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We consider the problem of playing a finitely-repeated two-player zero-sum game safely—that is, guar-
anteeing at least the value of the game per period in expectation regardless of the strategy used by the
opponent. Playing a stage-game equilibrium strategy at each time step clearly guarantees safety, and prior
work has conjectured that it is impossible to simultaneously deviate from a stage-game equilibrium (in hope
of exploiting a suboptimal opponent) and to guarantee safety. We show that such profitable deviations are
indeed possible—specifically, in games where certain types of ‘gift’ strategies exist, which we define formally.
We show that the set of strategies constituting such gifts can be strictly larger than the set of iteratively
weakly-dominated strategies; this disproves another recent conjecture which states that all non-iteratively-
weakly-dominated strategies are best responses to each equilibrium strategy of the other player. We present
a full characterization of safe strategies, and develop efficient algorithms for exploiting suboptimal oppo-
nents while guaranteeing safety. We also provide analogous results for sequential perfect and imperfect-
information games, and present safe exploitation algorithms and full characterizations of safe strategies
for those settings as well. We present experimental results in Kuhn poker, a canonical test problem for
game-theoretic algorithms. Our experiments show that 1) aggressive safe exploitation strategies signifi-
cantly outperform adjusting the exploitation within equilibrium strategies and 2) all the safe exploitation
strategies significantly outperform a (non-safe) best response strategy against strong dynamic opponents.
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[Social and Behavioral Sciences]: Economics
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1. INTRODUCTION
In repeated interactions against an opponent, an agent must determine how to balance
between exploitation (maximally taking advantage of weak opponents) and exploitabil-
ity (making sure that he himself does not perform too poorly against strong opponents).
In two-player zero-sum games, an agent can simply play a minimax strategy, which
guarantees at least the value of the game in expectation against any opponent. How-
ever, doing so could potentially forego significant profits against suboptimal opponents.
Thus, an equilibrium strategy has low (zero) exploitability, but achieves low exploita-
tion. On the other end of the spectrum, agents could attempt to learn the opponent’s
strategy and maximally exploit it; however, doing so runs the risk of being exploited
in turn by a deceptive opponent. This is known as the “get taught and exploited prob-
lem” [Sandholm 2007]. Such deception is common in games such as poker; for example,
a player may play very aggressively initially, then suddenly switch to a more conser-
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vative strategy to capitalize on the fact that the opponent tries to take advantage of
his aggressive ‘image,’ which he now leaves behind. Thus, pure opponent modeling
potentially leads to a high level of exploitation, but at the expense of exploitability. Re-
spectively, the game solving community has, by and large, taken two radically different
approaches: finding game-theoretic solutions and opponent modeling/exploitation.

In this paper, we are interested in answering a fundamental question that helps
shed some light on this tradeoff:

Is it possible to play a strategy that is not an equilibrium in the
stage game while simultaneously guaranteeing at least the value of
the game in expectation in the worst case?

If the answer is no, then fully safe exploitation is not possible, and we must be willing
to accept some increase in worst-case exploitability if we wish to deviate from equilib-
rium in order to exploit suboptimal opponents. However, if the answer is yes, then safe
opponent exploitation would indeed be possible.

Recently it was proposed that safe opponent exploitation is not possible [Ganzfried
and Sandholm 2011]. The intuition for that argument was that the opponent could
have been playing an equilibrium all along, and when we deviate from equilibrium to
attempt to exploit him, then we run the risk of being exploitable ourselves. However,
that argument is incorrect. It does not take into account the fact that our opponent
may give us a gift by playing an identifiably suboptimal strategy, such as one that is
strictly dominated.1 If such gift strategies are present in a game, then it turns out
that safe exploitation can be achieved; specifically, we can deviate from equilibrium
to exploit the opponent provided that our worst-case exploitability remains below the
total amount of profit won through gifts (in expectation).

Is it possible to obtain such gifts that do not correspond to strictly-dominated
strategies? What about other forms of dominance, such as weak, iterated, and domi-
nance by mixed strategies? Recently it was conjectured that all non-iteratively-weakly-
dominated strategies are best responses to each equilibrium strategy of the other
player [Waugh 2009]. This would suggest that such undominated strategies cannot be
gifts, and that gift strategies must therefore be dominated according to some form of
dominance. We disprove this conjecture and present a game in which a non-iteratively-
weakly-dominated strategy is not a best response to an equilibrium strategy of the
other player. Safe exploitation is possible in the game by taking advantage of that
particular strategy. We define a formal notion of gifts, which is more general than
iteratively-weakly-dominated strategies, and show that safe opponent exploitation is
possible specifically in games in which such gifts exist.

Next, we provide a full characterization of the set of safe exploitation strategies, and
we present several efficient algorithms for converting any opponent modeling algo-
rithm (that is arbitrarily exploitable) into a fully safe opponent exploitation procedure.
One of our algorithms is similar to a procedure that guarantees safety in the limit as
the number of iterations goes to infinity [McCracken and Bowling 2004]; however, the
algorithms in that paper can be arbitrarily exploitable in the finitely-repeated game
setting, which is what we are interested in. The main idea of the algorithm is to play an
ε-safe best response (a best response subject to the constraint of having exploitability
at most ε) at each time step rather than a full best response, where ε is determined by
the total amount of gifts obtained thus far from the opponent. Safe best responses have
also been studied in the context of Texas Hold’em poker [Johanson et al. 2007], though
that work did not use them for real-time opponent exploitation. We also present sev-
eral other safe algorithms which alternate between playing an equilibrium and a best

1We thank Vince Conitzer for pointing this out to us.



response depending on how much has been won so far in expectation. We note that
algorithms have been developed which guarantee ε-safety against specific classes of
opponents (stationary opponents and opponents with bounded memory) [Powers et al.
2007]; by contrast, our algorithms achieve full safety against all opponents.

