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Abstract 
Aphids can be of high risk in any crop if not contained. They can cause significant yield reduction by 

damage done to crops directly or indirectly either through direct feeding or diseases caused by virus 

transmission. It is also important to note that aphids have a complex lifecycle and dispersal patterns. 

Most researchers use already existing models and often extend them to incorporate extra parameters that 

represent specific features of the aphid that they would wish to analyze, without necessarily testing or 

determining the extent of effectiveness of the model. In this study, we have therefore gone an extra mile 

to construct two sets of mathematical models, by adjusting the function representing the prey-predator 

interaction then comparing them to determine which model gives a more accurate analysis of data. 
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Introduction 

Cereals are the world’s most important food 

crops. There are pest species that interfere with 

human activity or cause injury, loss or irritation 

to a crop, stored products, animals or people. 

Aphids have caused considerable damage to 

cereals [1-8]. This has stimulated research on the 

population dynamics of aphids and on the loss or 

damage they cause. Carter [9-10] discussed 

forecasting cereal aphid outbreaks. They 

modeled the effects of coccinellids, parasitoids 

and disease. In their model, they used steps of 

model initialization, data input, hourly 

temperatures, immigration, development and 

survival, reproduction and morph determination, 

predators, output, crop development model and 

input variable. They then used the models to 

study the interactions between state variables, 

which then quantified all the properties that 

describe the state of the system.  

Sapoukhina [11] looked at a reaction-

diffusion-advection model for the dynamics of 

populations under biological control. In their 

study, they assumed that the control agent was 

the predator species that had the ability to 

perceive the heterogeneity of pest distribution. 

The advection term represented the predator 

density movement according to a basic prey taxis 

assumption: acceleration of predators is 

proportional to the prey gradient. The prey 

population reproduced logistically, and the local 

population interactions followed the Holling 

Type II function [12]. Their spatially explicit 

model subdivided the predation process into 

random movement represented by diffusion, 

directed movement was described by prey taxis, 

local prey encounters, and consumption modeled 

by trophic function. The model enabled studying 

the effects of large-scale predator spatial activity 

on population dynamics.  

Kindlmann [4] came up with a logistic model 

with variable carrying capacity and growth rate 

affected by cumulative density to study the 

population dynamics of aphids. Lopes [7] 

presented a flux-based model to describe an 

aphid-parasitoidal system in a closed structured 

environment. They applied this approach to the 

Aphis gossypii and to one of its parasitoids, 

Lysiphlebu testaceipes in a melon green house. 

They developed a model showing host-

parasitoidal interactions. The model represented 

the level of plant infestation as a continuous 
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variable corresponding to the number of plants 

bearing a given density of pests at a given time. 

They used partial differential equations to 

describe the variation of this variable, which was 

coupled to an ordinary differential equation and 

a delay-differential equation that described the 

parasitized host population and the parasitoid 

population, respectively.  

Bampfylde and Lewis in 2007 [12] presented 

a management alternative for the control of pest 

species through intraguild predation for the 

spatially homogeneous system. They extended 

the model to include movement of predator and 

prey in the spatial context. They considered a 

spatially homogeneous system and found the 

conditions for predator and prey to exclude each 

other, to coexist and for alternative stable states. 

Mohr [8] presented a general framework for age-

structured predator-prey systems where 

individuals were divided into two classes, 

juveniles and adults, and several possible 

interactions considered. They used the 

Rosenzweig-MacArthur prey-predator model 

which they extended to include delay. They then 

reduced the initial system of partial differential 

equations to a system of (neutral) delay 

differential equations with one or two delays 

[13-14]. 

In this paper, we have extended the 

mathematical background given by Rosenzweig-

MacArthur prey-predator model using the work 

done by Kindlmann [5-6]. We first formulate 

two sets of Rosenzweig-MacArthur prey-

predator model with one predator and the prey, 

and then solve them analytically and 

numerically. The second set of the model seeks 

to modify and thus give a more accurate analysis 

of data compared to the first set of the model. 

Assumptions 

i. The economic threshold level for 

adopting control measures has not been 

attained. 

ii. The carrying capacity of cereal aphid 

varies. 

iii. The cumulative density is the regulatory 

term that slows down the instantaneous 

rate of increase. 

Justification of the study 

Pests pose a challenge to crop farming. They 

cause reduction in yields or even no yields at all 

when catastrophic, which then results in 

reduction in food production and economic loss. 

