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Geometric Methods for Resilient Aggregation and Safe Point
Computation in Adversarial Multiagent Networks with Imprecise Data

Christopher A. Lee and Waseem Abbas

Abstract—This paper studies resilient data aggregation in
multiagent networks subject to both adversarial agents and
imprecise state observations. We show that existing algorithms,
which assume exact state information, fail under such dual
uncertainty. To address this, we propose a geometric approach
that models each agent’s state as an imprecision region (in Rd)
containing the true state. We present the Centerpoint of Impre-
cision Hulls (CPIH) algorithm, which takes these regions—some
corresponding to adversarial agents—as inputs and computes a
point guaranteed to lie within the convex hull of the normal
agents’ true states, despite unknown adversary identities and
true state locations. We thoroughly analyze the algorithm’s theo-
retical guarantees and apply it to the resilient distributed vector
consensus problem. Furthermore, we extend the framework to
dynamic settings where these regions shrink as agents move
closer together, deriving sufficient conditions for exact consensus
in a multiagent network despite access to only imprecise states
and adversarial presence. Numerical evaluations validate the
method’s effectiveness.

I. INTRODUCTION

In distributed multiagent networks, agents collaborate to
accomplish complex tasks by exchanging information. Their
ability to make optimal decisions critically depends on the
integrity of this shared data. However, the presence of false
or misleading information–stemming from adversarial intent
or system failures–can significantly degrade network per-
formance. Ensuring resilience to such abnormal agents is
therefore fundamental to the reliable operation of multiagent
systems. Extensive research has been devoted to developing re-
silient data aggregation techniques in the context of distributed
optimization, including consensus, estimation, diffusion, learn-
ing, and clustering. These efforts have resulted in various
algorithms and structural conditions that enhance resilience
(e.g., [2]–[11]). The primary objective of these methods is
to mitigate or eliminate the influence of adversarial agents,
whose identities remain unknown, while ensuring the normal
execution of collaborative tasks [12]–[28].

Among the most widely studied approaches are trimming-
based methods, where the key idea is to discard extreme values
and aggregate the remaining ones. A notable example is the
family of Mean Subsequence Reduced (MSR)-type algorithms
(e.g., [3], [14], [20], [26], [29]), in which each agent collects
state values from its neighbors and discards the f largest and
smallest values before performing an update. The parameter f
is determined by the worst-case number of adversarial agents,
the network topology, and the specific distributed task. Another
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widely adopted approach, particularly for vector-valued states
in Rd, exploits the geometric properties of data. Given a set
of n points, where up to f points may be adversarial, the goal
is to compute a safe point—a point that is guaranteed to lie
within the convex hull of the normal (non-adversarial) points.
Notable techniques in this category include Tverberg partition-
based safe point computation (e.g., the ADRC algorithm [12])
and the centerpoint-based aggregation methods [13], [30].

However, existing resilient solutions assume that agents
can precisely observe their neighbors’ unperturbed states—an
assumption rarely met in practice due to sensor noise, en-
vironmental fluctuations, and hardware constraints [31]–[35].
We show that such measurement errors can accumulate over
time, leading even well-designed resilient algorithms to fail,
despite adherence to prescribed network conditions and limits
on adversarial agents. This underscores the need for new
strategies that enable agents to resiliently aggregate data in
the presence of adversarial neighbors and uncertainty in state
observations, even from non-adversarial agents.

To address this challenge, we propose a resilient data
aggregation framework for distributed multiagent systems in
which agents observe their neighbors’ states with bounded
imprecision. Specifically, we model each observed state as
deviating from its true value by a displacement vector of
bounded magnitude—termed the radius of imprecision—such
that an agent perceives regions that contain the true states
of its neighbors. This uncertainty is further exacerbated by
the presence of adversarial agents, whose identities remain
unknown. We present an aggregation algorithm that enables
an agent to compute a safe point—a point guaranteed to lie
within the convex hull of the true states of normal (non-
adversarial) neighbors—despite lacking direct access to these
states or the ability to identify adversaries, as illustrated in Fig-
ure 1. Our approach builds on centerpoint-based aggregation
methods, extending the concept of a centerpoint, which is a
generalization of the median in higher-dimensional spaces, to
operate on regions rather than discrete points in Rd. We further
establish theoretical conditions on the radius of imprecision
and the number of adversarial agents to ensure that the safe
point exists and remains within the convex hull of the normal
neighbors’ true states. While applicable to any distributed op-
timization task requiring resilient aggregation, we demonstrate
our method’s efficacy through resilient distributed consensus.

When the radius of imprecision in agents’ state observations
becomes excessively large, the resulting uncertainty may pre-
clude the existence of a safe point, making its computation
infeasible using existing methods. To address this, we extend
our framework to a dynamic setting where the radius of
imprecision decreases over time—a realistic assumption in
systems where agents improve state observation precision as
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Fig. 1: (a) There are six agents, where any one agent may
be adversarial. Instead of knowing the agents’ true states, we
only have access to ‘observed regions’ containing these true
states. Our algorithm computes the safepoint region, ensuring
that all points within it lie inside the convex hull of the normal
agents’ true states. (b) An example where the true states of
five normal agents are shown, along with the convex hull of
their true states (blue region). Notably, the safe point region
(yellow) is entirely contained within the convex hull.

they converge spatially. In resilient distributed consensus, for
instance, agents aim to reach agreement on a common point,
leading to reduced inter-agent distances and, consequently,
decreasing observation uncertainty. We derive sufficient con-
ditions on the decay rate of the radii of imprecision for normal
(non-adversarial) agents, ensuring that a safe point exists and
remains computable at each time step. As a concrete example,
we demonstrate that under these conditions in resilient dis-
tributed consensus, all normal agents converge to a common
state within the convex hull of their initial states.

We summarize our key contributions as follows:
• We propose a resilient data aggregation framework for

multiagent systems where agents observe neighbors’
states with bounded imprecision, modeled as regions
containing true states. We show that existing resilient
aggregation methods (e.g., the Centerpoint based method)
fail in this setting, even when the number of adversarial
agents is within prescribed limits.

• We propose handling imprecise state observations by
replacing point-based representations in Rd with impreci-
sion regions—sets that contain the true states of agents.
We further introduce the concept of the invariant hull,
which represents the largest region guaranteed to be
contained within the convex hull of agents’ true states
despite only knowing imprecise observations. We then
provide a geometric characterization of invariant hulls and
present an efficient algorithm for their computation.

• We develop a resilient aggregation method—Centerpoint
of Invariant Hulls (CPIH)—that leverages intersecting
subsets of invariant hulls to identify a safe point within a
normal agent’s neighborhood, even when it contains up to
Ni

d+1−1 adversarial agents. This safe point enables normal
agents to update their states while effectively rejecting ad-
versarial misinformation and compensating for imprecise
observations of neighbors’ states. As an application, we
apply this method to the resilient distributed consensus
problem and also perform numerical evaluations.

• We extend our framework to account for dynamic impre-

cision, where the size of imprecision regions decreases
as agents move closer together. We derive a sufficient
condition on the rate of imprecision decay that guarantees
the continued existence of safe points, ensuring that nor-
mal agents ultimately achieve exact resilient consensus
despite adversarial agents and state imprecision via the
Dynamically bounded CPIH (DB-CPIH) algorithm. We
also illustrate the efficacy through simulations.

The rest of the paper is organized as follows: Section II
introduces the preliminaries and notation. Section III reviews
existing resilient algorithms and highlights their limitations
in the presence of imprecise state observations. Section IV
introduces the concept of the invariant hull, discusses its
computation, and explains its significance. Section V presents
the Centerpoint of Invariant Hulls (CPIH) algorithm for re-
silient aggregation, while Section VI extends CPIH to handle
dynamic imprecision. Finally, Section VII concludes the paper.