It turns out that safe opponent exploitation is also possible in sequential games,
though we must redefine what strategies constitute gifts and must make pessimistic
assumptions about the opponent’s play in game states off the path of play. We present
efficient algorithms for safe exploitation in games of both perfect and imperfect infor-
mation, and fully characterize the space of safe strategies in these game models. We
also show when safe exploitation can be performed in the middle of a single iteration
of a sequential game.

We compare our algorithms experimentally on Kuhn poker [Kuhn 1950], a simplified
form of poker which is a canonical problem for testing game-solving algorithms and has
been used as a test problem for opponent-exploitation algorithms [Hoehn et al. 2005].
We observe that our algorithms obtain a significant improvement over the best equi-
librium strategy, while also guaranteeing safety in the worst case. Thus, in addition to
providing theoretical advantages over both minimax and fully-exploitative strategies,
safe opponent exploitation can be effective in practice.

2. GAME THEORY BACKGROUND
In this section, we briefly review relevant definitions and prior results from game the-
ory and game solving.

2.1. Strategic-form games
The most basic game representation, and the standard representation for simul-
taneous-move games, is the strategic form. A strategic-form game (aka matrix game)
consists of a finite set of players N, a space of pure strategies Si for each player, and a
utility function ui : ×Si → R for each player. Here ×Si denotes the space of strategy
profiles—vectors of pure strategies, one for each player.

The set of mixed strategies of player i is the space of probability distributions over
his pure strategy space Si. We will denote this space by Σi. Define the support of a
mixed strategy to be the set of pure strategies played with nonzero probability. If the
sum of the payoffs of all players equals zero at every strategy profile, then the game
is called zero sum. In this paper, we will be primarily concerned with two-player zero-
sum games. If the players are following strategy profile σ, we let σ−i denote the strat-
egy taken by player i’s opponent, and we let Σ−i denote the opponent’s entire mixed
strategy space.

2.2. Extensive-form games
An extensive-form game is a general model of multiagent decision making with poten-
tially sequential and simultaneous actions and imperfect information. As with perfect-
information games, extensive-form games consist primarily of a game tree; each non-
terminal node has an associated player (possibly chance) that makes the decision at
that node, and each terminal node has associated utilities for the players. Additionally,
game states are partitioned into information sets, where the player whose turn it is to
move cannot distinguish among the states in the same information set. Therefore, in
any given information set, a player must choose actions with the same distribution at
each state contained in the information set. If no player forgets information that he
previously knew, we say that the game has perfect recall. A (behavioral) strategy for
player i, σi ∈ Σi, is a function that assigns a probability distribution over all actions at
each information set belonging to i.



2.3. Nash equilibria
Player i’s best response to σ−i is any strategy in

arg max
σ′
i
∈Σi

ui(σ
′
i, σ−i).

A Nash equilibrium is a strategy profile σ such that σi is a best response to σ−i for all i.
An ε-equilibrium is a strategy profile in which each player achieves a payoff of within
ε of his best response.

In two player zero-sum games, we have the following result which is known as the
minimax theorem:

v∗ = max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2).

We refer to v∗ as the value of the game to player 1. Sometimes we will write vi as the
value of the game to player i. It is important to note that any equilibrium strategy for
a player will guarantee an expected payoff of at least the value of the game to that
player.

Define the exploitability of σi to be the difference between the value of the game and
the performance of σi against its nemesis, formally:

expl(σi) = vi −min
σ−i

ui(σi, σ−i).

For any ε ≥ 0, define SAFE(ε) to be the set of strategies with exploitability at most ε.
Define the ε-safe best response of player i to σ−i to be

argmaxσi∈ SAFE(ε)ui(σi, σ−i).

All finite games have at least one Nash equilibrium. In two-player zero-sum
strategic-form games, a Nash equilibrium can be found efficiently by linear program-
ming. In the case of zero-sum extensive-form games with perfect recall, there are effi-
cient techniques for finding an equilibrium, such as linear programming [Koller et al.
1994]. An ε-equilibrium can be found in even larger games via algorithms such as gen-
eralizations of the excessive gap technique [Hoda et al. 2010] and counterfactual regret
minimization [Zinkevich et al. 2007]. The latter two algorithms scale to games with
approximately 1012 game tree states, while the most scalable current general-purpose
linear programming technique (CPLEX’s barrier method) scales to games with around
107 or 108 states. By contrast, full best responses can be computed in time linear in the
size of the game tree, while the best known techniques for computing ε-safe best re-
sponses have running times roughly similar to an equilibrium computation [Johanson
et al. 2007].

2.4. Repeated games
In repeated games, the stage game is repeated for a finite number T of iterations. At
each iteration, players can condition their strategies on everything that has been ob-
served so far. In strategic-form games, this generally includes the full mixed strategy
of the agent in all previous iterations, as well as all actions of the opponent (though
not his full strategy). In extensive-form games, generally only the actions of the op-
ponent along the path of play are observed; in games with imperfect information, the
opponent’s private information may also be observed in some situations.

3. SAFETY
One desirable property of strategy for a repeated game is that it is safe—that it guar-
antees at least vi per period in expectation. Clearly playing a minimax strategy at each
iteration is safe, since it guarantees at least vi in each iteration. However, a minimax



strategy may fail to maximally exploit a suboptimal opponent. On the other hand, de-
viating from stage-game equilibrium in an attempt to exploit a suboptimal opponent
could lose the guarantee of safety and may result in an expected payoff below the value
of the game against a deceptive opponent (or if the opponent model is incorrect).

