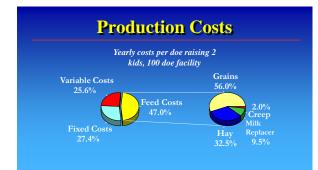
Feeding for 2: Understanding How to Feed the Goat and her Rumen

PennState Extension


Robert Van Saun, DVM, MS, PhD Extension Veterinarian Department of Veterinary & Biomedical Sciences

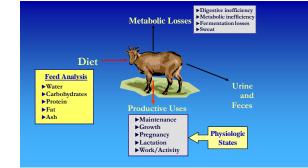
extension.psu.edu

The Marvels of Ruminant Digestion

This goat weighed 200 lb and produced 3,454 lb of milk in a 305 day lactation Milk Composition: • 4% lactose 3.5% protein 3.6% fat Required daily synthesis:
250 g Lactose Fermentation precursors:
 Propionate = lactose
 Acetate, Butyrate = fat
 Microbes = protein

Learning Objectives

> To understand how to feed goats emphasizing how to properly feed the rumen microbes for feed efficiency


Recognize the role of forage quality in meeting energy, protein and other nutrient needs at differing physiologic

> Gain some insight to basic dietary guidelines for

Essential Nutrients

- ► Water 2-5x dry matter intake
- > Energy (CHO, Fats, Protein)
- > Amino Acids (Protein)
- ➤ Minerals
 - Macro Ca, P, Mg, K, Na, Cl, S • Micro – Co, Cu, Fe, I, Mn, Se, Zn
- ▶ Vitamins
 - Fat-soluble A, D, E, K
 - Water-soluble B-complex, C, Choline
- ► Fiber (?)

Substances that are required in the diet

Animals consume amounts of nutrients and not percentages!

How Does a Goat Use Feed?

- ▶ Is a goat a small cow?
- > What is a rumen?
- Why are microbes important to the goat?
- Is this really going to be complicated?

Unique Characteristics

Browser not grazer
Selective feeding behaviors

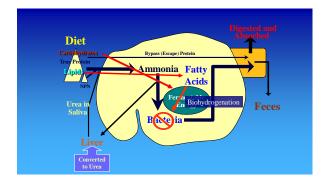
Good chewing activityLess processing

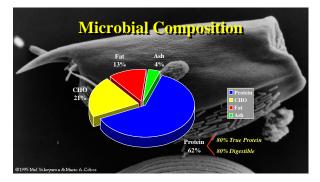
► Small body size

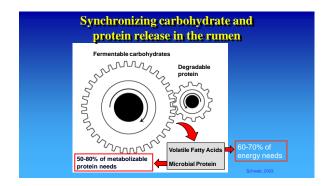
> High intake capacity

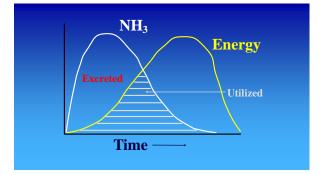
4-6 % of body weight Faster rate of passage

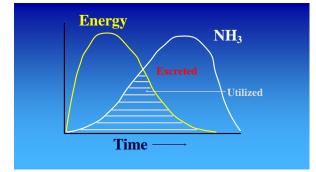
Protein RUP RDP NPN	Carbohydraf Fermentable Starch Fiber	te _{Sugar}				
	RUMEN					
RUPAA Microbial I 40% 00% Milk Protein	Protein Propionate Act 50% Laciose Energy	etate & Butyrate 30% 50 Milk Fat				

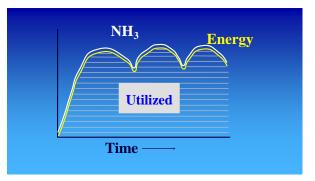

Class of Organism	Primary Substrate	Specific Requirement	Primary Endproduct	pH Tolerance
Cellulolytic Bacteria	Hemicellulose, Cellulose, Pectins	Ammonia, Isoacids, Cofactors	Acetate, Succinate, Formate, CO ₂	6.2-6.8
General Purpose Bacteria	Cellulose, Starch	Ammonia, Amino Acids	Propionate, Succinate, Butyrate, Ammonia	5.5-6.6
NSC Bacteria	Sugars, Starch	Amino Acids, Ammonia	Propionate, Lactate, Butyrate, Ammonia	5.0-6.6
Secondary Feeders	Succinate, Lactate, Fermentation Endproducts	Amino Acids	Ammonia, Isoacids, Propionate	6.2-6.8
Protozoa	Sugars, Starch, Bacteria	Amino Acids	Acetate, Propionate, Ammonia	6.2-6.8
Methanogens	CO ₂ , H ₂ , Formate	Coenzyme M, Ammonia	Methane	6.2-6.8


