactions have been processed. When some transactions

are deleted from the database, some nodes are removed

from or inserted into the pre-large tree. After that, the FP-

growth algorithm is applied for the pre-large tree of the
entire database to mine all frequent item sets. So, the pre-

large-tree-based approach does not utilize item sets which

have been mined from the original database.

Hong et al. proposed the pre-large concept to reduce the

need of rescanning original database [35] for maintaining

association rules. A pre-large itemset is not truly large, but

may be large with a high probability in the future. A pre-

large itemset is not truly large, but may be large with a high

probability in the future. Two support thresholds, a lower

support threshold and an upper support threshold, are used

to realize this concept. The upper support threshold is the

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 125 | P a g e

same as that used in the conventional mining algorithms.

The support ratio of an itemset must be larger than the

upper support threshold in order to be considered large. On

the other hand, the lower support threshold defines the

lowest support ratio for an itemset to be treated as pre-large.

An itemset with its support ratio below the lower threshold
is thought of as a small itemset. Pre-large itemsets act like

buffers and are used to reduce the movements of itemsets

directly from large to small and vice-versa.

Considering an original database and some records to be

deleted by the two support thresholds, itemsets may fall into

one of the following nine cases illustrated in Figure 2.1.

Cases 2, 3, 4, 7 and 8 will not affect the final association

rules. Case 1 may remove some existing association rules,

and cases 5, 6 and 9 may add some new association rules. If

we retain all large and pre-large itemsets with their counts

after each pass, then cases 1, 5 and 6 can be handled easily.

Also, in the maintenance phase, the ratio of deleted records
to old transactions is usually very small. This is more

apparent when the database is growing larger. It has been

formally shown that an itemset in case 9 cannot possibly be

large for the entire updated database as long as the number

of transactions is smaller than the number f shown below

[35]:

Fig 2.1: Nine cases arising from original database and the

deleted records

f = (Su - Sl) * d / Su

Where f is the safety number of deleted records, Su is the

upper threshold, Sl is the lower threshold, and d is the

number of original transactions. The concept of pre-large

item sets was proposed by Hong et al. [5]. It uses two

thresholds, namely the upper threshold and the lower

threshold, to set the pre-large item sets. The upper threshold
is similar to min sup. The lower threshold defines the lowest

support ratio for an itemset that is to be treated as pre-large.

An itemset with a support ratio below the lower threshold is

seen as small. Hong et al. [35] also proposed the pre-large-

itemset algorithm. It is based on a safety number f of

inserted transactions to reduce the need for rescanning the

original database for the efficient maintenance of the large

item sets. A summary of the nine cases and their results are

given in Table 2.1.

Table 2.1: Nine cases and their results

Case: Original - Deleted Results

Case 1: Large - Large Large or pre-large or

small, determined from

existing information. Case 2: Large - Pre-Large Always large.

Case 3: Large - Small Always large.

Case 4: Pre-Large Large Pre-large or small,

determined from

existing information. Case 5: Pre-Large - Pre-
Large

Large or pre-large or
small, determined from

existing information. Case 6: Pre-Large - Small Large or pre-large,

determined from

existing information. Case 7: Small - Large Always small.

Case 8: Small - Pre-Large Always small.

Case 9: Small - Small Pre-large or small,

determined from

existing information.

IT-tree-based approach [36] is one of the famous

approaches for mining FIs in static transaction databases. It

is based on equivalence classes, scans the database only

once, uses the depth-first traversal technique to generate

item sets and to compute the supports of the item sets fast
by tidset intersections. This paper proposes an incremental

algorithm for handling of deleted transactions based on the

IT-tree structure and pre-large item sets. Like the pre-large-

tree-based approach, when transactions are deleted from the

database, the proposed approach will partition items into

nine cases according to whether they are large or pre-large

or small in the original database and in deleted transactions.

The summary of the nine cases and their results is given in

Table 1. Its main idea is to use the depth-first traversal

technique to update the final supports of the item sets from

their tidsets in deleted transactions. The supports of the item
sets in deleted transactions are computed by tidset

intersections. All FIs are mined using depth-first order

traversal. The advantage of the IT-tree-based approach is to

utilize item sets which have been mined from the original

database. The proposed algorithm only processes deleted

transactions for rebuilding the final IT-tree. Besides, the

concept of pre-large item sets is used to reduce the need for

rescanning the original database to save maintenance cost.