II. PRELIMINARIES

We consider an undirected graph G = (V,E), modeling a
multiagent network. Here, V is the set of agents and E denotes
the interactions between them. An edge connecting agents
vi and vj is represented by the unordered pair (vi, vj). The
terms agent and node are used interchangeably. Each agent
vi ∈ V possesses a d-dimensional state vector, denoted by
xi(t) ∈ Rd, that evolves over time t. The neighborhood of vi
is the set of nodes Ni = {vj ∈ V : (vi, vj) ∈ E} ∪ {vi}
(node vi is included in its neighborhood). If the underlying
communication network may change over time, Ni(t) denotes
the neighborhood of vi at time t. For a given set of points
X ⊂ Rd, its convex hull is denoted by Conv(X). Addi-
tionally, we use the terms points and states interchangeably.
The network comprises agents categorized as either normal
or adversarial. Normal agents, denoted by Vn ⊆ V , engage
in synchronous interactions with their neighbors and update
states based on a predefined consensus algorithm. Conversely,
adversarial agents, denoted by Vf ⊂ V , can modify their
states arbitrarily. An adversarial agent can transmit distinct
values to different neighbors, following the Byzantine model.
Importantly, a normal node cannot discern which neighbors
are adversarial.

State Imprecision – We consider a setting where each
agent possesses only imprecise information about the states
of its neighbors. Specifically, when an agent vi interacts with
a neighboring agent vj , it observes vj’s state with some
degree of imprecision, which may arise from factors such
as calibration errors, hardware inaccuracies, or measurement
uncertainties. We denote vi’s imprecise observation of agent
vj’s state at time t as ri(j)(t). If xj(t) is the true state of vj
at time t, we assume:∥∥∥ri(j)(t)− xj(t)

∥∥∥ ≤ δj(t),

where δj(t) is the imprecision radius associated with vj at
time t. This means that agent vi associates an imprecision
region with vj , denoted as

Bi(j)(t) =

{
p ∈ Rd :

∥∥∥p− ri(j)(t)
∥∥∥ ≤ δj(t)

}
,
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which ensures that the true state of vj , i.e., xj(t) must lie
within this region. In the fixed imprecision setting, we assume
that the imprecision radius for each normal agent remains
constant over time, i.e., δi(t) = δ for all t > 0, where δ is a
known parameter. We note that our methods, developed across
subsequent sections, apply to imprecision regions modeled as
arbitary polytopes of uniform orientation in Rd. However, the
d-dimensional ball simplifies distance computations due to its
symmetry, so we adopt the Euclidean ball (as in Figure 2(b))
or the L∞ ball (a hypercube, Figure 2(c)) as natural models
throughout this paper.

xj
ri(j)

δ

vi

vj

(a) (b) (c)

xj

ri(j)

δ

Fig. 2: (a) Agents vi and vj are neighbors with true states xi

and xj in R2, respectively. (b) Imprecision region associated
by vi with vj , where ri(j) represents agent vi’s observation of
vj’s state. (c) An alternative imprecision model with a d∞-ball
imprecision region, where the deviation between the observed
state and the true state in each dimension is at most δ.

In Section VI, we consider the dynamic imprecision set-
ting, where δi(t) evolves over time. Imprecision regions may
generally differ across observing agents, i.e., Bi(j) ̸= Bk(j)

for i ̸= k, reflecting distinct perspectives on vj’s state.
However, for clarity, we simplify the notation to Bj whenever
the identity of the observing agent is not relevant to the
discussion. Table I provides a summary of the notation that
will subsequently be explicitly defined.

xi(t) True state of vi at time t.
ri(j)(t) Observed state of vj by vi at time t.
δi(t) Imprecision radius of vi at time t.

RNi(t)
Set of observed states of the neighbors
of vi at time t, i.e., {ri(j)(t) : vj ∈
Ni(t)}.

Bi(j)(t)
Imprecision region associated with agent
j, centered at ri(j)(t).

BNi(t) The set of imprecision regions for the
neighbors of agent vi at time t, i.e.,
{Bi(j)(t) : vj ∈ Ni(t)}.

P (BNi(t))
Potential configuration, consisting of a
selection of one point from each impre-
cision region in Ni(t).

P(BV )
The set of all potential configurations
given a set of imprecision regions BV .

IHull(BNi
(t))

Invariant hull, consisting of points that
are in the convex hull of every potential
configuration of BNi(t).

TABLE I: Notation.

To illustrate our methods, we focus on the resilient vector
consensus problem, which we define below.

Resilient Consensus Problem – In a network containing
both normal and adversarial agents, the objective of resilient
vector consensus is to design a distributed protocol that
ensures all normal agents update their states to eventually
converge on a common state. This common state must lie
within the convex hull of their initial states, denoted as
Xn(0) = {x1(0), x2(0), · · · , xn(0)}. The protocol must sat-
isfy the following conditions:

• Safety: At any time step t, the state of any normal node
vi must lie within Conv(Xn(0)).

• Agreement: For every ϵ > 0, there exists a time
tϵ, such that for any two normal agents vi and vj ,∥∥xi(t)− xj(t)

∥∥ < ϵ for all t > tϵ.
Next, we review existing resilient consensus solutions and
discuss how imprecision in agent state information can affect
their performance.

III. EFFECT OF IMPRECISION

In this section, we demonstrate that existing resilient ag-
gregation methods fail when subjected to imprecision. Specif-
ically, we illustrate this in the context of the resilient vector
consensus problem. The centerpoint-based resilient consensus
algorithm (CP algorithm) achieves optimal resilience, guar-
anteeing the convergence of all normal agents to a common
point despite the presence of the maximum tolerable number
of adversarial agents in each normal agent’s neighborhood
(as detailed below). We begin with a brief review of the CP
algorithm and then show how state imprecision leads to its
failure, as well as the failure of other existing imprecision-
unaware algorithms, in computing valid safe points, thereby
undermining resilient consensus.

A. Resilient Consensus with No Imprecision

A variety of resilient consensus algorithms that have been
proposed to accommodate both scalar and multi-dimensional
states, e.g., [2], [3], [12]–[23], [28], [29]. In the general
case, where states have dimension (d > 1), these algorithms
typically follow a common structure: at each step of the
consensus process, normal nodes compute a point that lies
within the interior of the convex hull of their normal neigh-
bors’ states. They then update their states by moving toward
this point, referred to as the safe point. Computing a safe
point is a challenging problem, and various techniques have
been developed to achieve this. Among them, the centerpoint-
based resilient consensus algorithm (CP algorithm) stands
out due to its superior resilience—in terms of the maximum
number of tolerable adversarial agents. The CP algorithm
computes a centerpoint of the agents’ states and uses it as the
safe point. The concept of a centerpoint, a high-dimensional
generalization of the median, is formally defined as follows.

Definition 3.1. (Centerpoint) Given a set S, of N points in Rd,
a centerpoint p is a point with the property that every closed
halfspace of Rd containing p must also contain at least N

d+1
points of S.
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The set of all centerpoints is referred to as the centerpoint
region. Figure 7 illustrates an example. There are six points
in R2, and any line passing through a centerpoint divides
these six points into two regions, each containing at least two
points, as in Figures 7(a) and (b). Figure 7(c) illustrates the
centerpoint region for the given example.

(a) (b) (c)

Fig. 3: Illustration of centerpoint. In (a) and (b), centerpoint is
denoted by ‘×’ and lines are passing through the centerpoint.
The green shaded region in (c) is the centerpoint region.

The notion of a centerpoint provides a complete character-
ization of the safe point. It is shown in [13] that a safe point
for an agent vi is essentially a centerpoint of its neighbors’
states, provided that that the number of adversaries in the
neighborhood of vi is bounded by |Ni(t)|

d+1 . Here, d is the
dimension of the state and |Ni(t)| is the number of neighbors
of vi. If the number of adversarial agents exceeds this bound,
a safe point may not exist, underscoring the CP algorithm’s
utility in maximizing resilience.

Now, a resilient consensus algorithm based on centerpoints,
assuming no imprecision—agents observe their normal neigh-
bors’ states exactly—can be designed as follows:

• In each iteration t, a normal agent vi gathers the state
values of its neighbors in Ni(t), and computes a safe
point si(t) by determining a centerpoint of neighbors’
states.

• Agent vi updates its states as follows:

xi(t+ 1) = αi(t)si(t) + (1− αi(t))xi(t), (1)

where αi(t) ∈ (0 1) is a dynamically chosen parameter
whose value depends on the application [12].

Next, we examine how the above resilient consensus algo-
rithm, as well as other safe point-based approaches, perform
when agent states are subject to bounded imprecision.