3.1. A game in which safe exploitation is not possible
Consider the classic game of Rock-Paper-Scissors (RPS), whose payoff matrix is de-
picted in Figure 1. The unique equilibrium σ∗ is for each player to randomize equally
among all three pure strategies.

R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

Fig. 1. Payoff matrix of Rock-Paper-Scissors.

Now suppose that our opponent has played Rock in each of the first 10 iterations
(while we have played according to σ∗). We may be tempted to try to exploit him by
playing the pure strategy Paper at the 11th iteration. However, this would not be safe;
it is possible that he has in fact been playing his equilibrium strategy all along, and
that he just played Rock each time by chance (this will happen with probability 1

310 ).
It is also possible that he will play Scissors in the next round (perhaps to exploit the
fact that he thinks we are more likely to play Paper having observed his actions).
Against such a strategy, we would actually have a negative expected total profit—0 in
the first 10 rounds and -1 in the 11th. Thus, our strategy would not be safe. By similar
reasoning, it is easy to see that any deviation from σ∗ will not be safe, and that safe
exploitation is not possible in RPS.

3.2. A game in which safe exploitation is possible
Now consider a variant of RPS in which player 2 has an additional pure strategy T. If
he plays T, then we get a payoff of 4 if we play R, and 3 if we play P or S. The payoff
matrix of this new game RPST is given in Figure 2. Clearly the unique equilibrium
is still for both players to randomize equally between R, P, and S. Now suppose we
play our equilibrium strategy in the first game iteration, and the opponent plays T; no
matter what action we played, we receive a payoff of at least 3. Now suppose we play
the pure strategy R in the second round in an attempt to exploit him (since R is our
best response to T). In the worst case, our opponent will exploit us in the second round
by playing P, and we will obtain payoff -1. But combined over both time steps, our
payoff will be positive no matter what the opponent does at the second iteration. Thus,
our strategy constituted a safe deviation from equilibrium. This was possible because
of the existence of a ‘gift’ strategy for the opponent; no such gift strategy is present in
standard RPS.

R P S T
R 0 -1 1 4
P 1 0 -1 3
S -1 1 0 3

Fig. 2. Payoff matrix of RPST.



4. CHARACTERIZING GIFTS
What exactly constitutes a gift? Does it have to be a strictly-dominated pure strat-
egy, like T in the preceding example? What about weakly-dominated strategies? What
about iterated dominance, or dominated mixed strategies? In this section we first pro-
vide some negative results which show that several natural candidate definitions of
gifts strategies are not appropriate. Then we provide a formal definition of gifts and
show that safe exploitation is possible if and only if such gift strategies exist.

Recent work has conjectured the following:

CONJECTURE 4.1. [Waugh 2009] An equilibrium strategy makes an opponent indif-
ferent to all non-[weakly]-iteratively-dominated strategies. That is, to tie an equilibrium
strategy in expectation, all one must do is play a non-[weakly]-iteratively-dominated
strategy.

This conjecture would seem to imply that gifts correspond to strategies that put
weight on pure strategies that are weakly iteratively dominated. However, consider
the game shown in Figure 3.

L M R
U 3 2 10
D 2 3 0

Fig. 3. A game with a gift strategy that is not weakly iteratively dominated.

It can easily be shown that this game has a unique equilibrium, in which P1 plays
U and D with probability 1

2 , and P2 plays L and M with probability 1
2 . The value of

the game to player 1 is 2.5. If player 1 plays his equilibrium strategy and player 2
plays R, player 1 gets expected payoff of 5, which exceeds his equilibrium payoff; thus
R constitutes a gift, and player 1 can safely deviate from equilibrium to try to exploit
him. But note that R is not dominated under any form of dominance. This disproves
the conjecture, and causes us to rethink our notion of gifts.

PROPOSITION 4.2. It is possible for a strategy that survives iterated weak domi-
nance to obtain expected payoff worse than the value of the game against an equilibrium
strategy.

We might now be tempted to define a gift as a strategy that is not in the support of
any equilibrium strategy.

L R
U 0 0
D -2 1

Fig. 4. Strategy R is not in the support of an equilibrium for player 2, but is also not a gift.

However, the game in Figure 4 shows that it is possible for a strategy to not be in the
support of an equilibrium and also not be a gift (since if P1 plays his only equilibrium
strategy U, he obtains 0 against R, which is the value of the game).

Now that we have ruled out several candidate definitions of gift strategies, we now
present our new definition, which we relate formally to safe exploitation in Proposi-
tion 4.4.

Definition 4.3. A strategy σ−i is a gift strategy if there exists an equilibrium strat-
egy σ∗i for the other player such that σ−i is not a best response to σ∗i .



PROPOSITION 4.4. Assuming we are not in a trivial game in which all of player i’s
strategies are minimax strategies, then non-stage-game-equilibrium safe strategies exist
if and only if there exists at least one gift strategy for the opponent.

PROOF. Suppose some gift strategy σ−i exists for the opponent. Then there exists
an equilibrium strategy σ∗i such that ui(σ∗i , σ−i) > vi. Let ε = ui(σ

∗
i , σ−i)− vi. Let s′i be

a non-equilibrium strategy for player i. Suppose player i plays σ∗i in the first round,
and in the second round does the following: if the opponent did not play σ−i in the
first round, he plays σ∗i in all subsequent rounds. If the opponent did play σ−i in the
first round, then in the second round he plays σ̂i, where σ̂i is a mixture between s′i
and σ∗i that has exploitability in (0, ε) (we can always obtain such a mixture by putting
sufficiently much weight on σ∗i ), and he plays σ∗i in all subsequent rounds. Such a
strategy constitutes a safe strategy that deviates from stage-game equilibrium.