The algorithm does not require the original database to be

rescanned until many deleted transactions have been

processed.

The Borders algorithm is based on the notion of border sets,

introduced in [33]. A set X is a border set if all its proper

subsets are frequent sets (i.e., sets with at least minimum

support), but it itself is not a frequent set. Thus, the

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 126 | P a g e

collection of border sets defines the borderline between the

frequent sets and non-frequent sets, in the lattice of attribute

sets. The Border algorithm maintains the count information

for all frequent sets and all border sets in the current

relation. When an increment, RN, arrives, the increment

alone is scanned to obtain its support for all (previous)
frequent and border sets. From this information, we

compute (with no extra data access), the support of all

frequent and border sets in the combined relation.

Additional scans of the entire relation are performed only if

the support of some border set has reached the minimum

support threshold (thus turning into a frequent set). This

policy guarantees that the full relation is never scanned if

there is no new frequent set. Furthermore, even when

additional scans are required; monitoring the border sets

minimizes the amount of counting work performed during

these scans. The Borders algorithm also extended to handle

the case of deletions as well as when the support threshold
is changed.

III. INCREMENTAL DATA MINING ALGORITHM

USING PRE-LARGE AND BORDER ITEMSETS

Although the FUP algorithm [34] focuses on the newly
inserted transactions and thus saves much processing time

by incrementally maintaining rules, it must still scan the

original database to handle case 3 in which a candidate

itemsets is large for new transactions but is not recorded in

large itemsets already mined from the original database.

This situation may occur frequently, especially when the

number of new transactions is small. In an extreme

situation, if only one new transaction is added each time,

then all items in the transaction are large since their support

rations are 100% for the new transaction. Thus, if case 3

could be efficiently handled, the maintenance time could be
further reduced.

In [35] the authors proposed the concept of pre-large

itemsets to solve the problem represented by case 3. A pre-

large itemset is not truly large, but promises to be large

in the future. A lower support threshold and an upper

support threshold are used to realize this concept. The upper

support threshold is the same as that used in the

conventional mining algorithms. The support ratio of an

itemset must be larger than the upper support threshold in

order to be considered large. On the other hand, the lower

support threshold defines the lowest support ratio for an
itemset to be treated as pre-large. Pre-large itemsets act like

buffers in the incremental mining process and are used to

reduce the movements of itemsets directly from large to

small and vice-versa. Considering an original database and

transactions newly inserted using the two support

thresholds, itemsets may thus fall into one of the following

nine cases illustrated in Figure 3.1.

Cases 1, 5, 6, 8 and 9 above will not affect the final

association rules. Cases 2 and 3 may remove existing

association rules, and cases 4 and 7 may add new

association rules. If we retain all large and pre-large

itemsets with their counts after each pass, then cases 2, 3

and case 4 can be handled easily. Also, in the maintenance

phase, the ratio of new transactions to old transactions is

usually very small. This is more apparent when the database

is growing larger. An itemset in case 7 cannot possibly be

large for the entire updated database as long as the number
of transactions is small compared to the number of

transactions in the original database.

Fig 3.1 - The cases arises from adding new transactions

The algorithm proposed in [35] by using the pre-large

itemset is described as follows: The large and pre-large

itemsets with their counts in preceding runs are recorded for

later use in maintenance. As new transactions are added, the

proposed algorithm first scans them to generate candidate 1-

itemsets (only for these transactions), and then compares

these itemsets with the previously retained large and pre-

large 1-itemsets. It partitions candidate 1-itemsets into three

parts according to whether they are large or pre-large for the

original database. If a candidate 1-itemset from the newly

inserted transactions is also among the large or pre-large 1-

itemsets from the original database, its new total count for
the entire updated database can easily be calculated from its

current count and previous count since all previous large

and pre large itemsets with their counts have been retained.

Whether an originally large or pre-large itemset is still large

or pre-large after new transactions have been inserted is

determined from its new support ratio, as derived from its

total count over the total number of transactions. On the

contrary, if a candidate 1-itemset from the newly inserted

transactions does not exist among the large or pre-large 1-

itemsets in the original database, then it is absolutely not

large for the entire updated database as long as the number
of newly inserted transactions is within the safety threshold.