Some control strategies put in place to curb pest 

menace may also affect negatively human health 

and the ecosystem. The model(s) we have 

developed in this research is used to project 

stable systems of control type by seeking control 

methods with such characteristics that supply 

stability to the system to ensure maximum aphid 

reduction. This will enable the stakeholders 

in the agricultural sector to maintain the density 

of the aphid population at equilibrium below the 

economic injury level. 

Limitations of the study 

To forecast pest aphid abundance and for 

appropriate decision making, it may be necessary 

to have accurate estimates of aphid abundance 

and population growth rates. This is best done by 

undertaking a field experiment incorporating the 

particular aspect of the system and the 

characteristics of the interacting species that we 

are studying that has a direct bearing on the 

results. However, this is a challenge since this 

study will use data collected from previous field 

experiments, because of time constraints. 

Therefore estimation of some parameter values 

in the system may be a challenge. 

Results and discussions 

The model formed from the interaction 

between the prey and predator is as follows. 

Case I: 

        (1) 

 
Case II: 

   (2) 

 
Without loss of generality we simplify the 

models by taking, ah = 1. Hence the above 

equations (1) and (2) respectively in Case I and 

Case II respectively can be written as indicated 

in equations (3) and (4) below, 

Case I: 

         (3)                      
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Case II: 

    (4)                                                                                                          

 
where N>0 and P>0, respectively. This implies 

that all the parameters in the model are positive. 

We then perform non-dimensionalization to 

reduce the number of parameters in the model in 

equation (4) and (5) by reducing ,   and  into 

non-dimensional form using, 

 
Then, further by setting the parameters 

  then dropping the sign, 

we find that the equations (3) and (4) take the 

form in equations (5) and (6) respectively. 

Case I: 

 5(a) 

   5(b)              

Case II: 

 6(a) 

   6(b) 

N(0)>0 and P(0)>0, respectively. 

The table 1 below gives all the parameter values 

used in the numerical simulations. 

Table 1. Parameter values used in simulations 

[13] 

Parameter Value 

r 2 

b 0 

K 200 

µ 0.3 

a 20 

D 10 

Numerical simulation results: Case I Model 
 The simulation of Case I Model has been 

done to find out the dynamics of aphids. Figures 

1(a) and 1(b) show sustained oscillations in 

aphid and ladybird dynamics respectively. These 

oscillations result from the interaction between 

the aphid and the ladybird. The results show that 

the aphid/ ladybird populations increase/ 

decrease until they reach their respective 

equilibrium levels depending on the initial 

conditions.  

 

Figure1(a). Graph showing the density of prey N 

against time t 

 
Figure 1(b). Graph showingthe density of 

predator P against time    

 Figures 2(a) and 2(b) shows interaction of 

predator with prey with time, which yields 

sustained oscillations converging to a stable 

equilibrium. From the two diagrams, we can 

clearly observe that the prey population 

increases when the number of predators is low, 

and prey population decreases when the 

predator’s population increases. Also, the 

predator population decreases when there are no 

prey. The oscillations arise from the predation 

effect on the prey, whose aim is to suppress the 

prey. It can also be deduced that a higher prey 

population size than the predator will give a 

realistic ecological dynamics, whereas higher 

predator population size will give a rapid 

extinction of predator population. 

Numerical simulation results: Case II Model 
 The simulation of Case II Model has been 

done to find out the dynamics of aphids. Figures 

3(a) and 3(b) show sustained oscillations in 

aphid and ladybird dynamics respectively. These 

oscillations result from the interaction between 

the aphid and the ladybird. The results show that 

the aphid/ ladybird populations increase/ 

decrease until they reach their respective 
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equilibrium levels depending on the initial 

conditions. 

Figure 2(a). Graph showing prey N and predator 

P against time t  

 
Figure 2(b). Graph showing phase portrait of 

prey N and predator P 

 Figures 4(a) and 4(b) shows interaction of 

predator with prey with time, which yields 

damped oscillations converging to a stable 

equilibrium. From the two diagrams, we can 

clearly observe that the prey population 

increases when the number of predators is low, 

and prey population decreases when the 

predator’s population increases. Also, the 

predator population decreases when there are no 

prey. The oscillations arise from the predation 

effect on the prey, whose aim is to suppress the 

prey. It can also be deduced that a higher prey 

population size than the predator will give a 

realistic ecological dynamics, whereas higher 

predator population size will give a rapid 

extinction of predator population. From the 

simulation results given by both Cases, we 

observe that Figures 3(a) and 3(b) clearly depicts 

the oscillations in aphid’s and ladybird’ 

populations until they reach their respective 

equilibrium as compared to what we get from 

Figures 1(a) and 1(b).   

