	Hypothesis Testing In Minitab					Revision 130110
	Data Type	Measure	# of Samples (levels)	Di Normal (AD>0.05)	istribution Not-normal (AD<0.05)*	Exceptions
Comparisons of single factor data sets (NOT paried like X-Y; X-X ₂ -Y; or Input-Output data)	Continuous (Variable)		1 sample (level)	I-sample t-test (robust against normality assumption) (Use z-test for samples > 30) Stat>Basic Statistics>1-Sample t-test or Stat>Basic Statistics>1-Sample z-test	1-sample Wilcoxon (assumes symmetry (symmetric boxplot or, more liberally, w/o outliers)) Stat>Nonparametrics>1-Sample Wilcoxon	Assymmetric distribution / outliers?: 1-sample Sign Stat>Nonparametrics>1-Sample Sign
		Center (Mean or Median)	2 samples (levels)	Paired data? See Exception> 2-sample t-test (Use F-test to determine if Variances are equal; if not equal, do not assume equal variances) Stat>Basic Statistics>2-Sample t	Paired data? See Exception> Assumes same shape (Visual) & equal variance (2 Variances test) Stat>Basic Statistics>2 Variance Test 2-sample Mann-Whitney Stat>Nonparametrics>Mann-Whitney	Paired Data? Both paired data sets Normally distributed? Paired t-test** (extremely robust against assumptions of normality, shape, and differences in variance. May be used as a non-parametric test) Stat>Basic Statistics>Paired t
			3 or more samples (levels)	ANOVA (plus Tukey) (robust against normality and equal variances, but recommend checking) Stat>ANOVA>One-way - Select Tukeys comparisons	Kruskal-Wallis (assumes non-normal (AD<0.05), no outliers (Boxplot), same shape (Visual) Stat>Nonparametrics>Kruskal-Wallis Note: Based on poisson distribution but works for continuous data	Not normal (AD>0.05) and includes outliers (boxplot)? Mood's Median (Assumes same shape (visual / boxplot)) Stat>Nonparametrics> Mood's Median test Note: Based on poisson distribution but works for continuous data
		Spread (Variance or standard deviation)	1 sample (level) 2 samples (levels) 3 or more samples	Chi-Square Method Stat>Basic Statistics>1 Variance (read p-value from "chi square method") F-test Stat>Basic Statistics>2 Variances (read p-value from F-test) Bartlett's test Stat>NOVA>Test for Equal Variances	Bonett Method Stat>Basic Statistics>1 Variance (read p-value from "Bonett method") Levene's test Stat>Basic Statistics>2 Variances (read p-value from Levene's test) Levene's test Stat>ANOVA>Test for Equal Variances	-
	Discrete (Attribute) (Poisson / Count / Ordinal / Defects)	Count	(levels) 1 sample (level)	(read p-value from Bartlett's test) 1-sample t-test (robust against normality assumption) (requires > 5 distinct categories) Stat-Basic Statistics>1-Sample t-test or Stat>Basic Statistics>1-Sample z-test	(read p-value from Levene's test) 1-sample Wilcoxon (assumes symmetry (symmetric boxplot or, more liberaily, w/o outliers), requiers > 5 distinct categories. Stat>Nonparametrics>1-Sample Wilcoxon	Assymmetric distribution / outliers? Fewer than 5 distinct categories? No problem! 1-sample Sign Stat>Nonparametrics>1-Sample Sign
			2 samples (levels)	Paired data? See "Exception"> 2 Sample t-test (Caution: No extreme outliers! (Graph>Box Plot) Stat>Basic Stats>2-sample Poisson Rate Based on continuous distribution, but appropriate for poisson data	Paired data? See "Exception"> Same shape & Variance? 2-sample Mann-Whitney Stat>Nonparametrics>Mann-Whitney Different shape or Variance? Hmmm	Paired Data? Normal data not required Same shape not required Same variance not required Paired t-test** (robust against normality, shape, and differences in variance) Stat>Basic Statistics>Paired t