In this situation, no action is needed. When transactions are

incrementally added and the total number of new

transactions exceeds the safety threshold, the original

database is re-scanned to find new pre-large itemsets in a

way similar to that used by the FUP algorithm. The

algorithm can thus find all large 1-itemsets for the entire

updated database. After that, candidate 2-itemsets from the

newly inserted transactions are formed and the same

procedure is used to find all large 2-itemsets. This

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 127 | P a g e

procedure is repeated until all large itemsets have been

found.

3.1 Limitation of the incremental algorithm proposed in

[37]:

Once the number of added transactions crosses the safety

threshold value, the algorithm scans the database in level by

level. At each level it is considering all the large or

prelargeitemsets in the added database. The limitation of the

algorithm in [37] is the number of candidate itemsets are

very large at each level because of the number of
transactions added to the database is very less and the

threshold is used to qualify an itemset as a pre-large itemset

is also very small. The number of scans is also more as it is

level by level approach.

3.2 PROBLEM STATEMENT

Given a database D with n transactions, the set of large

itemsets, the prelargeitemsetsand borderitemsets, in D, the

lower and upper thresholds (Sl and Su) and the set of

transactions T. The algorithm must find the all the frequent

itemsets in the database U (where U = D + T) by using less

number of scans and with the less number of candidate

itemsets used at each level compared to the algorithm

proposed in [38].

3.3 NEW INCREMENTAL MINING ALGORITHM

BASED ON PRE-BORDER ITEMSET

Pre-Border Itemset- Anyitemset X is called pre-border

itemset if it is not a pre-large itemset and it is not a large

itemset, but all its proper subsets are either large itemsets or

pre-large itemsets.

The proposed new incremental mining algorithm

INPUT: A lower support threshold Sl, an upper support

threshold Su, a set of large itemsets L, pre-large itemsets

PL, and set of border itemsets B in the original database
consisting of (d + c) transactions (where d is the number of

transactions in the original database and c is the transactions

added previously to the original database), and a set of new

|T| transactions.

OUTPUT: A set of final frequent itemsets for the updated

database U (U = D + T).

STEP 01: Calculate the safety number f of new

transactions by using the following formulae:

 f = (Su - Sl) * |T| / 1-Su.

STEP 02: Scan T and find the count C(X, T), for all X ϵ

L U PL U B.

STEP 03: For all X ϵ B U L U PL {

STEP 04: C (X, DUT) = C(X, D) + C(X, T).

 STEP 05: S(X, DUT) = C(X, DUT) / |D| + |T| }

STEP 06: PB = {X ϵ B | S(X, DUT) ≥ Sl}

STEP 07: L = {X ϵ L U PL U PB| S(X, DUT) ≥ Su}

STEP 08: PL = {X ϵ L U PL U PB | S(X, DUT) <Su

AND S(X, DUT) ≥ Sl}

STEP 09: B = {X | for all x ϵ X, X - {x} ϵ L U PL}

STEP 10: m = max{i | PB(i) <> Φ}

STEP 11: L0 = Φ, PL0 = Φ, i = 1.
STEP 12: while (Li<> Φ or PL0<>Φ i ≤ m AND c + |T| >

f } {

STEP 13: Ci+1 = { X | |X| = i+1, for some x, X -{x} ϵ

PB U L or X-{x} ϵ L(i) U Li}

STEP 14: Scan {DUT} and obtain C(X, DUT} for all X

ϵ Ci+1

STEP 15: Li+1 = {X | X ϵ Ci+1, S(X, DUT) ≥ Su}

STEP 16: PLi+1 = {X | X ϵ Ci+1, S(X, DUT) < Su AND

S(X, DUT) ≥ Sl}

STEP 17: L = L U Li+1, PL = PL U PLi+1, B = B U

(Ci+1 - Li+1 - PLi+1}

STEP 18: i = i + 1. }
STEP 19: If |T| + c > f then set c = 0; Otherwise set c = c

+ |T|. Update D (D= DUT).

