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Abstract- Removing noise from the original signal is still a 

challenging problem for researchers. There have been several 

published algorithms and each approach has its assumptions, 

advantages, and limitations. This paper presents a review of 

some significant work in the area of image de noising. After a 

brief introduction, some popular approaches are classified into 

different groups and an overview of various algorithms and 

analysis is provided. Wavelet algorithms are very useful tool 

for signal processing such as image compression and image de 

noising. The main aim is to show the result of wavelet 

coefficients in the new basis, the noise can be minimize or 

removed from the data. Insights and potential future trends in 
the area of de noising are also discussed. Due to the increasing 

requirements for transmission of images in computer, mobile 

environments, the research in the field of image compression 

has increased significantly. Image compression plays a crucial 

role in digital image processing, it is also very important for 

efficient transmission and storage of images. When we 

compute the number of bits per image resulting from typical 

sampling rates and quantization methods, we find that Image 

compression is needed. Therefore development of efficient 

techniques for image compression has become necessary .This 

paper is a survey for lossy image compression using Discrete 
Wavelet Transform, it covers JPEG all format of image 

compression algorithm which is used for full-colour still 

image applications and describes all the components of it. 
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I. INTRODUCTION 

Digital images play an important role both in daily life 

applications such as satellite television, magnetic resonance 

imaging, computer tomography as well as in areas of research 

and technology such as geographical information systems and 

astronomy [1]. Data sets collected by image sensors are 

generally contaminated by noise. Imperfect instruments, 

problems with the data acquisition process, and interfering 

natural phenomena can all degrade the data of interest. 

Furthermore, noise can be introduced by transmission errors 

and compression. Thus, denoising is often a necessary and the 
first step to be taken before the images data is analyzed. It is 

necessary to apply an efficient denoising technique to 

compensate for such data corruption. Image denoising still 

remains a challenge for researchers because noise removal 

introduces artifacts and causes blurring of the images. This 

paper describes different methodologies for noise reduction 

(or denoising) giving an insight as to which algorithm should 

be used to find the most reliable estimate of the original image 

data given its degraded version. Noise modeling in images is 

greatly affected by capturing instruments, data transmission 

media, image quantization and discrete sources of radiation. 

Different algorithms are used depending on the noise model. 

Most of the natural images are assumed to have additive 

random noise which is modeled as a Gaussian. Speckle noise 

is observed in ultrasound images whereas Rician noise affects 

MRI images. The scope of the paper is to focus on noise 

removal techniques for natural images [1]. 

 
II. IMAGE DENOISING AND COMPRESSION 

 Image de noising is one of the important and essential 

components of image processing. Many scientific data sets 

picked by the sensors are normally contaminated by noise. It 

is contaminated either due to the data acquisition process, or 

due to naturally occurring phenomenon. There are several 

special cases of distortion. One 2 of the most prevalent cases 

is due to the additive white gaussian noise caused by poor 

image acquisition or by communicating the image data 

through noisy channels. Other categories include impulse and 

speckle noises. The goal of de noising algorithm is to remove 
the unwanted noise while preserving the important signal 

features as much as possible. Noise elimination introduce 

artifacts and blur in the images. So image de noising is still a 

challenging task for the investigators. Several methods are 

being developed to perform de noising of corrupted images. 

The two fundamental approaches of image de noising are the 

spatial filtering methods and transform domain filtering 

methods. Spatial filters operate a low-pass filtering on a set of 

pixel data with an assumption that the noise reside in the 

higher region of the frequency spectrum. Spatial low-pass 

filters not only provide smoothing but also blur edges in 

signals and images. Whereas high pass filters improve the 
spatial resolution, and can make edges sharper, but it will also 

intensify the noisy background. Fourier transform domain 

filters in signal processing involve a trade-off between the 

signal-to-noise ratio (SNR) and the spatial resolution of the 

signal processed. Using Fast Fourier Transform (FFT) , the de 

noising method is basically a low pass filtering procedure, in 

which edges of the de noised image are not as sharp as it is in 

the original image . Due to FFT basis functions the edge 

information is extended across frequencies, which are not 

being localized in time or space. Hence low pass-filtering 
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results in the spreading of the edges. Wavelet theory, due to 

