EUREKA MATH ${ }^{2}$.

Lesson 12:

Subtract whole numbers from mixed numbers and mixed numbers from whole numbers.

CCSS Standard - 5.NF.A. 1 / 5.NF.A. 2

Write and complete the equation.
$\frac{2}{3}+\quad=1$

Write and complete the equation.

$$
+\frac{3}{6}=1
$$

Write and complete the equation.

Write and complete the equation.

$$
+\frac{3}{10}=1
$$

FLUENCY (15-min)

Choral Response: Decompose Whole Numbers

What is the unknown part? Raise your hand when you know. When I give the signal, say the completed equation. Ready?

$$
2=1+\frac{}{3}
$$

FLUENCY (15-min)

Choral Response: Decompose Whole Numbers

What is the unknown part? Raise your hand when you know. When I give the signal, say the completed equation. Ready?

$$
2=\ldots+\frac{4}{4}
$$

FLUENCY (15-min)

Choral Response: Decompose Whole Numbers

What is the unknown part? Raise your hand when you know. When I give the signal, say the completed equation. Ready?

$$
3=2+\frac{1}{6}
$$

FLUENCY (15-min)

Choral Response: Decompose Whole Numbers

What is the unknown part? Raise your hand when you know. When I give the signal, say the completed equation. Ready?

$$
3=\ldots+\frac{8}{8}
$$

FLUENCY (15-min)

Choral Response: Decompose Whole Numbers

What is the unknown part? Raise your hand when you know. When I give the signal, say the completed equation. Ready?

$$
4=3+\frac{1}{9}
$$

FLUENCY (15-min)

Choral Response: Decompose Whole Numbers
What is the unknown part? Raise your hand when you know. When I give the signal, say the completed equation. Ready?

$$
6=\quad+\frac{10}{10}
$$

```
FLUENCY (10-min)
```

Whiteboard Exchange: Make LIKE Units

Which fraction can we rename so the fractional units are the same?
Raise your hand when you know?

We should rename 1/2 into fourths.

$$
\frac{3}{4}-\frac{2}{4}=\frac{1}{4}
$$

```
FLUENCY (10-min)
```

Whiteboard Exchange: Make LIKE Units

Which fraction can we rename so the fractional units are the same?
Raise your hand when you know?
$\frac{2}{3}-\frac{1}{6}$
We should rename 2/3 into sixths.
$\frac{4}{6}-\frac{1}{6}=\frac{3}{6}$

```
FLUENCY (10-min)
```

Whiteboard Exchange: Make LIKE Units

Which fraction can we rename so the fractional units are the same?
Raise your hand when you know?

$\frac{7}{10}-\frac{4}{10}=\frac{3}{10}$

```
FLUENCY (10-min)
```

Whiteboard Exchange: Make LIKE Units

Which fraction can we rename so the fractional units are the same?
Raise your hand when you know?

We should rename 3/4 into twelfths.

$$
\frac{9}{12}-\frac{5}{12}=\frac{4}{12}
$$

LAUNCH (5-min)

Analyze different ways of finding a difference of whole numbers.

THINK-PAIR-SHARE
 What are the similarities and differences shown in the sample work?

All four methods show 320-97=223
A, B, and C all use decomposition.
A and C both decompose 97 , while B decomposes 320.

D shows the difference as an unknown part.

Today, we will explore how to apply these methods to help us subtract when expressions have whole numbers, fractions, and mixed numbers.

A	B $\begin{aligned} & 320-97=223 \\ & 100-97=3 \\ & 220+3=223 \end{aligned}$
C $320-97=223$ $320-90=230$ $230-7=223$	D $\begin{gathered} 320-97=\underline{223} \\ 97 \xrightarrow{+3} 100 \xrightarrow{+200} 300 \xrightarrow{+20} 320 \end{gathered}$

LEARN (35-min)
 Subtracting with mixed numbers.

How are these expressions alike?

$$
4 \frac{3}{5}-2
$$

$$
5-2 \frac{3}{4}
$$

This shows a WHOLE number being subtracted from a MIXED NUMBER.

This shows a MIXED NUMBER being subtracted from a WHOLE number.

$$
4 \frac{3}{5}-2
$$

On this side we can simply subtract 2 from 4 and be left with $23 / 5$. Or simply add 2 to $23 / 5$ to get 4 .

This problem can be easily done using MENTAL MATH.

$$
32 \frac{5}{6}-17
$$

Can we use mental math for this problem?
Maybe. All we have do is 32 - 17 and add 5/6 to the difference.

LEARN (35-min)

$$
5-2 \frac{3}{4}
$$

Looking at this problem, can we use the same method of MENTAL MATH to find the difference as we did in the last expression? Can we simply do 5-2?

No! Because now we are taking away a mixed number.

Since this is a different problem, let's try a different method to subtract.

What do you notice about this number bond? Is anything DECOMOSED?

Subtracting with mixed numbers.

Subtracting with mixed numbers.

Subtracting with mixed numbers.

$$
5-2 \frac{3}{4}=3-\frac{3}{4}
$$

Riley's Work

$$
2 \frac{3}{4}+2 \frac{1}{4}=5
$$

Leo's Work

$$
5-2 \frac{3}{4}=2 \frac{1}{4}
$$

LEARN (35-min)

Subtracting with mixed numbers.
LEARN BOOK PAGE 105 - Let's Practice!
$28 \frac{5}{7}-6=$

We can simply subtract 6 from 28 and be left with 22 5/7.

This problem can be easily done using MENTAL MATH.
$28-6=22$
$22+5 / 7=225 / 7$

$$
7-3 \frac{2}{7}=
$$

First, subtract the WHOLE numbers. Next, Rewrite a simpler subtraction problem.

$$
7-3=4
$$

$$
4-2 / 7
$$

Decompose the 4 into 3 and 7/7
$37 / 7-2 / 7=35 / 7$

$$
15-6 \frac{3}{8}=
$$

First, subtract the WHOLE numbers. Next, Rewrite a simpler subtraction problem.

$$
\begin{gathered}
15-6=9 \\
9-3 / 8
\end{gathered}
$$

Decompose the 9 into 8 and $8 / 8$
$88 / 8-3 / 8=85 / 8$

```
LAND (10-min)
```


Exit Ticket

Exit Ticket - PAGE 111

Small Group Time:
Problem Set Pages 109
Homework:
Page 81 APPLY BOOK (Use page 109 of Learn instead)

『 12

Subtract.

1. $7 \frac{3}{8}-2=$ \qquad
2. $7-2 \frac{3}{8}=$ \qquad
3. $22-44_{5}^{2}=$ \qquad