Where T is a new data added to old data D. We assume that

for each border or frequent set X in old data D, the count

c(X, D) is already known from the previous stage. (We may

assume starting from the empty set, with Φ as the only

frequent set). The algorithm starts by scanning the new

relation D and updating the counters of all large itemsets,

pre-large itemsets and pre-border item sets (line 2-5). The

new support of a set X is its count divided by the new total
size. Note that since the size of the relation is now larger,

some previous large or pre-large sets may not be large or

pre-large any longer. Thus, the new large or prelarge and

pre-border sets are determined (lines 7–9). Beforehand, the

set of promoted pre-borders is determined (in step 6). A pre-

border set X (of D) is said to be promoted pre-border if after

the increment T its support reaches the minimum support

threshold Sl, (and hence became large of pre-large item

sets). Next, the candidates are generated (lines 13). Their

count is obtained by scanning the entire database (line 14).

Based on the count, the new large or pre-large sets and pre-

border sets are determined (line 17). Candidate generation
and counting works in a sequence of rounds, where in round

i candidates of size i are generated and checked. The

candidates of size i+1, denoted by Ci+1, are generated based

on the new sets of size i (Li), the promoted pre-borders of

size i, and the old large or prelarge sets of size i. The

notation PB(i) denotes the promoted pre-borders of size i.

Similarly, L(i), denotes the large item sets of size i. The

procedure is based on the fact, that a set need be considered

as a candidate only if it has a subset that is a promoted pre-

border.

3.4 AN EXAMPLE

In this section, an example is given to illustrate the

proposed new incremental data mining algorithm. Suppose

a database with eight transactions such as the one shown in

Table 3.1 is to be mined. The database has two features,

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 128 | P a g e

transaction identification (TID) and transaction

description(Items). For Sl=30% and Su=50%, the sets of

large itemsetsand pre-large itemsets for the given data are

shown in Tables 3.2 and 3.3, respectively.

Table 3.1 - An original database with TID and Items

TID Items

100 ACD

200 BCE

300 ABCE

400 ABE

500 ABE

600 ACD

700 BCDE

800 BCE

Table 3.2 -The Large itemsets for the original database

Large Itemsets

1-item Count 2 items Count 3

items

Count

A 5 BC 4 BCE 4

B 6 BE 6

C 6 CE 4

E 6

Table 3.3 -The Pre-Large itemsets for the original database

Pre- Large Itemsets

1-

item

Count 2 items Count 3 items Count

D 3 AB 3 ABE 3

 AC 3

 AE 3

 CD 3

Table 3.4 -The Pre-Border itemsets for the original database

Pre- Border Itemsets

1-item Count 2 items Count 3

items

Count

 AD 2 ABC 1

 BD 1

 DE 1

Using a conventional mining algorithm such asApriori

algorithm, all large itemsets with counts larger than or equal

to 4 (8∗50%) are found, as shown in Table 3.2 and the all

pre-large itemsets (which are not large itemsets) with their
support count larger than or equal to 3 (8*30%) are found

and shown in table 3.3. Table 3.4 shows the all the border

itemsets in the given original database shown in table 3.1.

Table 3.5 - An incremental database with TID and Items

TID Items

900 ABCD

1000 BCD

1100 ABCDE

1200 BCD

Assume the four new transactions shown in Table 3.5 are

inserted after the initial data set is processed. The proposed

incremental mining algorithm proceeds as follows. The
variable c is initially set at 0.

STEP 1: The safety number f for new transactions is

calculated as:

 f = (Su - Sl) * d / 1-Su = ((0.5 - 0.3) * 8 / (1-
0.5) = 3.

STEP2: Find the count of large itemsets, pre-large itemsets

and border itemsets in T.

 Table 3.6 -Count of Large itemsets in T

Large Itemsets

1-item Count 2 items Count 3

items

Count

A 2 BC 4 BCE 1

B 3 BE 1

C 4 CE 1

E 1

Table 3.7 - Count of Pre-Large itemsets in T

Pre- Large Itemsets

1-
item

Count 2
items

Count 3
items

Count

D 4 AB 2 ABE 1

 AC 2

 AE 1

 CD 4

Table 3.8 - Count of Pre-Border itemsets in T

Pre- Border Itemsets

1-

item

Count 2 items Count 3

items

Count

 AD 2 ABC 2

 BD 4

 DE 1

Table 3.9 - Promoted Pre-Border itemsets

Promoted Pre- Border Itemsets

1-

item

Count 2 items Count 3

items

Count

 AD 4

 BD 5

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 129 | P a g e

After updating all the sets the resultants large, pre-large and

pre-border set are like the following:

L = {A, B, C, D, E, BC, BE, CD}

PL = {AB, AC, AD, BD, AE, CE, ABE, BCE}

Pre-Border = {DE, ABC, ABD, ACD, ACE, BCD}

As the value of f is less than the number of transactions T so
the algorithm runs steps 12 to 19 and these steps runs twice.