B. Failure of Resilient Solutions Under Imprecision

Resilient consensus algorithms rely on agents computing
safe points within the convex hull of their non-adversarial
neighbors’ true states. Under state imprecision, however, these
true states are unknown, and methods that ignore imprecision
may fail to produce valid safe points. It is important to
note that when state values are subject to fixed imprecision,
achieving true consensus is, in general, impossible. However,
a resilient consensus algorithm should, at minimum, ensure
approximate consensus—that is, rather than guaranteeing that
all normal agents converge to an exact common point, they
should converge within a bounded region contained inside
the convex hull of their initial states. Unfortunately, existing

resilient consensus algorithms may fail to achieve even ap-
proximate consensus. For example, a centerpoint computed
by a normal agent based on the observed states (which are
affected by imprecision) of its neighbors does not necessarily
lie within the convex hull of the true states of its normal
neighbors. Consequently, the computed centerpoint is not a
valid safe point. Figure 4 illustrates this issue.

In Figure 4(a), we consider a scenario with six agents in
the neighborhood of a normal agent vi (including vi itself).
Among them, the red agent vf is adversarial, but vi remains
unaware of which agent is adversarial. Each agent’s state has
an associated imprecision region, which is assumed to be a
square. The centerpoint region computed based on observed
states (represented by ‘•’) is highlighted in green, whereas
the convex hull of normal agents’ true states (indicated by
‘×’) is depicted as gray. Figure 4(b) highlights the challenge
posed by imprecision. The centerpoint region, computed using
observed states, fails to remain entirely within the convex
hull of the normal agents’ true states. Consequently, agent
vi may select a centerpoint (indicated by ’◦’) that is not
a safe point. This, in turn, causes vi to update its state in
a direction outside the convex hull of the normal agents’
true states, thereby violating the safety condition required for
resilient consensus. We note that a similar issue arises with
other imprecision region geometries, such as circular regions,
further highlighting the pervasive challenge that imprecision
poses across different modeling assumptions.

vi xi

: true state : observed state

: normal nodes’

: imprecision region

convex hull : CP region of vi

vf

(a) (b)

Fig. 4: Centerpoint region based on the observed states is not
contained entirely in the convex hull of normal agents’ true
states.

Figure 5 illustrates the behavior of the resilient consensus
algorithm with and without state imprecision. The setup con-
sists of six agents, all of whom are pairwise adjacent, with one
adversarial agent. In the absence of imprecision, all normal
agents converge within the convex hull of their initial states
despite the adversary, as shown by their state trajectories in
Figure 5(a). However, under imprecision (modeled as square
regions), the resilient consensus algorithm fails. As depicted
in Figure 5(b), normal agents do not remain within the convex
hull of their initial states and instead continue to drift farther
away, demonstrating the disruptive impact of imprecision.

The primary challenge stems from the inability to reliably
compute a safe point when observed states are imprecise. This
necessitates the development of new approaches to ensure the
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(a) (b)

Fig. 5: (a) Normal agents achieve resilient consensus with no
imprecision. (b) Normal agents do not converge within the
convex hull of normal agents’ initial states due to imprecision.

accurate computation of safe points despite imprecision. In the
next section, we address this problem.

IV. RESILIENCE IN THE PRESENCE OF IMPRECISION

In this section, we develop an aggregation method that
enables normal agents to compute safe points even when
encountering imprecise state values from their neighbors.

Formally, the problem we address is as follows:

Resilient Consensus with Fixed Imprecision – For a net-
work containing both normal and adversarial agents, assume
that each normal agent observes imprecise estimates of its
neighbors’ states, such that the true state vectors are known
to lie within a fixed error bound around these observations.
The objective is to design a distributed protocol that ensures
all normal agents update their states in a way that guarantees
convergence to a final value within the convex hull of the initial
states of the normal agents, despite the presence of adversarial
agents and observation imprecision. Specifically, the protocol
must satisfy the following conditions:

• Approximate Agreement:
1) For all t > 0, Conv(Xn(t)) ⊆ Conv(Xn(0)).
2) The protocol must reach a final state X∗

n = X(t∗) ⊂
Xn(0) for some t∗ > 0, such that for all t′ > t∗

Xn(t
′) = X∗

n.
Next, we will discuss existing resilient consensus solutions

and the impact that imprecision of agent states may have on
their performance. When a normal agent vi observes an impre-
cise state of its neighbor vj , the agent vi essentially perceives
an imprecision region associated with vj containing the true
state value of vj . Thus, vi effectively observes a collection of
such imprecision regions corresponding to its neighbors. By
selecting one value (a point) from each imprecision region,
we define a potential configuration of the agents’ states.
Notably, the true states of the agents represent only one among
infinitely many possible potential configurations. Our goal is
to identify the largest region—termed the invariant hull—
contained within the convex hull of every possible potential
configuration of agents’ states. By construction, the invariant
hull is always a subset of the convex hull of the agents’ true
states. At a high level, the invariant hull for a given set of
imprecision regions is akin to the convex hull of a given set
of points. Figure 6 illustrates these concepts.

Figure 6(a) shows a set of imprecision regions (blue boxes)
and the associated invariant hull. Figure 6(b) presents one
potential configuration (set of points in imprecision regions
indicated by ‘×’) and the associated convex hull of the poten-
tial configuration (gray shaded region). Notably, the invariant
hull is a subset of the convex hull of the selected potential
configuration shown. This property holds for any potential
configuration—regardless of how points are selected from the
imprecision regions, the invariant hull will always be contained
within the convex hull of that configuration.

invariant
hull

imprecision
region

(a)

invariant
hull

conv. hull of a
potential config.

(b)

Fig. 6: (a) Invariant hull of a set of imprecision regions.
(b) Invariant hull is a subset of the convex hull of an arbitrary
potential configuration.

We now summarize some notation and formally define
invariant hull. For convenience, we will omit the time depen-
dence (t) in notation when referring to sets of regions, states,
or neighborhoods at an arbitrary time instance, provided the
context is clear. The following definitions and results focus
on the geometric properties of imprecision regions as subsets
of Rd, independent of any specific agent vi. To facilitate this
discussion, we denote a generic set of imprecision regions
by BV , allowing us to analyze invariant hull properties in a
general setting without explicitly referencing BNi within the
multiagent framework.

Definition 4.1. (Potential Configuration) For a given set
of imprecision regions BV = {B1, · · · , Bn}, a potential
configuration is a set of points P (BV ) = {p1, · · · , pn} such
that pi ∈ Bi for each vi ∈ V .

Now, we define the notion of an invariant hull.

Definition 4.2. (Invariant Hull) Consider a set of imprecision
regions BV . Let P(BV ) be the set of all possible potential
configurations, and Conv(P) denotes the convex hull of a
potential configuration P ∈ P(BV ). Then, the invariant hull
of BV is defined as,

IHull(BV ) =
⋂

P∈P(BV )

Conv(P ). (2)

In simpler terms, for the invariant hull, we find all possible
potential configurations of BV , compute the convex hull of
each such configuration, and finally compute the intersection
of all such convex hulls. Consequently, the invariant hull
is essentially a subset of the convex hull of all potential
configurations of BV , as Figure 6 illustrates. Moreover, the
invariant hull is always a convex set.
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Next, we provide a geometric characterization of the invari-
ant hull. Then, in Section IV-B, we present an efficient method
to compute the invariant hull of BV .

A. Characterization of Invariant Hull

The arguments to follow deal extensively with combinatorial
families of sets, thus we introduce the following notation for
convenience:

• Consider a set of imprecision regions BV , then Bd+1
V

denotes a family of all (d + 1)-member subsets of BV

(i.e., subsets of BV consisting of d + 1 imprecision
regions). For example, consider V = {v1, v2, v3, v4}, the
corresponding BV = {B1, B2, B3, B4}, and d = 2, then

B3
V ={ {B1, B2, B3}, {B1, B2, B4} {B1, B3, B4},
{B2, B3, B4} }.

• Similarly, for Q ∈ Bd+1
V , the notation Qd denotes the

family of all d-member subsets of Q. In the above
example, if Q = {B1, B2, B3} ∈ B3

V , then

Q2 = {{B1, B2}, {B1, B3}, {B2, B3} }.

So, in general, a superscript on a set notation denotes the
combinatorial family of the set. In the following arguments,
we will use the notation h+ and h− to denote opposite closed
halfspaces bounded by a hyperplane h. Whereas convention-
ally, h−/h+ would denote the sets of points below/above h,
we do not require this specification in the context to follow.
Additionally, we assume that BV is a set of mutually disjoint
imprecision regions and that imprecision is fixed such that
∀

Bi∈BV

δi = δ, for some constant δ. The following lemma

identifies an essential property that all points in the invariant
hull must possess.