Now suppose no gift strategy exists for the opponent, and suppose we deviate from
equilibrium for the first time in some iteration t′. Suppose the opponent plays his
nemesis strategy at time step t′, and plays an equilibrium strategy at all future time
steps. Then we will win less than v∗ in expectation against his strategy. Therefore, we
cannot safely deviate from equilibrium.

5. SAFETY ANALYSIS OF SOME NATURAL EXPLOITATION ALGORITHMS
Now that we know it is possible to safely deviate from equilibrium in certain games,
can we construct efficient procedures for implementing such safe exploitative strate-
gies? In this section we analyze the safety of several natural exploitation algorithms.
Some of the algorithms—specifically RWYWE, BEFFE, and BEFEWP—are new con-
tributions, while the other algorithms are presented for purposes of comparison. In
short, we will show that all prior algorithms and natural other candidates are all ei-
ther unsafe or unexploitative; we present algorithms that are safe and exploitative.

5.1. Risk What You’ve Won (RWYW)
The ‘Risk What You’ve Won’ algorithm (RWYW) is quite simple and natural; essen-
tially, at each iteration it risks only the amount of profit won so far. More specifically,
at each iteration t, RWYW plays an ε-safe best response to a model of the opponent’s
strategy (according to some opponent modeling algorithm M ), where ε is our current
cumulative payoff minus (t− 1)v∗. Pseudocode is given in Algorithm 1.

Algorithm 1 Risk What You’ve Won (RWYW)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πt ← argmaxπ∈ SAFE(kt)M(π)

Play action ati according to πt
Update M with opponent’s actions, at−i
kt+1 ← kt + ui(a

t
i, a

t
−i)− v∗

end for

PROPOSITION 5.1. RWYW is not safe.

PROOF. Consider RPS, and assume our opponent modeling algorithm M says that
the opponent will play according to his distribution of actions observed so far. Since
initially k1 = 0, we must play our equilibrium strategy σ∗ at the first iteration, since
it is the only strategy with exploitability of 0. Without loss of generality, assume the



opponent plays R in the first iteration. Our expected payoff in the first iteration is 0,
since σ∗ has expected payoff of 0 against R (or any strategy). Suppose we had played R
ourselves in the first iteration. Then we would have obtained an actual payoff of 0, and
would set k2 = 0. Thus we will be forced to play σ∗ at the second iteration as well. If we
had played P in the first round, we would have obtained a payoff of 1, and set k2 = 1.
We would then set π2 to be the pure strategy P, since our opponent model dictates the
opponent will play R again, and P is the unique k2-safe best response to R. Finally, if
we had played S in the first round, we would have obtained an actual payoff of -1, and
would set k2 = −1; this would require us to set π2 equal to σ∗.

Now, suppose the opponent had actually played according to his equilibrium strategy
in iteration 1, plays the pure strategy S in the second round, then plays the equilibrium
in all subsequent rounds. As discussed above, our expected payoff at the first iteration
is zero. Against this strategy, we will actually obtain an expected payoff of -1 in the
second iteration if the opponent happened to play R in the first round, while we will
obtain an expected of 0 in the second round otherwise. So our expected payoff in the
second round will be 1

3 · (−1) + 2
3 · 0 = − 1

3 . In all subsequent rounds our expected payoff
will be zero. Thus our overall expected payoff will be − 1

3 , which is less than the value
of the game; so RWYW is not safe.

RWYW is not safe because it does not adequately differentiate between whether
profits were due to skill (i.e., from gifts) or to luck.

5.2. Risk What You’ve Won in Expectation (RWYWE)
A better approach than RWYW would be to risk the amount won so far in expectation.
Ideally we would like to do the expectation over both our randomization and our oppo-
nent’s, but this is not possible in general since we only observe the opponent’s action,
not his full strategy. However, it would be possible to do the expectation only over our
randomization. It turns out that we can indeed achieve safety using this procedure,
which we call RWYWE. Pseudocode is given in Algorithm 2. Here ui(πti , at−i) denotes
our expected payoff of playing our mixed strategy πti against the opponent’s observed
action at−i.

Algorithm 2 Risk What You’ve Won in Expectation (RWYWE)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πt ← argmaxπ∈ SAFE(kt)M(π)

Play action ati according to πt
The opponent plays action at−i according to unobserved distribution πt−i
Update M with opponent’s actions, at−i
kt+1 ← kt + ui(π

t
i , a

t
−i)− v∗

end for

LEMMA 5.2. Let π be updated according to RWYWE, and suppose the opponent
plays according to π−i. Then for all n ≥ 0,

E[kn+1] =

n∑
t=1

ui(π
t
i , π

t
−i)− nv∗.



PROOF. Since k1 = 0, the statement holds for n = 0. Now suppose the statement
holds for all t ≤ n, for some n ≥ 0. Then

E[kn+2] = E[kn+1 + ui(π
n+1
i , an+1

−i )− v∗] (1)

= E[kn+1] + E[ui(π
n+1
i , an+1

−i )]− E[v∗] (2)

=

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ E[ui(π

n+1
i , an+1

−i )]− v∗ (3)

=

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ ui(π

n+1
i , πn+1

−i )− v∗ (4)

=

n+1∑
t=1

ui(π
t
i , π

t
−i)− (n+ 1)v∗ (5)

LEMMA 5.3. Let π be updated according to RWYWE. Then for all t ≥ 1, kt ≥ 0.