First time it verifies whether DE become large or pre-large

and second time it verifies the remaining three length

itemsets become large or pre-large and only ACE and BCD

will move from border itemsets to pre-large itemsets. At the

end the set of large, prelarge and pre-border itemsets are

shown in the tables 3.10 to 3.11.

Table 3.10 -The Large itemsets for the updated database

Large Itemsets

1-item Count 2 items Count 3

items

Count

A 7 BC 8

B 9 BE 7

C 10 CD 7

D 7

E 7

Table 3.11 -The Pre-Large itemsets for the updated database

Pre- Large Itemsets

1-

item

Count 2 items Count 3 items Count

 AB 5 ACE 4

 AC 5 BCD 5

 AE 4

 AD 4

 BD 5

Table 3.12 -The Pre-Border itemsets for the updated

database

Pre- Border Itemsets

1-item Count 2 items Count 3

items

Count

 DE 2 ABC 3

 ABD 2

 ACD 2

In this section, we have proposed designed a novel,

efficient, incremental mining algorithm based on pre-large

itemset and border itemset.. Using two user-specified

upper and low support thresholds, the pre-large itemsets act

as a gap to avoid small itemsets becoming large in the

updated database when transactions are inserted. Our

proposed algorithm also retains the following features of the

FUP algorithm

1. It avoids re-computing large itemsets that have already

been discovered.

2. It focuses on newly inserted transactions, thus greatly

reducing the number of candidate itemsets.

3. It uses a simple check to further filter the candidate

itemsets in inserted transactions.

Moreover, the proposed algorithm can effectively handle

different cases; in which itemsets

are small in an original database but large in newly inserted

transactions can be considered for scanning if and only if it

becomes a pre-border itemset, although it does need

additional storage space to record the pre-large itemsets.

Note that the FUP algorithm needs to rescan databases to

handle such cases. The proposed algorithm does not require

rescanning of the original databases until a number of new

transactions determined from the two support thresholds

and the size of the database have been processed. If the size

of the database grows larger, then the number of new
transactions allowed before rescanning will be larger too.

Therefore, as the database grows, our proposed approach

becomes increasingly efficient. This characteristic is

especially useful for real-world applications.

IV. RESULTS

All the datasets used in our experiments are synthetic

datasets generated by using a random function. In each of

the experiments we fixed an initial database, consisting of

100 transactions. We then added an increment set, again by

randomly generating the transactions, and measured the
performance of the algorithms when producing the frequent

set for the combined data set.In our first experiment, we

measured the performance of the algorithms with varying

increment sizes. The support threshold was set to 8%. We

varied the increment size from 25 records (25% the size of

the original set) to 50 records (50%), in increments of

25.The average times are depicted in graphs (each point is

averaged over ten experiments).The new incremental

algorithm exhibits improved performance throughout the

entire range. Theperformance gain ranges from over 30-fold

for the small increments (25%), to 3–4 fold for very large

(25-50%) increments.The main advantage of the algorithm
is due to the small number of times the entiredatabase (old

and new) must be scanned. Figure 7 depicts the average

number of fulldatabase passes each of the algorithms

required for the different increment sizes.

The first experiment we conducted on the synthetic

database of size 100 and incremental size increases from 25,

30, 35, 40, 45, and 50, the number of items we considered

in this data set is 15. The following are the statistics we

obtained by applying this dataset on our proposed

algorithm.

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 130 | P a g e

Fig 4.1 - #passes Vs # transactions on synthetic dataset -1

Fig 4.2 - Running time Vs # transactions on synthetic

dataset -1

Fig 4.3 - #passes Vs # transactions on synthetic dataset -2

Fig 4.4 - Running time Vs # transactions on synthetic

dataset -2

The graphs 4.1 to 4.4 show the algorithms scalable if the

number of transactions and the increments are also

increases. The running time of the algorithms are also

shows the time it takes for executing the program is an

acceptable one.