Lemma 4.1. Let BV = {B1, .., Bd+1} be a (d + 1)-member
subset of imprecision regions in Rd. If IHull(BV ) is non-
empty, then a point p ∈ IHull(BV ) if and only if p has the
following property:
Property 1. For every hyperplane h passing through p, at least

one imprecision region Bi ⊂ BV is contained in each of
the associated closed halfspaces of h.

Proof. We prove the contrapositive. If p /∈ IHull(BV ),
then by Definition 4.2 there exists at least one potential
configuration P (BV ) = (x1, x2, · · · , xd+1) ∈ P(BV ) such
that p ∩ Conv(P (BV )) = ∅. Since p and Conv(P (BV )) are
disjoint, it follows that there is a hyperplane h, intersecting
p such that P (BV ) is contained in one of its halfspaces. Let
h− denote the open halfspace bounded by h that contains
P (BV ) and h+ denote the opposite open halfspace. Since
each of the d+1 points of P (BV ) are selected from the d+1
imprecision regions of BV , it follows that ∀

Bi∈Q
Bi ∩ h− ̸= ∅,

and therefore no imprecision region is a subset of h+. Thus,
if p /∈ IHull(BV ), then p does not have Property 1.

Similarly, if a point p does not possess Property 1, then
there is a hyperplane h′ intersecting p such that no imprecision
region of BV is a subset of h′+. Then it is possible to
select P (BV ) ∈ P(Q) such that P (BV ) ⊂ h′−. Since

p ∩ h′− = ∅, p and P (BV ) are disjoint, which implies that
p /∈

⋂
P∈P(BV )

Conv(P ) and therefore p /∈ IHull(BV ) by

Definition 4.2.

We now present an auxiliary lemma that will be used in
proving Theorem 4.4 characterizing the invariant hulls.

Lemma 4.2. Let BV be a set of d+1 imprecision regions in
Rd, and let p be a point contained in int(Conv(BV )). Then
p ∈ IHull(BV ) ⇐⇒ ∀

q∈Bd
V

p ̸∈ int(Conv(q)).

Note: Here and throughout the paper, if K is a
family of point sets, then Conv(K) = Conv(

⋃
k∈K

K).

Additionally,“int” refers to the interior.

Proof. To prove the forward implication, assume p ∈
IHull(BV ). Now, we observe that if p ∈ int(Conv(q)),
for any q = {B1, B2, · · · , Bd} ∈ Bd

V , then p = a1x1 +

a2x2+ · · ·+adxd, where
d∑

i=1

ai = 1, and ∀
1≤i≤d

xi ∈ int(Bi).

It follows that the hyperplane h that intersects each of
x1, x2, · · · , xd must also intersect p. Note that the existence of
h is assured, since there is a hyperplane through any d points
in Rd. Since h intersects the interior of each B1, B2, · · · , Bd,
none of the d members of q are contained in either h+ or h−,
which implies that at most one Bi ∈ BV \ q can be contained
in one of h+ or h−. Thus one of either h+ or h− contains
no Bi ∈ BV as a subset. Consequently, p does not possess
Property 4.1 and by Lemma 4.1, p /∈ IHull(BV ). We con-
clude that p ∈ IHull(BV ) → ∀

q∈Bd
V

p ̸∈ int(Conv(q)). For

the reverse implication, we assume ∀
q∈Bd

V

p ̸∈ int(Conv(q)).

Since p ∈ int(Conv(BV )), there exists a configuration
P (BV ) = {(x1, x2, · · · , xd+1) : ∀

i
x′
i ∈ int(Bi)} such

that p ∈ Conv(P (BV )). For the sake of contradiction,
assume that p /∈ IHull(BV ). Then it is possible to select
a different configuration, P ′(BV ) = {(x′

1, x
′
2, · · · , x′

d+1) :

∀
1≤i≤d+1

x′
i ∈ int(Bi)}, such that p /∈ Conv(P ′(BV )).

Each d-dimensional face of Conv(P ′(BV )) is formed by
Conv(x′

1∪x′
2∪· · ·∪x′

d) for some d-tuple of points of P ′(BV ).
Since p ∈ P (BV ), but p /∈ P ′(BV ), then for some q =

{B1, B2, · · · , Bd} ∈ Bd
V , p ∈ int(Conv

(
fq ∪ f ′

q

)
), where

fq = Conv(
⋃

xi∈q∩P (BV )

xi) and f ′
q = Conv(

⋃
xi∈q∩P ′(BV )

xi)

(i.e., fq is a face of Conv(P (BV )), and f ′
q is the cor-

responding face of Conv(P ′(BV ))). But int(fq ∪ f ′
q) ⊂

int(Conv(q)), so p ∈ int(fq ∪ f ′
q) contradicts our assump-

tions. Therefore ∀
q∈Bd

V

p ̸∈ int(Conv(q))→ p ∈ IHull(BV ).

We now show that the invariant hull of n imprecision
regions is the convex hull of the union of invariant hulls of
each of the

(
n

d+1

)
subsets of Bd+1

V . The proof will make use of
the following generalization of the theorem of Caratheodory
to sets in Rd:
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Theorem 4.3. [36] For a family of sets K ∈ Rd, with |K| ≥
d+ 1, Conv(K) =

⋃
ki∈Kd+1

Conv(ki).

In other words the convex hull of every point contained in
the family of sets is equivalent to the union of the convex hulls
of all of its (d+1)-member subsets. Now, we state a key result
that provides a direct means of computing the invariant hull.

Theorem 4.4. Let BV = {B1, · · · , Bn} be a collection of
n imprecision regions in Rd, and Bd+1

V denote the family of
(d+ 1)-member subsets of BV . Then,

IHull(BV ) = Conv

 ⋃
Q∈Bd+1

V

IHull(Q)

 (3)

Proof. First, note that IHull(BV ) is defined in Defini-
tion 4.2 to be the intersection of infinite convex sets. Thus,
IHull(BV ) is also a convex set of Rd since convexity is
preserved under intersection. Let z be an arbitrary vertex
of IHull(BV ). Clearly, z ∈ Conv(BV ). It follows from
Theorem 4.3 that

∃Qi : Qi ∈ Bd+1
V ∧ z ∈ Conv(Qi)

For the following argument, let f ∈ F(P (BV )) denote a
d-dimensional face of the convex hull of a given configura-
tion P (BV ), and F(P (BV )) denote the set of all faces of
Conv(P (BV )). Now, if z is a vertex of IHull(BV ), then
z = f1 ∩ f2 ∩ · · · ∩ fd for some {f1, f2, · · · , fd} : fi ∈
F(Pi(BV )). Note that fi = Conv(xi1 ∪ xi2 ∪ · · · ∪ xid),
where each xij ∈ Bj for one Bj ∈ BV , and for Bj ̸= Bk,
Bj ∩ Bk = ∅. It follows that each fi contains a point xij

contained in a single Bj ∈ BV . This implies that z ∈ Bj

and z ̸∈ int(Bj), since for any p ∈ int(Bj), there exists
a point p′ ∈ ∂Bj , and a configuration P ′(BV ) with faces
f ′
1, f

′
2, · · · , f ′

d ∈ F(P ′(BV )) such that f ′
1 ∩ f ′

2 ∩ · · · ∩ f ′
d = p′

and p ∩ Conv(f ′
1 ∪ f ′

2 ∪ · · · ∪ f ′
d) = ∅, which implies

p ̸∈ Conv(P ′(BV )) and therefore p ̸∈ IHull(BV ). To
summarize, z is the intersection of d faces, f1, f2, · · · , fd, each
of which is the convex hull of d points, {xi1 , xi2 , · · · , xid}

from a set of d imprecision regions BF = {
d⋃

i=1

Bi1 ∪ Bi2 ∪

· · · ∪ Bid : xik ∈ Bk, Bj ∈ BF }. From Theorem 4.3,
we have that z ∈ Conv(Q), for some Q ∈ Conv(Bd+1

F ).
Furthermore, z ̸∈ int(Bj) → z ̸∈ int(Conv(Qd), since
every d + 1 region subset of BF includes Bj . Therefore,
Lemma 4.2 implies that z ∈ IHull(Q). Since this holds
for any vertex z ∈ IHull(BV ), and for each IHull(Q),
IHull(Q) ⊂ IHull(BV ), this concludes the proof.