 

Figure 3(a): Graph showing the density of prey 

N against time t 

 
Figure 3(b). Graph showing the density of the 

predator P against time t 

The equilibrium points for Figures 3(a) and 

3(b) is clearly visible and can be  located easily 

as compared to those of Figures 1(a) and 1(b). 

We also observe that the frequency of 

oscillations is higher in Figures 3(a) and 3(b) as 

it rapidly converges to their respective 

equilibrium points while it is lower in Figures 

1(a) and 1(b). When we compare Figures 1 and 

3, it is important to note that whereas we have 

used the same time limit and prey/ predator 

densities, the results from 1(a) and 1(b) shows 

that they need more time, than the 400 used, to 

get to the equilibrium point while those of 3 get 

to the equilibrium point within the 400 time 

duration. When we compare Figure 4(a) with 

2(a), we arrive at the same differences already 

pointed out above. Figure 4(b) clearly depicts the 

phase portrait for the interaction between the 

aphid and the ladybird. We note that the 

equilibrium densities for the interacting species 

can easily be determined in 4(b) than in Figure 

2(b). This is because the centre formed by the 



Ogal et al., 2016.                        Numerical Solutions of Biological Control on Cereal Aphid Population Dynamics  

©International Journal of Modern Science and Technology. All rights reserved. 142 

limit cycle is very small in 4(b) whereas it is 

very big in 2(b). From the small centre, it is easy 

to determine the equilibrium point than in a big 

centre where the degree of error may be higher. 

 
Figure 4(a). Graph showing a) prey N and 

predator P against time t 

 
Figure 4(b). Graph showing phase portrait of 

prey N and predator P 

In summary, numerical simulations of Case 

II Model presents relatively better and more 

accurate approximations, compared to those of 

Case I Model. This implies that Case II Model 

can give better predictions for the interaction 

between the prey and the predator. This is 

because we have introduced (added) an extra 

parameter, P, in the denominator of the 

functional response term  for Case II as 

compared to  for Case I. The denominator 

of the functional response term in both cases, 

form the carrying capacity, which is the limiting 

factor that regulates the prey-predator 

interactions. The introduction of an extra 

parameter P in the carrying capacity of Case II 

serves to increase the scope of our analysis 

because it enables us to look at more factors that 

affect the prey-predator interaction. This model 

also exhibits more complicated dynamics of the 

prey-predator dynamics and can be used to 

analyze a variety of parameters relevant to the 

system, hence can be used to give more accurate 

predictions of the system.  

Conclusions 

Aphids are important pests which cannot be 

ignored in cereal crop production, in the 

agricultural sector [15,16]. The damage they 

cause to these crops as well as loss of yields can 

be extensive if not contained. However, to 

contain these pests, it is important to understand 

its dynamics in relation to its interaction with its 

natural enemies like the ladybird. In 

mathematics, the best tool that can be used to 

understand this prey-predator dynamics is the 

models which have different variables and 

parameters that represent the various aspects of 

the dynamics of the prey-predator system that we 

are interested in. One major observation in this 

research is that when we modified the first 

model, we came up with more accurate results 

that improved our predictions of the prey-

predator interaction, hence help in better 

decision making. This is because the 

denominator of the respective functional 

response terms and , forms the 

carrying capacity K per leaf [17-19]. The 

carrying capacity K, acts as the limiting factor 

that regulates the prey-predator interactions. In 

Case I, K = D+ N, which implies that the 

carrying capacity K is a sum of half saturation 

constant D and the prey population density N. In 

Case II, K = D+ N+P, which implies that the 

carrying capacity K is the sum total of half 

saturation constant D, the prey population 

density N and the predator population density P. 

The P in the carrying capacity K of Case II 

increases the number of parameters that 

influence the prey-predator interactions thus 

widens the scope of our analysis as compared to 

Case I. Therefore it is clearly demonstrated that 

increasing the number of parameters in the 

carrying capacity increases the number of factors 

to be considered and in turn improves the 

accuracy and the prediction ability of the model 

as indicated by Case II model. In reference to the 

objectives of our study, we have been able to 

achieve the following: development of a 
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mathematical and give a modified version of the 

initial model and determine the extent of 

effectiveness of the modified model by 

comparing it to the initial one.  
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