V. CONCLUSION
In this paper, we have presented the detailed literature

survey on different incremental mining algorithms and also

we studied the different cases need to be consider in

designing the incremental mining algorithms. We proposed

a novel, efficient, incremental mining algorithm based on

pre-large itemset and border itemset. It uses the following

thresholds.

1. Upper threshold

2. Lower threshold.

The pre-large itemsets act as a gap to avoid small itemsets

becoming large in the updated database when transactions

are inserted. Our proposed algorithm also retains the
following features of the FUP algorithm. It avoids re-

computing large itemsets that have already been discovered.

It focuses on newly inserted transactions, thus greatly

reducing the number of candidateitemsets. It uses a simple

check to further filter the candidate itemsets in inserted

transactions. Moreover, the proposed algorithm can

effectively handle the different cases, in which itemsetsare

small in an original database but large in newly inserted

transactions can be considered for scanning if and only if it

becomes a pre-border itemset; although it does need

additional storage space to record the pre-large itemsets.
Note that the FUP algorithm needs to rescan databases to

handle such cases. The proposed algorithm does not require

rescanning of the original databases until a number of new

transactions determined from the two support thresholds

and the size of the database have been processed. If the size

of the database grows larger, then the number of new

transactions allowed before rescanning will be larger too.

Therefore, as the database grows, our proposed approach

becomes increasingly efficient. This characteristic is

especially useful for real-world applications.

VI. REFERENCES
[1]. Agrawal A. Imielinski T., and Swami A., "Mining

Association Rules between Sets of Items in Large
Databases," In SIGMOD ’93 Procedings of the International
Conference on Management of Data, Washington, D.C., pp.
207-216, 1993.

[2]. Agrawal R., and Srikant R., "Fast Algorithms for Mining
Association rules," In VLDB'94 Proceedings of the
International conference on Very Large Databases, Santiago
de Chile, Chile, pp. 487-499, 1994.

[3]. Agrawal R., and Srikant R., "Mining sequential patterns," In
ICDE’95 Proceedings of the 11th International Conference
on Data Engineering, Taipei, Taiwan, pp 3-14, March 1995.

[4]. Ahmed F., Tanbeer K., Jeong J., and Lee K., "Efficient Tree
Structures for High Utility Pattern Mining in Incremental
Databases", IEEE transactionsons on Knowledge and Data
Engineering, vol.21, no.12, 2009.

[5]. Ale M., and Rossi H., "An approach to discovering temporal
association rules," In SAC’00 Proceedings of the 2000 ACM

0

2

4

6

0 50 100 150

N
u

m
b

e
r

o
f

p
as

se
s

Number of transactions

0

5

10

15

20

0 50 100 150

Ti
m

e
 (

se
c)

Number of transactions

0

1

2

3

4

5

0 50 100 150

N
u

m
b

er
 o

f
p

as
se

s

Number of transactions

0

5

10

15

20

0 50 100 150

Ti
m

e
(S

e
c)

Number of transactions

Time

Linear (Time
)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 131 | P a g e

Symposium on Applied Computing, pp. 294-300, Como, Italy,
2000.

[6]. Bashar S., and Masseglia F., "Discovering the behaviours:
time is an essential element of the context", Knowledge and
Informations systems, Vol 28, no. 3, 311-331, August 2011.

[7]. Brigis T., Swinnen G., Vanhoof K., and Wets G., "Using
Association Rules for Product Assortment Decessions: A
Case Study," Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, San Diego, CA, USA, pp. 254-260, 1999.

[8]. Burdick D., Calimlim, M., and Gehrke J. "MAFIA: A
Maximal Frequent Itemset Algorithm,"IEEE transactionson
Knowledge and Data Engineering, Vol. 17, No. 11, 2005.

[9]. Calders T. and Goethals B., "Depth-first non-derivable
itemset mining," In SDM 2005 Proceedings of the fifth
International Conference on Data Mining, California, USA,
pp. 250-261, 2005.

[10]. Chen F., and Li M., "A Hybrid method for discovering
maximal frequent itemsets," In FSKD 2008 Proceedings of
the Fifth International Conference on Fuzzy Systems and
Knowledge Discovery, Jinan, Shandong, China, pp. 546-550,

2008.