PROOF. By definition, k1 = 0. Now suppose kt ≥ 0 for some t ≥ 1. By construction,
πt has exploitability at most kt. Thus, we must have

ui(π
t
i , a

t
−i) ≥ v∗ − kt.

Thus kt+1 ≥ 0 and we are done.

PROPOSITION 5.4. RWYWE is safe.

PROOF. By Lemma 5.2,
T∑
t=1

ui(π
t
i , π

t
−i) = E[kT+1] + Tv∗.

By Lemma 5.3, kT+1 ≥ 0, and therefore E[kT+1] ≥ 0. So
T∑
t=1

ui(π
t
i , π

t
−i) ≥ Tv∗,

and RWYWE is safe.

RWYWE is similar to the Safe Policy Selection Algorithm (SPS), proposed in [Mc-
Cracken and Bowling 2004]. The main difference is that SPS uses an additional decay
function f : N→ R setting k1 ← f(1) and using the update step

kt+1 ← kt + f(t+ 1) + ui(π
t, at−i)− v∗.

They require f to satisfy the following properties

(1) f(t) > 0 for all t

(2) limT→∞

∑T

t=1
f(t)

T = 0

In particular, they obtained good experimental results using f(t) = β
t . They are able to

show that SPS is safe in the limit as T → ∞;2 however SPS is arbitrarily exploitable
in finitely repeated games. Furthermore, even in infinitely repeated games, SPS can

2We recently discovered a mistake in their proof of safety in the limit; however, the result is still correct.



lose a significant amount; it is merely the average loss that approaches zero. We can
think of RWYWE as SPS but using f(t) = 0 for all t.

5.3. Best equilibrium strategy
Given an opponent modeling algorithm M , we could play the best Nash equilibrium
according to M at each time step:

πt = argmaxπ∈ SAFE(0)M(π).

This would clearly be safe, but can only exploit the opponent as much as the best
equilibrium can, and potentially leaves a lot of exploitation on the table.

5.4. Regret minimization between an equilibrium and an opponent modeling algorithm
We could use a no-regret algorithm (e.g., [Auer et al. 2002]) to select between an equi-
librium and opponent modeling algorithm M at each iteration. As pointed out in [Mc-
Cracken and Bowling 2004], this would be safe in the limit as T → ∞. However, this
would not be safe in finitely-repeated games. Note that even in the infinitely-repeated
case, no-regret algorithms only guarantee that average regret goes to 0 in the limit; in
fact, total regret can still grow arbitrarily large.

5.5. Regret minimization in the space of equilibria
Regret minimization in the space of equilibria is safe, but again would potentially
miss out on a lot of exploitation against suboptimal opponents. This procedure was
previously used to exploit opponents in Kuhn poker [Hoehn et al. 2005].

5.6. Best equilibrium followed by full exploitation (BEFFE)
The BEFFE algorithm works as follows. We start off playing the best equilibrium strat-
egy according to some opponent model M . Then we switch to playing a full best re-
sponse for all future iterations if we know that doing so will keep our strategy safe in
the full game (in other words, if we know we have accrued enough gifts to support full
exploitation in the remaining iterations). Pseudocode is given in Algorithm 3.

Algorithm 3 Best Equilibrium Followed by Full Exploitation (BEFFE)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πtBR ← argmaxπM(π)
ε← v∗ −minπ−i

ui(π
t
BR, π−i)

if kt >= (T − t+ 1)(v∗ − ε) then
πt ← πtBR

else
πt ← argmaxπ∈ SAFE(0)M(π)

end if
Play action ati according to πt
The opponent plays action at−i according to unobserved distribution πt−i
Update M with opponent’s actions, at−i
kt+1 ← kt + ui(π

t
i , a

t
−i)− v∗

end for

This algorithm is similar to the DBBR algorithm [Ganzfried and Sandholm 2011],
which plays an equilibrium for some fixed number of iterations, then switches to full



exploitation. However, BEFFE automatically detects when this switch should occur,
which has several advantages. First, it is one fewer parameter required by the algo-
rithm. More importantly, it enables the algorithm to guarantee safety.

PROPOSITION 5.5. BEFFE is safe.

PROOF. Follows by same reasoning as proof of safety of RWYWE, since we are play-
ing a strategy with exploitability at most kt at each iteration.

One possible advantage of BEFFE over RWYWE is that it potentially saves up ex-
ploitability until the end of the game, when it has the most accurate information on
the opponent’s strategy (while RWYWE does exploitation from the start when the op-
ponent model has noisier data). On the other hand, BEFFE possibly misses out on
additional rounds of exploitation by waiting until the end, since it may accumulate ad-
ditional gifts in the exploitation phase that it did not take into account. Furthermore,
by waiting longer before turning on exploitation, one’s experience of the opponent can
be from the wrong part of the space; that is, the space that is reached when playing
equilibrium but not when exploiting. Consequently, the exploitation might not be as
effective because it may be based on less data about the opponent in the pertinent part
of the space. This issue has been observed in opponent exploitation in Heads-Up Texas
Hold’em poker [Ganzfried and Sandholm 2011].

5.7. Best equilibrium and full exploitation when possible (BEFEWP)
BEFEWP is similar to BEFFE, but rather than waiting until the end of the game, we
play a full best response at each iteration where its exploitability is below kt; otherwise
we play the best equilibrium. Pseudocode is given in Algorithm 4.