Corollary 4.5. Let BV be a set of n imprecision regions in
Rd. If n = d+ 1, then

IHull(BV ) = Conv(BV ) \ int(Conv(
⋃

qi∈Bd
V

qi).

If n ≥ d+ 1, then

IHull(BV ) = Conv(Conv(BV ) \ int(Conv(
⋃

qi∈Bd
V

qi))).

Here we have used the set notation of “A \B” to refer to the
set of all elements of A that are not elements of B.

Proof. For the case of n = d+1, IHull(BV ) = Conv(BV )\
int(Conv(

⋃
qi∈Bd

V

qi) is a direct implication of Lemma 4.2. So

for the case of n > d+1, given any Q ∈ Bd+1
V , we have that

IHull(Q) = Conv(Q) \ int(Conv(
⋃

qi∈Qd

qi)). From The-

orem 4.4, IHull(BV ) = Conv

 ⋃
Q∈Bd+1

V

IHull(Q)

 =

Conv

 ⋃
Q∈Bd+1

V

Conv(Q) \ int(Conv(
⋃

qi∈Qd

qi)

. Applying

the relation
⋃

Q ∈Bd+1
V

Conv(Q) = BV , from Theorem 4.3, we

arrive at the expression given in Corollary 4.5.

B. Computing the Invariant Hull

We now outline a procedure for computing the invariant
hull of BV , where |BV | ≥ d + 1. The procedure involves
computing the equation of a tangent hyperplane to every set
of d imprecision regions in Rd. In the case where imprecision
regions are polygons in R2, linear-time algorithms have been
developed to find outer tangent lines, that is, the tangent
lines that have all participating polygons on one side [37].
For the case in which imprecision regions are modeled
as d-balls, the spherical boundaries can be expressed as
x⊤Ax = 0, where x is in homogeneous coordinates, and A
is an invertible (d + 1) × (d + 1) matrix. Then l⊤A−1l = 0
is the equation for the set of tangent hyperplanes, where
l represents the d + 1 hyperplane coefficients. Thus, the
tangent hyperplanes to a set of d balls in Rd can be
obtained by solving the system of quadratic equations:
l⊤A−1

1 l = l⊤A−1
2 l = · · · = l⊤A−1

d+1l = 0. For further details,
see [38].

Let BV be a set of n > d + 1 imprecision regions and let
Q = {q1, q2, · · · , qd+1} ∈ Bd+1

V . As stated in Corollary 4.5,
IHull(Q)is equivalent to Conv(Q) \ Conv(

⋃
qi∈Qd

qi). We

now present a method for computing IHull(BV ) by first
obtaining IHull(Q) for each Q ∈ Bd+1

V :
Once Algorithm1 is repeated to obtain IHull(Q) for each

Q ∈ Bd+1
V , then according to Theorem 4.4, the invariant hull

of BV is computed as:

IHull(BV ) = Conv

 ⋃
Q∈Bd+1

V

IHull(Q)

 .
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Algorithm 1 Invariant Hull Computation

VIH ← ∅
H ← ∅
for each qi = {qi1 , qi2 , · · · , qid} ∈ Qd do

Compute hyperplane hi tangent to the
d members of qi such that qi ⊂ houter

i

and Q \ f∗ ⊂ hinner
i .

H ← H ∪ hi.
end for
for each {hi1 , hi2 , · · · , hid} ∈ Hd do

Compute the points of intersection: wi =
d⋂

n=1
hin .

VIH ← VIH ∪ wi.
end for
IHull(Q)← Conv(

⋃
∀wi∈VIH

wi).

V. CENTERPOINT OF INVARIANT HULLS: SAFE POINT
COMPUTATION AND APPROXIMATE RESILIENT

CONSENSUS

In this section, we present a method that enables normal
agents to resiliently aggregate information from their neigh-
bors by computing safe points, even in the presence of im-
precise state observations and adversarial neighbors. We then
apply this method to achieve approximate resilient consensus
in multiagent networks. The proposed approach allows each
normal agent vi to tolerate up to fi(t) Byzantine agents in
its neighborhood at time t, where fi(t) ≤ |Ni(t)|

d+1 − 1. Our
method builds on the Centerpoint-based method, described in
Section III-A, while extending it to address state imprecision.
The key innovation of our approach lies in computing safe
points by intersecting invariant hulls of imprecision regions
rather than convex hulls of discrete points in Rd, ensuring re-
silience against both adversarial agents and imprecision errors.
This makes our approach suitable for resilient consensus and
other distributed decision-making tasks.

To clarify the fundamental principle underlying the Byzan-
tine resilience of our method, we first examine the case without
imprecision, where normal agents observe the true states of
their neighbors. As discussed in [13], [30], when agents have
exact state knowledge, the centerpoint of a normal agent
vi’s neighbors’ states serves as a safe point, provided the
number of adversarial agents in the neighborhood of vi is
fi(t) ≤ |Ni(t)|

d+1 −1. This follows from a fundamental geometric
property of centerpoints: specifically, the centerpoint of a set of
|Ni(t)| points in Rd lies within the convex hull of any subset
containing more than d

d+1 |Ni(t)| points [39]–[41]. A key
implication of this property is that if we compute the convex
hull of any subset of neighbors of vi containing more than
d

d+1 |Ni(t)| points, then a centerpoint must exist within this
convex hull. Given that fi(t) ≤ |Ni(t)|

d+1 − 1, it follows that at
least one such subset consists entirely of normal agents. Thus,
a centerpoint of vi’s neighbors’ states lies within the convex
hull of normal agents’ states, meaning that the centerpoint is
a safe point.

When state observations are imprecise, determining a safe

point for a normal agent vi requires a modified approach.
As discussed in Section III-B, state imprecision precludes the
direct use of convex hulls computed from observed states.
Instead of knowing the true state of each neighbor vj ∈
Ni(t), agent vi only knows that vj’s true state lies within
a corresponding imprecision region. Consequently, rather than
computing convex hulls of subsets of observed states, a normal
agent must compute the invariant hulls of subsets of its neigh-
bors’ imprecision regions. As in the no-imprecision case, we
assume that agent vi has at most |Ni(t)|

d+1 −1 adversarial agents
in its neighborhood. Since each imprecision region contains
the true state of the corresponding neighbor, the invariant
hull of any subset of neighbors of size d

d+1 |Ni(t)| consists
of the set of points within the convex hull of every possible
configuration of points within these regions, including the true
state configuration. Thus, any point in the intersection of the
invariant hulls of these subsets is a centerpoint of the true
state configuration and, by the same reasoning as in the no-
imprecision case, serves as a safe point. In other words, every
point in this new centerpoint region is guaranteed to lie within
the convex hull of the true states of vi’s normal neighbors. We
illustrate this concept through an example below.

Example: Consider a set of N = 6 imprecision regions in a
plane, each corresponding to an agent. Note that the true states
of these agents are hidden within these imprecision regions.
Among these, one imprecision region belongs to an adversarial
agent, though its identity is unknown. The green-shaded region
in Figure 7(a) represents the centerpoint region, obtained
by intersecting the invariant hulls of subsets of imprecision
regions. To see this, consider a subset of five imprecision
regions, computed as

(
d

d+1

)
N + 1 = 5, and determine

their invariant hull. As shown in Figures 7(b)–7(g), the green
centerpoint region remains consistently enclosed within the
invariant hull, regardless of which five imprecision regions
are chosen. Notably, one of Figures 7(b)–7(g) must represent
the actual scenario involving the single adversarial agent. In
this case, the computed invariant hull, by definition, remains a
subset of the convex hull formed by the true states of normal
agents. Therefore, every point in the green-shaded centerpoint
region, which is fully contained within the invariant hull, is
guaranteed to be a safe point.

We now apply this safe point computation to the resilient
vector consensus problem and introduce the Centerpoint of In-
variant Hulls (CPIH) method, which guarantees approximate
resilient consensus among agents in a network.

The value of αi(t) is a dynamic weight that may be chosen
in range [0, 1] according to the application.