the advantage of localization in time and space, results in de 

noising with edge preservation. The success of de noising 

technique is ensured by the ability of de-correlation 

(separation of noise and useful signal) of the different discrete 

wavelet 3 transform coefficients. As the signal is contained in 
a small number of coefficients of such a transform, all other 

coefficients essentially contain noise. By filtering these 

coefficients, most of the noise is eliminated. Currently there is 

a large proliferation of digital data. Multimedia is an evolving 

method of presenting many types of information. Multimedia 

combines text, sound, pictures and animation in a digital 

format to relate an idea. In future multimedia may be readily 

available as newspapers and magazines. The multimedia and 

other types of digital data require large memory for storage, 

high bandwidth for transmission and more communication 

time. The only means to get better on these resources is to 

compress the data size, so that it can be transmitted quickly 
and followed by decompression at the receiver. Another most 

significant and booming applications of the wavelet transform 

is image compression. More popular and efficient existing 

wavelet based coding standards like JPEG2000 can easily 

perform better than conventional coders like Discrete Cosine 

Transform (DCT) and JPEG. Unlike in DCT based image 

compression, the effectiveness of a wavelet based image coder 

depends on the choice of wavelet selection [2-3]. 

III. MOTIVATION FOR THE RESEARCH WORK 

After the development of continuous wavelet transform by 

Morlet and Grossman, many wavelet transforms (WT) have 

been extended their usage in image processing applications 

like de-noising. Wavelets are mathematical tools that 

decompose the data into number of different frequency 

components, and then studying each component with good 

resolution, matched to its scale. Wavelet transforms have 

advantages over traditional Fourier methods in analyzing the 

signal containing discontinuities and sharp spikes. Basically 

wavelet transforms are classified into continuous wavelet 
transform and discrete wavelet transform. The digital signal 

processors and computes are discrete in nature, image 

processing algorithms use discrete wavelet transform. 

Wavelets perform a better-quality in image de noising, due to 

the sparsity and multiresolution properties. Each wavelet 

based image de noising method follow three steps: o 

computing a linear forward wavelet transform of the image to 

be de noised, o filtering with nonlinear thresholding in the 

wavelet domain. o Computing a linear inverse wavelet 

transform. In signal de noising, wavelet thresholding 

suggested by Donoho, is a signal identification technique that 
make use of the properties of wavelet transform. Coefficients 

that are insignificant relative to some threshold can be 

eliminated by thresholding. The choice of a thresholding 

parameter determines the effectiveness of de noising 

algorithm. Even though the Discrete Wavelet Transform 

(DWT) is a powerful tool, it suffers with three limitations 

(shift sensitivity, poor directionality and absence of phase 

information), which decreased its usage in many applications. 

DWT is shift sensitive because it produce unpredictable 

changes in DWT coefficients, if input signal is shifted [3]. 
Next, the DWT undergo poor directionality because DWT 5 

coefficients unveil only three orientations(horizontal, vertical 

and diagonal). Last, absence of phase information because 

DWT investigation of non-stationary signals lacks the phase 

information. Prof N. Kingsbury proposed a redundant 

complex wavelet transform to avoid the above limitations in 

standard DWT. A Dual-Tree Wavelet Transform (DTWT) 

with good directionality, approximate shift sensitivity and 

explicit phase information perform in excellence where 

redundancy is acceptable. In DTWT a pair of filter banks 

operate simultaneously on the input signal and furnish two 

wavelet decompositions. The wavelets related with filter 
banks form a Hilbert Transform(HT) pair and provides shift 

insensitivity, good directionality and explicit phase 

information. However, the design of DTWT filters is 

complex, because it requires an iterative optimization over the 

space of ideal reconstruction filter banks. A thorough study 

and interest in later years showed pathway for usage of 

complex wavelets, and complex analytic signals particularly 

in signal processing and statistical applications. Further it is 

linked to the expansion of complex valued discrete wavelet 

filters and intelligent dual filter banks. Finally, the complex 

wavelet transforms, directional wavelet transforms, analytic 
wavelets, steerable pyramids, curve lets  and contour lets are 

intelligent and powerful redundant tools applied to signal and 

image analysis. Based on the above study, it is inferred that 

the transform domain is better suited for image analysis. A 

novel complex wavelet transform (CWT) can be used for 

analyzing and identifying the objects in image processing 

applications like image de noising, compression and 

segmentation. Investigation results illustrate that complex 

wavelet transforms outperform the standard real wavelet 

transforms in the sense of shift-insensitivity, directionality and 

anti-aliasing [4-5]. 