Algorithm 4 Best Equilibrium and Full Exploitation When Possible (BEFEWP)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πtBR ← argmaxπM(π)
ε← v∗ −minπ−i

ui(π
t
BR, π−i)

if ε <= kt then
πt ← πtBR

else
πt ← argmaxπ∈ SAFE(0)M(π)

end if
Play action ati according to πt
The opponent plays action at−i according to unobserved distribution πt−i
Update M with opponent’s actions, at−i
kt+1 ← kt + ui(π

t
i , a

t
−i)− v∗

end for

Like RWYWE, BEFEWP will continue to exploit a suboptimal opponent throughout
the match provided the opponent keeps giving us gifts. It also guarantees safety, since
we are still playing a strategy with exploitability at most kt at each iteration. However,
playing a full best response rather than a safe best response early in the match may
not be the greatest idea, since our data on the opponent is still quite noisy.

PROPOSITION 5.6. BEFEWP is safe.



6. A FULL CHARACTERIZATION OF SAFE STRATEGIES IN STRATEGIC-FORM GAMES
In the previous section we saw a variety of opponent exploitation algorithms, some
which are safe and some which are unsafe. In this section, we fully characterize the
space of safe algorithms. Informally, it turns out that an algorithm will be safe if at
each time step it selects a strategy with exploitability at most kt, where k is updated
according to the RWYWE procedure. Note that this does not mean that RWYWE is the
only safe algorithm, or that safe algorithms must explicitly use the given update rule
for kt; it just means that the exploitability at each time step must be bounded by the
particular value kt, assuming that k had hypothetically been updated according to the
RWYWE rule.

Definition 6.1. An algorithm for selecting strategies is expected-profit-safe if it sat-
isfies the rule

πt ∈ SAFE(kt)

at each time step t from 1 to T , where initially k1 = 0 and k is updated using the rule

kt+1 ← kt + ui(π
t, at−i)− v∗.

PROPOSITION 6.2. A strategy π (for the full game, not the stage game) is safe if and
only if it is expected-profit-safe.

PROOF. If π is expected-profit-safe, then it follows that π is safe by similar reasoning
to the proof of Proposition 5.4.

Now suppose π is safe, but at some iteration t′ selects πt
′

with exploitability exceed-
ing kt

′
, as defined in Definition 6.1 (assume t′ is the first such iteration); let e′ denote

the exploitability of πt
′
. Suppose the opponent had been playing the pure strategy that

selects action at−i with probability 1 at each iteration t for all t < t′, and suppose he
plays his nemesis strategy to πt

′
at time step t′ (and follows a minimax strategy at all

future iterations). Then our expected payoff in the first t′ iterations is
t′−1∑
t=1

ui(π
t, at−i) + v∗ − e′ (6)

<

t′−1∑
t=1

ui(π
t, at−i) + v∗ − kt

′
(7)

=

t′−1∑
t=1

ui(π
t, at−i) + v∗ −

t′−1∑
t=1

ui(π
t, at−i)− (t′ − 1)v∗

 (8)

= t′v∗. (9)

Note that in Equation 8, we use Lemma 5.2 and the fact that E[kt
′
] = kt

′
, since the

opponent played a deterministic strategy in the first t′−1 rounds. We will obtain payoff
at most v∗ at each future iteration, since the opponent is playing a minimax strategy.
So π is not safe and we have a contradiction; therefore π must be expected-profit-safe,
and we are done.

7. SAFE EXPLOITATION IN SEQUENTIAL GAMES
In sequential games, we cannot immediately apply RWYWE (or the other safe algo-
rithms that deviate from equilibrium), since we do not know what the opponent would



have done at game states off the path of play (and thus cannot evaluate the expected
payoff of our mixed strategy).

7.1. Sequential games of perfect information
In sequential games of perfect information, it turns out that to guarantee safety we
must assume pessimistically that the opponent is playing a nemesis off the path of
play (while playing his observed action on the path of play). This pessimism potentially
limits our amount of exploitation when the opponent is not playing a nemesis, but is
needed to guarantee safety.

Algorithm 5 Sequential RWYWE
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πt ← argmaxπ∈ SAFE(kt)M(π)

Play action ati according to πt
The opponent plays action at−i according to unobserved distribution πt−i
Update M with opponent’s actions, at−i
τ t−i ← strategy for the opponent that plays at−i on the path of play, and plays a best
response to πt off the path of play
kt+1 ← kt + ui(π

t
i , τ

t
−i)− v∗

end for

PROPOSITION 7.1. Sequential RWYWE is safe.

PROOF. Similar to proof of Proposition 5.4. Due to space constraints, we have had
to omit several of our proofs.

We now provide a full characterization of safe exploitation algorithms in sequential
games—similarly to what we did for strategic-form games earlier in the paper.

Definition 7.2. An algorithm for selecting strategies in sequential games of perfect
information is expected-profit-safe if it satisfies the rule

πt ∈ SAFE(kt)

at each time step t from 1 to T , where initially k1 = 0 and k is updated using the same
rule as Sequential RWYWE.

PROPOSITION 7.3. A strategy π in a sequential game of perfect information is safe
if and only if it is expected-profit-safe.

7.2. Sequential games of imperfect information
In sequential games of imperfect information, not only do we not see the opponent’s
action off of the path of play, but sometimes we do not even see his private infor-
mation. We consider the two cases—when his private information is observed and
unobserved—separately.

7.2.1. Opponent’s private information is observed at the end of the game. When the opponent’s
private information is observed at the end of each game iteration, we can play a pro-
cedure similar to Sequential RWYWE. Here, we must pessimistically assume that the
opponent would have played a nemesis at every information set off of the path of play
(though we do not make any assumptions regarding his play along the path of play



other than that he played action at−i with observed private information θt−i). Pseu-
docode for this procedure is given in Algorithm 6.