The CPIH algorithm identifies a region that is a general-
ization of the centerpoint region, in that the property of a
safe point obtained through the CPIH procedure has identical
properties to that of a centerpoint, with compact sets replacing
the role of points. Thus each halfspace of a hyperplane that
intersects a CPIH safe point contains at least ⌊ |Ni(t)|

d+1 ⌋ compact
sets (imprecision regions of BV ). As such, the invariant hull
of every d|Ni(t)|

d+1 +1 imprecision regions contains a safe point.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 7: (a) Centerpoint region based on the intersection of the invariant hulls of subsets of imprecision regions. In each of
(b)–(g), the green shaded region is contained entirely in the invariant hull (orange region) of the five imprecision regions.

Algorithm 2 CPIH

for t ≥ 0 do
k ← d|Ni(t)|

d+1 + 1

for each C ∈ Bk
Ni

(t) do
Compute IHull(C). ▷ Invariant hull of each

k-tuple in BNi
(t).

end for
if

⋂
C∈Bk

Ni
(t)

IHull(C) = ∅ then

Set xi(t+ 1) = xi(t). ▷ Do nothing if no safe
region exists.

else
Select a safe point pi(t) ∈

⋂
C∈Bk

Ni
(t)

IHull(C).

Update xi(t+ 1) = αi(t)pi(t) + (1− αi(t))xi(t).
end if

end for

A. Empirical Evaluation of CPIH

To demonstrate the CPIH algorithm’s effectiveness in sce-
narios where the standard centerpoint-based consensus algo-
rithm fails (see Figure 5), we conducted a series of simulations.
For simplicity, we modeled imprecision regions as squares
of width δ. All agents are pairwise adjacent, meaning the
network graph G is complete. At each time step, agents
received uniformly random state estimates from their neigh-
bors’ imprecision regions. For illustration, we selected a small
range of values for δ. For each δ, normal agents followed
the CPIH protocol over 5,000 time steps in the presence of
a Byzantine adversary. The trajectory plots in Figure 8 depict
the evolution of the true states of normal agents over time,
converging to a set of points within their initial convex hull.
The red trajectory corresponds to the Byzantine agent. In
order to quantify the quality of the approximation we measure
the ratio of the initial diameter to that of the final diameter
between normal nodes. We define the diameter at time t as
diam(t) = max

vi,vj∈Vn

∥∥xi(t)− xj(t)
∥∥, and the denote the ratio

of the final diameter at time t∗ to the initial diameter at time
t0 as ϕ = diam(t∗)

diam(t0)
.

As Figure 8 illustrates, the final distances between normal
agents—reflecting the quality of approximate consensus—
depend on the sizes of the imprecision regions. Larger impre-
cision regions lead to a poorer approximation, while smaller
regions result in a more precise agreement. In Step 3 of the
CPIH algorithm (termination condition), fixed nonzero impre-
cision regions prevent exact consensus, causing the algorithm

to stop before agents reach a common state. In the next section,
we consider a dynamic imprecision model and derive the
conditions for achieving exact consensus.

(a) (b)

(c) (d)

Fig. 8: Trajectory plots of approximate consensus for different
imprecision region sizes: (a) δ = 1.0, ϕ = 0.855 (b) δ = 0.5,
ϕ = 0.479 (c) δ = 0.25, ϕ = 0.291 (d) δ = 0.125, ϕ = 0.223
The ‘×’ marks indicate the agents’ states at the algorithm’s
termination. The red node represents the adversarial agent,
while the region enclosed by blue lines denotes the convex
hull of the normal agents’ initial positions.

VI. RESILIENT CONSENSUS UNDER DYNAMIC STATE
IMPRECISION

In Section V-A, we observed that when imprecision regions
are excessively large, an agent may fail to compute a safe
point, even if the number of adversarial agents remains within
tolerable limits (i.e., fewer than |Ni|

d+1 ). For the consensus
problem, this limits the network to approximate consensus—
where non-adversarial agents converge to a bounded region—
rather than exact consensus at a single point. However, in
practice, the size of these imprecision regions often depends on
inter-agent distances: as agents move closer together—such as
during consensus—their state observations typically become
more precise, causing the imprecision regions to shrink over
time. Similarly, in many localization tasks, measurement accu-
racy depends on both inter-agent distances and their geometric
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configuration, as exemplified by the geometric dilution of
precision (GDOP) effect in sensor networks [42], [43], and
more broadly in triangulation-based localization systems [44].
This raises a critical question: how must these regions contract
to ensure safe point computation until the network achieves
its objective, such as exact consensus? In this section, we
address this by modeling imprecision regions as dynamic
and distance-dependent, deriving a time-varying bound that
ensures convergence under our proposed method, which builds
on the invariant hull framework from Section V. This will
allow us to solve the following problem:

Resilient Consensus under Dynamic Imprecision – We
consider a network of both normal and adversarial agents,
where agent states are subject to bounded imprecision. Under
the assumption that imprecision bounds are time-varying and
diminish at a sufficient rate to ensure that the invariant hull
of every normal agent’s neighborhood is never empty, the
objective of resilient consensus with imprecision is to design a
distributed protocol that ensures all normal agents update their
states to eventually converge on a common state within the
convex hull of the initial states of normal nodes. Additionally,
the protocol must satisfy the safety and agreement conditions
outlined in Section II.

A. Upper Bound for the Imprecision Regions of (d+1) State
Vectors in Rd

In this section, we analyze a simplified scenario to derive a
sufficient condition for systematically computing a safe point
under imprecision. We focus on the state vectors of (d + 1)
agents at a given instant, which forms the basis for the more
general case of n > d + 1 agents with time-varying states
in Section VI-B. This condition is determined by the relative
geometric properties of the state vectors. In simpler terms,
the maximum permissible magnitude of δ for (d + 1) agents
depends on how “close” they are to collinearity–a concept we
will clarify in the following discussion.

We now consider (d+1) agents, whose imprecision regions
are modeled as d-dimensional balls with a uniform radius δ.
Our goal is to determine a sufficient upper bound on δi, for
each vi, such that a safe point can be computed within the
convex hull of the true state vectors. Furthermore, this must
be achievable for all possible state vector configurations within
their respective imprecision regions. Since we focus on instan-
taneous state configurations in this section, we temporarily
omit time-dependent notation for clarity. We begin with the
following observation.

Lemma 6.1. Let V be a set of d+1 agents, with corresponding
set of imprecision regions BV , such that for vi ∈ V , Bi is a
d-dimensional ball centered at xi with radius δ. Let P(BV ) be
defined as in Definition 4.1. If agent vi observes configuration
Ri ∈ P(BV ) and computes a safe point πi ∈ Rd as a convex
combination of the d+1 observed state values, πi = λ1ri(1)+
λ2ri(2)+· · ·+λd+1ri(d+1), where λ1+λ2+· · ·+λd+1 = 1 and
{λ1, λ2, · · · , λd+1} is a fixed set of real-valued coefficients,
then the locus of all possible πi over RNi

∈ P(BV ) is a ball
of radius δ centered at π∗ = λ1x1 + λ2x2 + · · ·+ λd+1xd+1.

Proof. Let cθ be an arbitrary unit vector originating from
π∗. The proof follows simply by considering the interval
[a, b], defining the range of possible displacement along cθ
of ∥π∗ − πi∥. Since πi is a linear combination of the points
in Ri, and the observed state ri(j) ∈ RV (i) can be at most δ-
distant from the corresponding point in XV , it is clear that the
maximum displacement occurs when all points rj(i) ∈ RNi

are equal to xj+δcθ. When this occurs, RNi
is a copy of XV

translated by distance δ along cθ, so∥π∗ − πi∥ = δ. Similarly
the minimum distance is obtained when ri(j) = xj − δcθ,
yielding [a, b] = [−δ, δ]. Since this is true for arbitrary cθ, the
proof is concluded.

Lemma 6.1 establishes that if a point π∗ is defined as
a convex combination of the vertices of a simplex, and if
these vertices undergo perturbations—each translated by at
most a distance of δ in an arbitrary direction—then the
corresponding perturbed point π (computed using the same
convex combination) will deviate by at most δ from π∗. Let
δ+ denote the maximum radius of imprecision, given π∗, such
that the locus of πj , over all ri(j) ∈ Ri, remains contained
within Conv(XV ), the convex hull of the true agent states.
Note that any set of d+ 1 state vectors in general position in
Rd forms a d-simplex, which we denote by S.