 
Fig.1:   De-Noising Compression in Wavelets 
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IV. DWT DECOMPOSITION 

In Fourier analysis, the Discrete Fourier Transform (DFT) 

decompose a signal into sinusoidal basis functions of different 

frequencies. No information is lost in this transformation; in 

other words, we can completely recover the original signal 

from its DFT (FFT) representation. In wavelet analysis, the 
Discrete Wavelet Transform (DWT) decomposes a signal into 

a set of mutually orthogonal wavelet basis functions. These 

functions differ from sinusoidal basis functions in that they 

are spatially localized – that is, nonzero over only part of the 

total signal length. Furthermore, wavelet functions are dilated, 

translated and scaled versions of a common function φ, known 

as the mother wavelet. As is the case in Fourier analysis, the 

DWT is invertible, so that the original signal can be 

completely recovered from its DWT representation. Unlike 

the DFT, the DWT, in fact, refers not just to a single 

transform, but rather a set of transforms, each with a different 

set of wavelet basis functions. Two of the most common are 
the Haar wavelets and the Daubechies set of wavelets. For 

example, Figures 1 and 2 illustrate the complete set of 64 Haar 

and Daubechies-4 wavelet functions (for signals of length 64), 

respectively. Here, we will not delve into the details of how 

these were derived; however, it is important to note the 

following important properties [5-6]: 

 1. Wavelet functions are spatially localized;  

2. Wavelet functions are dilated, translated and scaled 

versions of a common mother wavelet; and  

3. Each set of wavelet functions forms an orthogonal set of 

basis functions. 
DWT in two dimensions In this section, we describe the 

algorithm for computing the two-dimensional DWT through 

repeated application of the one-dimensional DWT. The two-

dimensional DWT is of particular interest for image 

processing and computer vision applications, and is a 

relatively straightforward extension of the one-dimensional 

DWT discussed above. 

 
Fig.2: One-level, two-dimensional DWT. 

First, the one-dimensional DWT is applied along the rows; 

second, the one-dimensional DWT is applied along the 

columns of the first-stage result, generating four sub-band 

regions in the transformed space: LL, LH, HL and HH [6-7]. 

Figure 2 illustrates the basic, one-level, two-dimensional 

DWT procedure. First, we apply a one-level, onedimensional 

DWT along the rows of the image. Second, we apply a one-

level, one-dimensional DWT along the columns of the 

transformed image from the first step. As depicted in Figure 2 

(left), the result of these two sets of operations is a 

transformed image with four distinct bands:  

(1) LL,  

(2) LH, 

 (3) HL and  

(4) HH. Here, L stands for low-pass filtering, and H stands for 

high-pass filtering. The LL band corresponds roughly to a 
down-sampled (by a factor of two) version of the original 

image. The LH band tends to preserve localized horizontal 

features, while the HL band tends to preserve localized 

vertical features in the original image. Finally, the HH band 

tends to isolate localized high-frequency point features in the 

image. 

 

 
Fig.3: Two-dimensional wavelet transform: (left) one-level 

2D DWT of sample image, and (right) threelevel 2D DWT of 

the same image. Note that the LH bands tend to isolate 
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horizontal features, while the HL band tend to isolate vertical 

features in the image. 

V. INVERSE DWT 

To understand the procedure for computing the one-

dimensional inverse DWT, consider Figure 2, where we 

illustrate the inverse DWT for a one-level DWT of length 16 

(assuming filters of length four). Note that the two filters are 

now h −1 and g −1 where, 

 

and g −1 is determined from h −1 using equation (1). To 

understand how to compute the one-dimensional inverse 

DWT for multi-level DWTs, consider Figure 3. First, to 
compute w2 from w3, the procedure in Figure 5 is applied 

only to values L3 and H3. Second, to compute w1 from w2, 

the procedure in Figure 2 is applied to values L2 and H2. 