			3 or more samples (levels)	One-Way ANOVA Caution: No extreme outliers! Check boxplot) Stat:ANOVA>One-way Note: One-way ANOVA presumes one X factor with 3 or more levels. Rarely, we may have two X factors, where at least one of the factors has at least three factors. In these cases, use Two- way ANOVA or DOE.	Kruskal-Wallis Assumes no outliers (check boxplot) Assumes same shape (visual check) Stat>Nonparametrics> Kruskal-Wallis Note: This is a Poisson distribution test often used for non-normal continuous data without outliers	Includes outliers? No problem! Mood's Median Robust against outliers Assumes same shape Stat>Noparametrics> Mood's Median test Note: This is a Poisson distribution test often used for non-normal continuous data with outliers
	Discrete (Attribute) (Binomial / go/no-go / defective)	Proportion	1 sample (level) 2 samples (levels)	1-Proportion test Stat>Basic Statistics>1-Proportion 2-Proportion test Stat>Basic Statistics>2-Proportion - Select Options>pooled p		
			3 or more samples (levels)	Chi-Square test Stat>Tables>Chi-square Goodness of Fit Test (one variable)		
Comparisons of data from two or more factors (paired like X-Y; X1-X2-Y; Input-Output data, etc.)		Continuous Data (X, Input(s), or Independent Factor(s)) Regression Stat-Regression> Regression or Design of Experiments (DOE)*** Stat-DOE>Create Factorial Design Logistic Regression Determine Discrete data type, then: Stat-Regression> Binary (or Ordinal, or Nominal) Logistic Regression		Discrete Data (X, Input(s), or Independent Factor(s))	Hypothesis Tests - Null and Alternate Hypothesis Statements Normal Probability Plot H ₀ = Data are normal H ₁ = Data not normal H ₁ = Data not normal H ₂ = Data not normal	Chi-Square H ₀ - There is no relationship between the variables H ₀ = There is a relationship between the variables Correlation
	Continuous Data (Y, Output, or Dependent Factor)			2-Way ANOVA (2 factors, 3 or more discrete sources or levels on at least one) Stat>ANOVA>Two-way Design of Experiments (DOE)*** (2 or more X's, at least two distinct levels for	$\label{eq:horizontal} \begin{split} H_0 &= Data are normal \\ H_2 &= Data not normal \\ test \\ H_2 &= The mean of the sample distribution is the same as the refere \\ H_2 &= The means are not equal \\ One-way ANOVA \\ H_2 &= There is no difference between the Means \\ H_2 &= There is a test so the mean different from the others \\ H_2 &= The way ANOVA \end{split}$	H ₀ = There is no correlation between the variables H _a = There is correlation between the variables Regression Analysis
	Discrete Data (Y, Output, or Dependent			each factor) Stat>DOE>Create Factorial Design Chi-Square (Test for Association) "Is Y independent of X?" Stat>Tables>Chi-square test (Two Way Table in Worksheet) Note: which variable is "Y" and which is "X" does	Two-way ANOVA rs_= An Loencients are not equal to tee of the line is an end equal to tee of the line is and tee of the l	
	Factor)			not matter.		

* For continuous data with "large" sample size (n>30), it is statistically valid to assume normality for statistical tests of mean due to the Central Limit Theorem. In the Army MBB POI, we do not use this application of the CLT because we are not interested in the mean of non-normal data – we are interested in the median. For Army MBB exam, if the sample(s) do not show AD Normality test p>0.05, use the designated non-parametric test, regardless of sample size.

** The Paired t-test has been validated as a non-parametric test, and can be used with non-normal paired continuous and poisson data

*** Design of Experiments (DOE) requires continous / variable *output* data, but *input* data may be continuous, count, binomial, or even nominal.

Two key things to remember about DOE. 1) Each input factor must be divided into two or more distinct "levels" 2) DOE (2-way ANOVA) is the only tool that allows us to evaluate <u>interactions</u> for statistical significance.