Algorithm 6 Safe exploitation algorithm for sequential games of imperfect informa-
tion where opponent’s private information is observed at the end of the game
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πt ← argmaxπ∈ SAFE(kt)M(π)

Play action ati according to πt
The opponent plays action at−i with observed private information θt−i, according to
unobserved distribution πt−i
Update M with opponent’s actions, at−i, and his private information, θt−i
τ t−i ← strategy for the opponent that plays a best response to πt subject to the
constraint that it plays at−i on the path of play with private information θt−i
kt+1 ← kt + ui(π

t
i , τ

t
−i)− v∗

end for

PROPOSITION 7.4. Algorithm 6 is safe.

Definition 7.5. An algorithm for selecting strategies in sequential games of imper-
fect information is expected-profit-safe if it satisfies the rule

πt ∈ SAFE(kt)

at each time step t from 1 to T , where initially k1 = 0 and k is updated using the same
rule as Algorithm 6.

PROPOSITION 7.6. A strategy π in a sequential game of imperfect information is
safe if and only if it is expected-profit-safe.

7.2.2. Opponent’s private information is not observed. Unfortunately we must be extremely
pessimistic if the opponent’s private information is not observed, though it can still be
possible to detect gifts in some cases. We can only be sure we have received a gift if the
opponent’s observed action would have been a gift for any possible private information
he may have. Thus we can run an algorithm similar to Algorithm 6, where we redefine
τ t−i to be the opponent’s best response subject to the constraint that he plays at−i with
some private information.

The approaches from this subsection and the previous subsection can be combined if
we observe some of the opponent’s private information afterwards but not all. Again,
we must be pessimistic an assume he plays a nemesis subject to the restriction that
we plays the observed actions with the observed part of his private information.

7.3. Detecting gifts within a game iteration
In some situations, we could detect gift actions early in the game that would allow us
to risk trying to exploit him even in the middle of a single game iteration. We can use a
variant of the Sequential RWYWE update rule to detect gifts during a game iteration,
where we redefine τ t−i to be the opponent’s best response to πti subject to the constraint
that he has taken the observed actions along the path of play thus far. This would allow
us to safely deviate from equilibrium to exploit him even during a game iteration.



8. EXPERIMENTS
We ran experiments using the sequential imperfect-information variants of several
of the safe algorithms presented in Section 5. The domain we consider is Kuhn
poker [Kuhn 1950], a simplified form of poker which has been frequently used as a
test problem for game-theoretic algorithms [Ganzfried and Sandholm 2010; Gordon
2005; Hawkin et al. 2011; Hoehn et al. 2005; Koller and Pfeffer 1997].

8.1. Kuhn poker
Kuhn poker is a two-person zero-sum poker game, consisting of a three-card deck and
a single round of betting. Here are the full rules:

— Two players: P1 and P2
— Both players ante $1
— Deck containing three cards: K, Q, and J
— Each player is dealt one card uniformly at random
— P1 acts first and can either bet $1 or check

— If P1 bets, P2 can call or fold
— If P1 bets and P2 calls, then whoever has the higher card wins the $4 pot
— If P1 bets and P2 folds, then P1 wins the entire $3 pot

— If P1 checks, P2 can bet $1 or check.
— If P1 checks and P2 bets, then P1 can call or fold.

— If P1 checks, P2 bets, and P1 calls, then whoever has the higher card wins
the $4 pot

— If P1 checks, P2 bets, and P1 folds, then B wins the $3 pot
— If P1 checks and P2 checks, then whoever has the higher card wins the $2 pot

The value of the game to player 1 is − 1
18 ≈ −0.0556. Player 2 has a unique equilib-

rium strategy, while player 1 has infinitely many equilibrium strategies parameterized
by a single value.

8.2. Experimental setup
We experimented using several of the safe strategies described in Section 5—RWYWE,
Best equilibrium, BEFFE, and BEFEWP. For all algorithms, we used a natural oppo-
nent modeling algorithm similar to prior work [Ganzfried and Sandholm 2011; Hoehn
et al. 2005]. We also compare our algorithms to a full best response using the same
opponent modeling algorithm. This strategy is not safe and is highly exploitable in the
worst case; but it provides a useful metric for comparison.

Our opponent model assumes the opponent plays according to his observed frequen-
cies so far in the game, where we assume that we observe his hand at the end of each
game iteration as prior work on exploitation in Kuhn poker has done [Hoehn et al.
2005]. We initialize our model by assuming a Dirichlet prior of 5 fictitious hands at
each information set at which the opponent has played according to his unique equi-
librium strategy.

We adapted all five algorithms to the imperfect-information setting by using the
pessimistic update rule described in Algorithm 6. We ran the algorithms against four
general classes of opponents. The first class of opponent selects an action uniformly
at random at each information set (random opponents were used previously in Kuhn
poker [Hoehn et al. 2005]). The second opponent class is also static but more sophisti-
cated; at each information set it selects each action at each information with probabil-
ity chosen randomly but within 0.2 of the equilibrium probability (recall that player 2
has a unique equilibrium strategy). Thus, these opponents play relatively close to op-
timally, and are perhaps more indicative of realistic suboptimal opponents. The third



class of opponents is dynamic. Opponents in this class play the first 100 hands ran-
domly, and then play a true best response (i.e., nemesis strategy) to our player’s strat-
egy. So, after the first 100 hands, we make the opponent more powerful than any real
opponent could be in practice. Finally, the fourth class is the static unique Nash equi-
librium strategy of player 2.