Finally, to compute x from w1, the procedure in Figure 5 is 

applied to all of w1 – namely, L1 and H1 [7-8]. 

VI. PROPOSED DWT FEATURE EXTRACTION 

ALGORITHM 
Initially, it is verified that the digitized flaw data are available 

in the powers of 2 for making the effective decomposition. 

The various steps involved in the feature extraction algorithm 

are as follows:  

Step 1: The ultrasonic flaw data are decomposed into four 

detail subbands using Discrete Wavelet Transform (DWT). 

The subbands are high frequency detail band coefficients and 

low frequency approximation band coefficients [9-10].  

Step 2: The approximation co-efficients are further 

decomposed using DWT to extract localized information from 

the subband of detail coefficients. In this work, four levels of 

decomposition have been done using biorthogonal wavelet 

(bior 4.4). Four level approximation and detail coefficients of 

six classes of defect are graphically represented in Appendix 1 

as Figures 3.  

Step 3: For further analyzing and processing, all the four level 

detail band coefficients have been taken. 

 Step 4: The frequency vector (in radians/sample) is extracted 

for four detail subbands using periodogram function in 
MATLAB.  

Step 5: The features are computed either by using syntax or 

by implementing the formulae. They are mean, variance, mean 

of energy, maximum amplitude, minimum amplitude, 

maximum energy, minimum energy, average frequency, mid 

frequency, maximum frequency, minimum frequency, half 

point of the function. 

The M-file program for four level signal decomposition and 

features extraction using DWT are provided.  

Step 6: Finally, the extracted features for the six classes of 

defects are tabulated and analyzed for classification. 

VII. EXTRACTED FEATURES 

 In this work, twelve features are extracted from the discrete 

wavelet transform (DWT) coefficients of ultrasonic test 

signals obtained from the six classes of defect. The extracted 

features from the signal are as below:  

1. Mean: It is nothing but an average value. 

 

 
2. Variance: The variance is defined as the sum of square 

distances of each term in the distribution from the mean, 

divided by the number of terms in the distribution. 

 
3. Mean of the energy: It is the average value of the energy.

 
Where  

x Sequence, m Mean, n Number of Samples 

4. Maximum Amplitude: It is the peak value of amplitude of 

the signal  
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 5. Minimum Amplitude: It is the lowest value of amplitude 

of the signal.  

6. Maximum Energy: It is the highest energy value obtained 

from the signal. 

7. Minimum Energy: It is the lowest energy value obtained 

from the signal. 

8. Average Frequency: 

 

9. Mid Frequency: It is the frequency value which is 

obtained when the power spectral density is at the maximum 

value.  

10. Maximum frequency: It is the maximum frequency value 

of the energy in the spectrum.  

11. Minimum frequency: It is the minimum frequency value 

of the energy in the spectrum.  

12. Half Point of the energy (HaPo): It is a very valuable 

variable as it represents the frequency that divides up the 

spectrum into two parts of same area. 

VIII. RESULT AND SIMULATION 

1. Base paper result:- 

Table (1) our base paper result. 

 

2. Our Proposed Method Result:- 

 
Fig.4: GUI two-dimensional DWT 

Data sets 1: 

 
Fig.5: Data set 1 Input and Output Denoising image. 
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Fig.6: Data set 1 Input and Output Denoising image. 

Data sets 2:  

  

Fig.7: Data sets 2 input and output. 

Table (2) our Proposed result. 

Hence shows that data sets 1 and 2 is better result as compare 

to old image denoising technique. With Find data sets 1 result 

show minimum MSE, maximum PSNR and image pixel 

quality.   

IX. CONCLUSION 

The comparative study of various de-noising techniques for 

digital images shows that wavelet filters outperforms the other 
standard spatial domain filters. Although all the spatial filters 

perform well on digital images but they have some constraints 

regarding resolution degradation. These filters operate by 

smoothing over a fixed window and it produces artifacts 

around the object and sometimes causes over smoothing thus 

causing blurring of image. Wavelet transform is best suited for 

performance because of its properties like sparsity, multi 

resolution and multi scale nature. Thresholding techniques 

used with discrete wavelet are simplest to implement. 
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