For an observed state xi, let σi represent the d-dimensional
face of S such that xi /∈ σi. Additionally, for any point
π∗ ∈ Conv(XV ), we define d(π∗, σi) as the minimum
distance between π∗ and σi. From Lemma 6.1, it follows
that in order to guarantee that the locus of all possible πi re-
mains within Conv(XV ), the imprecision bound must satisfy:
δ+ < min

i
d(π∗, σi). Thus, the remaining task is to determine

an appropriate set of convex coefficients λ1, λ2, . . . , λd+1.
Every simplex has a unique point, called the in-center which
is equidistant from all of its d-faces. The incenter’s coordi-
nates can be expressed as a convex combination, where each
coefficient λi (the barycentric coordinate of the incenter) is
weighted by the area of the V ol(σi)∑

j∈S V ol(σj)
, where V ol(σ) is the

volume of the face (e.g., for a triangle with side σi, V ol(σi)
is the length). For the purpose of maximizing δ+, in-center
would give the desired values for the convex coefficients.
However, we assume agents do not have access to the true state
values. Consequently, they will not have access to the true in-
center coefficients from one time to the next. This limitation
motivates a natural choice: λ1 = λ2 = · · ·λd+1 = λ = 1

d+1 .
Applying these coefficients to the true positions of the sim-
plex’s vertices yields the true as the value of π∗.

Thus, given π∗ = 1
d+1

∑d+1
i=1 xi, δ+ must be less than

the minimum distance from the centroid to any face of the
simplex, which is expressed as follows:

δ+ = min
i

d(π∗, σi) = min
i

alti
d+ 1

,

where alti is the altitude—distance from xi to the opposite
face—(as illustrated in Figure 9). Given the choice of λ =
1

d+1 , a sufficient upper bound on δ+ is formally stated in
Proposition 6.2:
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Si(t)

The set of distinct (d + 1)-tuples, con-
taining xi as a member, taken from the
set of true agent states in the neighbor-
hood of agent vi at time t.

alti(t)

For a d-simplex with vertices
{xi, x2, · · · , xd+1} ⊂ Si(t), alti(t) is
the minimum distance from vertex xi to
it’s opposite face at time t. Informally
referred to as “altitude”.

θi(X, t)

The minimum value of alti(t) taken
over the vertices of all simplices formed
by (d+1)-vertex sets contained in Si(t)
at time t.

Ω(C, t)

For a subset of agents C ⊆ Ni(t) in the
neighborhood of agent vi, Ω(C, t) is the
convex hull of the centroids of observed
states across all (d+ 1)-subsets of C at
time t.

TABLE II: Notation for dynamic imprecision model.

Proposition 6.2. Let V be a set of d + 1 agents, such that
each agent vi ∈ V receives a set of imprecise state values
Ri, and

∥∥∥ri(j) − xj

∥∥∥ < δ. If each agent computes a safe point

πi =
∑

vj∈V
ri(j)
d+1 , then γ(πi) ∈ Conv(XV ) ⇐⇒ δ <

1
d+1 min

vj∈V
altj , where γ(πi) denotes the locus of all possible

πi from configurations of (d + 1) received states within the
imprecision regions.

Note that the agent set under discussion is still of size
d + 1, and the bound on the maximum imprecision radius
developed here applies only to these d + 1 agents. However,
in Section VI-B, we will demonstrate how this bound can be
seamlessly incorporated into an updated version of the CPIH
algorithm, which requires a set of at least 2d + 2 agents–the
minimum network size needed with a single adversarial agent.

Bi

Locus (πi)
xi

In-center
Centroid of X
Conv(X)

min
i

alti min
i

alti
d+1

Fig. 9: Locus of πi for δ+ = 1
d+1 min

i
alti is contained within

Conv(X).

B. Sufficient Conditions for Convergence Under DB-CPIH

We extend the sufficient upper bound from Proposition 6.2
to derive a generalized condition on imprecision radii that
ensures convergence to a safe point under the Dynamically
Bounded Centerpoint Based on Invariant Hulls (DB-CPIH) al-
gorithm, introduced below. As a preliminary step, we explicitly
state the condition under which DB-CPIH guarantees resilient
consensus in the presence of imprecision. Specifically, the suf-
ficient condition requires that, for all vi ∈ Vn, the imprecision

radius δi satisfies a dynamic upper bound (Definition 6.1),
determined by the minimum altitude of all simplices formed
from the true state values of all (d+1)-tuples of vi’s neighbors
that include vi.

More formally, for vi ∈ V , let Si(t) be the set of all distinct
(d + 1)-tuples (x1(t), x2(t), · · · , xd+1(t)) such that x1(t) =
xi(t) and xj(t) ∈ Si(t) ⇐⇒ vj ∈ Ni(t).

Definition 6.1. (θ−bounded) A multiagent system is θ-
bounded if, for every normal agent vi ∈ Vn, the imprecision
radius satisfies δi(t) <

θi(X,t)
d+1 , where

θi(X, t) = min
Q∈Si(t)

min
xk∈Q

(altk(t)).

Thus, θi(X, t) is the minimum altitude of all (d+1)-simplices
of true states in the neighborhood of vi that have xi(t) as a
vertex.

If the imprecision radii of all agents satisfy this condition
at all times, then, despite having only imprecise state mea-
surements, each normal agent will always be able to identify
a point within the interior of the convex hull of a set of
k = ⌊d|Ni|

d+1 ⌋ + 1 > d + 1 true state values. As a result, the
invariant hull of any k-tuple will never be empty. Recall from
Section V-A that, in the model with fixed imprecision radii, the
inevitable non-existence of the invariant hull was the primary
factor causing the algorithm to halt, thereby preventing exact
consensus. Here, we update the imprecision model to allow for
a time-varying imprecision radius, ensuring that the previously
established upper bound remains satisfied at all times.

With slight modifications to the CPIH algorithm, we demon-
strate that normal agents can aggregate their neighbors’ states
to compute safe points while achieving exact resilient con-
sensus, even in the presence of f adversarial agents and
θ-bounded imprecision. Before stating the main result, we
introduce a critical definition:

Definition 6.2. (Ω(C, t)): For a subset of agents C ⊆ Ni(t)
in the neighborhood of agent vi, define Ω(C, t) as the convex
hull of the centroids of observed states across all d+1-subsets
of C. Formally,

Ω(C, t) =

Conv

 ⋃
(v[1],··· ,v[d+1])∈Cd+1

ri([1])(t) + · · ·+ ri([d+1])(t)

d+ 1

 .

(4)

In (4), where v[j] and ri([j]) notations are used, [j] refers to
the index of an arbitrary d + 1-tuple of the neighbors of vi,
not the identity of vj ∈ V . Moreover, for C ⊂ Ni(t), Ω(C, t)
is a point in the invariant hull of C, since Ω(C, t) satisfies the
properties outlined in Theorem 4.4.

C. Dynamically Bounded Centerpoint of Invariant Hulls al-
gorithm (DB-CPIH)

We now introduce DB-CPIH algorithm, a modification of
the CPIH. The steps of the DB-CPIH are as follows:

In the DB-CPIH procedure, instead of computing invariant
hulls for every set of k neighbors, agents construct convex



12

Algorithm 3 DB-CPIH Algorithm

for t > 0 do
for vi ∈ Vn do

k ←
⌊
d|Ni|
d+1

⌋
+ 1

for each C ∈ Nk
i (t) do

Compute Ω(C, t).
end for
Select safe point πi(t) ∈

⋂
C∈Nk

i (t)

Ω(C, t).

xvi(t+ 1)← αi(t)πi(t) + (1− αi(t))xvi(t)
end for

end for

hulls using the centroids of each (d+ 1)-member subset of k
observed neighbors’ states. This is repeated for all k neighbors,
and a point in the interior of the intersection of the resulting(|Ni(t)|

k

)
convex hulls is selected as the safe point. When the

conditions in Theorem 6.3 hold, each centroid of d + 1 ob-
served states lies within the invariant hull of the corresponding
d+1 imprecision regions. It follows from Theorem 4.4 that the
convex hull of the union of all

(|Ni(t)|
k

)
centroids is a subset

of IHull(Bk
Ni(t)

).In this case, Bk
Ni(t)

takes the place of
IHull(BV ) and each centroid is a point in IHull(Q). Thus,
the DB-CPIH procedure closely follows the CPIH procedure
with two key differences: (a) for each (d+1)-member subset,
the centroid is used in place of the entire invariant hull, and
(b) Step 3 of the CPIH procedure in Section V is omitted,
as the safe point is guaranteed to exist under the specified
conditions. We now present the conditions under which the
DB-CPIH algorithm guarantees exact resilient consensus.