We ran all five algorithms against (the same) opponents from each class—800 ran-
dom opponents, 3800 sophisticated static opponents, 800 dynamic opponents, and 3700
equilibrium opponents. Each match against a single opponent consisted of 1000 hands,
and we assume that the hands for both players were dealt identically for each of the
algorithms against a given opponent (to reduce variance). For example, suppose algo-
rithm A1 is dealt a K and opponent O is dealt a Q in the first hand of the match. Then
in the runs of all other algorithms A against O, A is dealt a K and O is dealt a Q in the
first hand.

8.3. Experimental results
The results from our experiments are given in Table I. Against random opponents, the
ordering of the performances of the safe algorithms was RWYWE, BEFEWP, BEFFE,
Best Nash (and all of the individual rankings are statistically significant using 95%
confidence intervals). Against sophisticated static opponents the rankings of the al-
gorithms’ performances were identical, though the only significant result at the 95%
level was that RWYWE outperformed Best Nash. (Recall that the value of the game to
player 1 is− 1

18 ≈ −0.0556, so a negative win rate is not necessarily indicative of losing).
In summary, against static opponents, our most aggressive safe exploitation algorithm
outperforms the other safe exploitation algorithms that either stay within equilibrium
strategies or use exploitation only when enough gifts have been accrued to use full
exploitation. Against the dynamic opponents, our algorithms are indeed safe as the
theory predicts, while the best response algorithm does very poorly (and much worse
than the value of the game). As a sanity check, the experiments show that against the
equilibrium opponent, all the algorithms obtain approximately the value of the game
as they should.

Table I. Win rate in $/hand of the five algorithms against opponents from each class. The ± given is
the 95% confidence interval.

Opponent
Random Sophisticated static Dynamic Equilibrium

RWYWE 0.363 ± 0.003 -0.0104 ± 0.0013 -0.021 ± 0.003 -0.055 ± 0.001
BEFEWP 0.353 ± 0.003 -0.0111 ± 0.0013 -0.020 ± 0.003 -0.054 ± 0.001
BEFFE 0.199 ± 0.003 -0.0121 ± 0.0013 -0.041 ± 0.003 -0.054 ± 0.001

Best Nash 0.143 ± 0003 -0.0142 ± 0.0013 -0.035 ± 0.003 -0.054 ± 0.001
Best response 0.470 ± 0.003 0.0545 ± 0.0014 -0.121 ± 0.003 -0.055 ± 0.001

In some matches, RWYWE steadily accumulates gifts along the way, and kt increases
throughout the match. An example of the graph of profit and kt for one such opponent
is given in Figure 5. In this situation, the opponent is frequently giving us gifts, and
we quickly start playing (and continue to play) a full best response according to our
opponent model.

In other matches, kt remains very close to 0 throughout the match, despite the fact
that profits are steadily increasing; one such example is given in Figure 6. Against this
opponent, we are frequently playing an equilibrium or an ε-safe best response for some
small ε, and only occasionally playing a full best response. Note that kt falling to 0 does
not necessarily mean that we are losing or giving gifts to the opponent; it just means



Fig. 5. Profit and kt over the course of a match of RWYWE against a random opponent. Profits are denoted
by the thick blue line using the left Y axis, while kt is denoted by the thin green line and the right Y axis.
Against this opponent, both kt and profits steadily increase.

that we are not completely sure about our worst-case exploitability, and are erring on
the side of caution to ensure safety.

Fig. 6. Profit and kt over the course of a match of RWYWE against a random opponent. Profits are denoted
by the thick blue line using the left Y axis, while kt is denoted by the thin green line and the right Y axis.
Against this opponent, kt stays relatively close to 0 throughout the match, while profit steadily increases.

9. CONCLUSIONS AND FUTURE RESEARCH
We showed that safe opponent exploitation is possible in certain games, disproving a
recent conjecture. Specifically, profitable deviations from stage-game equilibrium are
possible in games where ‘gift’ strategies exist for the opponent, which we define for-
mally and fully characterize. We considered several natural opponent exploitation al-
gorithms and showed that some guarantee safety while others do not; for example,
risking the amount of profit won so far is not safe in general, while risking the amount
won so far in expectation is safe. We described how some of these algorithms can be
used to convert any opponent modeling algorithm (that is arbitrarily exploitable) into
a fully safe opponent exploitation procedure. Next we provided a full characteriza-
tion of safe algorithms for strategic-form games, which corresponds to precisely the
algorithms that are expected-profit safe. We also provided algorithms and full charac-
terizations of safe strategies in sequential games of perfect and imperfect information.
In our experiments against static opponents, several safe exploitation algorithms sig-
nificantly outperformed an algorithm that selects the best Nash equilibrium strategy;
thus we conclude that safe exploitation is feasible and potentially effective in realis-
tic settings. Our most aggressive safe exploitation algorithm outperformed the other
safe exploitation algorithms that use exploitation only when enough gifts have been



accrued to use full exploitation. In experiments against an overly strong dynamic op-
ponent that plays a nemesis strategy after 100 iterations, our algorithms are indeed
safe as the theory predicts, while the best response algorithm does very poorly (and
much worse than the value of the game).

Several challenges must be confronted before applying safe exploitation algorithms
to larger sequential games of imperfect information, such as Texas Hold’em poker.
First, the best known technique for computing ε-safe best responses involves solving
a linear program on par with performing a full equilibrium computation; performing
such computations in real time, even in a medium-sized abstracted game, is not feasi-
ble in Texas Hold’em. Perhaps the approaches of BEFEWP and BWFEE, which alter-
nate between equilibrium and full best response, would be preferable to RWYWE in
such games, since full best responses can be computed much more efficiently in prac-
tice than ε-safe best responses. In addition, perhaps performance can be improved if we
integrate our algorithms with lower-variance estimators of our expected profits [Bowl-
ing et al. 2008].
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