Theorem 6.3. Let V be a set of agents, some of which may be
adversarial. For each normal agent vi ∈ Vn with state xi(t) ⊂
Rd and neighborhood Ni(t), where |Ni(t)| = mi; the agent
vi has access to an imprecise set of state values from its neigh-
bors, denoted as Ri(t) = {ri(1)(t), ri(2)(t), . . . , ri(mi)(t)}.
Normal agents updating their states according to the DB-
CPIH algorithm will reach consensus if the following two
conditions hold for each vi ∈ Vn, ∀t ≥ 0:

1) The set of adversarial agents in the neighborhood of vi
(i.e., fi(t) ⊂ Ni(t)) satisfies |fi(t)| < ⌈ |Ni(t)|

d+1 ⌉.
2) The set of normal agents, Vn, is θ-bounded.

Proof. It is known (from [12] and [16]) that if a safe point
within the interior of the convex hull of normal agents can
always be selected, then agents updating their states toward
this safe point at each time step will converge to a point
within the convex hull of their initial positions in finite time.
To complete the proof, we will show that for every vi ∈ V ,
and for all t > 0, πi(t) is a safe point, where πi(t) is
selected according to Step 3 of the DB-CPIH procedure(3).
Step 1 of DB-CPIH sets the size of the subsets C ∈ Nk

i (t)

to k = ⌊d|Ni|
d+1 ⌋ + 1, which, due to the first condition of

Theorem 6.3, ensures that each normal agent vi ∈ Vn will
have a subset Cn ⊂ Nk

i (t) = Ni(t)/Vf (t), composed
exclusively of normal agents. According to Step 2 of DB-
CPIH, vi computes Ω(Cn, t) for every C ∈ Nk

i (t). Recall

that Ω(Cn, t) is the convex hull of the union of centroids
of the (d + 1)-tuples of observed states of Cn. According
to Step 3 of DB-CPIH(3), πi is chosen from the intersection⋂
C∈Nk

i (t)

Ω(C, t), which implies that πi ∈ Ω(Cn, t). It suffices

to show that Ω(Cn, t) ⊂ int(Conv(Xn(t))). By Proposition
6.2, the second condition of Theorem 6.3 implies that for
c,Q, where Q is a subset of d + 1 agents in Cn, and c is
the centroid of RQ(t) (the observed states of the members
of Q), that c ∈ int(Conv(XQ(t))). Thus, by Theorem 4.3,
c ∈ int(Conv(XCn

(t))). Thus, Ω(Cn, t) is the convex hull
of centroids that are themselves in the interior of the convex
hull of XCn(t). Therefore Ω(Cn, t) ⊂ int(Conv(Xn(t))). We
have shown that normal agents updating their states according
to the DB-CPIH procedure, under Conditions 1 and 2 of
Theorem 6.3, will always compute a safe point in the interior
of the convex hull of normal neighbors, thereby ensuring that
they reach consensus. This completes the proof.

Theorem 6.3 establishes that the DB-CPIH algorithm guar-
antees exact consensus among normal agents when their
imprecision radii satisfy the θ-bounded geometric constraint
(Definition 6.1). In practical terms, this imposes a dynamic
sensor precision requirement, ensuring that as imprecision
shrinks over time, the states of normal agents in Rd converge to
a single point within the convex hull of their initial positions.

Computing a safe point, even in the absence of state impre-
cision, remains computationally challenging due to the high-
dimensional constraints of centerpoint and other geometric
approaches, such as Tverberg-based methods [12], [13], [16].
In DB-CPIH, each node vi with neighborhood size |Ni(t)|
computes all subsets of size k ≈ ( d

d+1 )|Ni(t)| and calculates
centroids for each (d + 1)-tuple. While this process can
be computationally expensive, it remains localized to each
node’s neighborhood, making it feasible in networks where
agents have small neighborhoods. Moreover, fewer adversarial
neighbors allow for smaller neighborhoods, further reducing
computational overhead. Next, we demonstrate the perfor-
mance of the DB-CPIH algorithm through simulations in R2.

D. Empirical Evaluation of DB-CPIH

We simulated networks of agents that simulation duration.
Specifically, for each agent vi ∈ V , the neighborhood is
defined as Ni(t) = V for all t > 0. We considered networks
of sizes |V | = 6, 9, and 12. In each network, the number
of normal agents, |Vn|, was determined by |Vn| = d|V |

d+1 + 1,
with the remaining |V |

d+1 − 1 agents designated as Byzantine
adversaries. Thus, for |V | = 6, 9, and 12, the number of
adversarial agents was 1, 2, and 3, respectively, satisfying
Condition 1 of Theorem 6.3. For each network configuration,
we simulated the evolution of agent states over time and
plotted their trajectories based on the following setup:

For each normal agent vi ∈ Vn, the imprecision region,
Bi, is a square of side length 2l, such that δi(t) =

√
2l (the

minimum radius of a disk containing Bi). At each time step,
for every agent vi ∈ V , θi(X, t) is calculated and δi(t) is
set as θi(X,t)

d+1 . Normal agents calculate a safe point, πi(t),
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(a) |Vn| = 5, |Vf | = 1 (b) |Vn| = 7, |Vf | = 2 (c) |Vn| = 9, |Vf | = 3

Fig. 10: Agent trajectories (dashed lines) as they update their states according to DB-CPIH. The adversarial agent is shown
in red, while the convex hull of the normal agents’ initial positions is outlined in blue. Normal agents successfully converge
when imprecision decays according to the bound in Theorem 6.3.

and update their states according to the DB-CPIH algorithm.
Initial positions of normal agents are randomly assigned from
a uniform distribution over a unit square. The trajectories of
the adversarial agents as perceived by normal agents remain
entirely outside the convex hull of the normal agents’ positions
throughout the simulation.

Figures 10(a), (b), and (c) depict the resulting agent trajec-
tories for each simulation, demonstrating that normal agents
converge to a safe point. Figure 11(a) shows the maximum
distance between the true states of any two normal agents
over time, while Figure 11(b) depicts the imprecision radii
(indicating the sizes of the imprecision regions) of the normal
agents over time. From Figures 11(a) and (b), it is evident that
the decay rate of the imprecision radii closely aligns with the
rate of consensus among the normal agents.

VII. CONCLUSION

Many resilient distributed optimization algorithms fail when
agents lack precise state values, even when the number of
adversarial agents remains within tolerable limits. This fail-
ure arises from the inability to compute safe points under
imprecise observations, which is critical for accurately ag-
gregating neighbors’ states in distributed tasks. In this work,
we proposed a novel geometric framework that systematically
models both static and dynamic imprecision, enabling the
design of resilient consensus algorithms in the presence of
both adversaries and noise. Building on this framework, we de-
signed and analyzed the DB-CPIH algorithm, which provides
resilience guarantees even under uncertainty, and rigorously
characterized conditions for consensus among normal agents.

In future work, we aim to analyze the performance of
resilient consensus algorithms when resilience conditions are
intermittently violated. The DB-CPIH algorithm currently
guarantees convergence of normal nodes when the number
of adversarial neighbors satisfies |fi(t)| < ⌈Ni(t)

d+1 ⌉ for each
vi ∈ Vn at all times, and when the imprecision regions remain
θ-bounded throughout the execution. However, in practical
settings, these conditions may be temporarily violated. For
instance, the number of adversarial neighbors or the size of
imprecision regions may exceed their respective thresholds
over finite time intervals. Preliminary observations suggest that
normal agents may still reach consensus during such transient

(a) (b)

(c) (d)

(e) (f)

Fig. 11: Plots in (a), (c), and (e) show the maximum dis-
tance between any two normal agents over time, given by
max

vi,vj∈Vn

∥∥xi(t)− xj(t)
∥∥ (i.e., diameter), for network sizes

|V | = 6, 9 and 12, respectively. Plots in (b), (d), and (f)
illustrate the imprecision radii for each agent over time for
the same network sizes.

violations without compromising safety. However, the extent
and duration of allowable violations that preserve convergence
guarantees remain unknown. Characterizing the precise con-
ditions under which these constraints can be relaxed while
still ensuring safety and eventual agreement is a promising
direction for future investigations.
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