Factors Affecting Rumen Environment

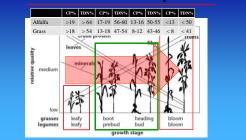

- ► Dietary composition
- Essential nutrients
- Feed additives
- Toxic compounds
- ▶ Feeding management
 - Feed availability
 - Feeding delivery


Feed ingredient processing Particle size reduction


- Nutrient alteration
- Effective fiber



Urea Hay silage Wheat midds Corn gluten feed Canola meal Soybean meal Heat-treated soybean Distillers grains Corn gluten meal



Is Forage Quality Important?

- > What is forage quality?
- > Why is it important?
- > How can it be measured?
- > How does it impact my feeding program?

Plant Maturity

Forage Quality and Feed Intake Calculated Dry Matter Intake Capacity (% of BW)

Forage Forage		NDF Intake (% of BW)				
Qua	ality	NDF %	1.2	1.0	0.8	0.6
Exce	ellent	38	3.16	2.63	2.11	1.58
		42	2.86	2.38	1.90	1.43
		44	2.61	2.27	1.74	1.36
		46	2.73	2.17	1.82	1.30
		50	2.4	2.0	1.60	1.20
		54	2.22	1.85	1.48	1.11
		58	2.07	1.72	1.38	1.03
	ļ	62	1.94	1.61	1.29	0.97
Po	or	66	1.82	1.52	1.21	0.91

Profitable Goat Production

- > High quality forage and browse
- Strategic use of concentrates
- Maximize neonatal survivability
- Maximize milk production, composition
- To be economically viable, goats should get most required nutrients from formes

Supplement Use

- Supplements must match your forage program!
- > Energy and Protein
- ▶ Minerals
- Macro
- Micro
- ▶ Vitamins
- ➤ Additives

Supplement Use

- Depends upon the difference between nutrients provided by forage and nutrient requirements of goat
- Energy supplements promote growth, milk production, late pregnancy
 - Grain sources corn, oats, barley
 - Lipid sources whole beans, limited use
- Protein supplements
- Match to forage quality
- Plant and animal sources

Energy Sources

- Cereal grains (starch-based)
 Corn, barley, oats, wheat
 Availability differences
- > Readily fermented in rumen
- Risk potential for acidosis

Fermentable fiber Soyhulls

- Wheat midds, bra
- Beet, citrus pulp
 Moderate to readily
- fermented in rumen
- Minimal effect on pH, but adversely affected by low pH

Energy Sources

- Fat supplementation
- Limited due to negative effects on rumen

> Sources:

- Endogenous fat
- Vegetable fats
- Rumen inert fats
- Endogenous fats from forage ingredients (1-3% DM)
- Limit vegetable fat sources to 3% DM
- Use inert fat sources if additional energy needed

Protein Feeding

- Essential for growth, pregnancy and lactation
- Meet rumen needs (6-8% CP minimum)
- Watch overuse of bypass protein sources (distillers, corn byproducts)
- Rumen degradable sources:
 Alfalfa, Alfalfa pellets
- Soybean or canola meal
- Rumen undegradable sources:
 - Heat-treated soybean
 - Distillers, brewer's grains
 - Corn gluten meal

Supplement Use

Minerals and Vitamins

- Probably to primary need
- Must match intake to composition
- Properly formulated to forage program
- Sources of minerals, vitamins
- Feeding methods
 - Free choice (0.3 oz/day)
 - Force fed

Macrominerals

- ► Mostly from forage with some Ca-P supplementation
 - Legumes: excessive Ca
 - Grasses: moderate to low Ca
- Maintain dietary Ca:P ratio of 2:1, though don't increase P excessively
- > Limestone, Dicalcium phosphate
- > Possibly add Mg on grasses (4 K:1 Mg)

Microminerals

- > Forage is inadequate supply
- > Supplement feed or free choice mineral
- > Only provide ONE source of salt!
- > Intake rate for free choice salt averages 0.25-0.33 oz/day (depends on salt content)
 - Selenium: 90 ppm (0.09 %)
 - Copper: < 30 ppm (sheep); > 1500 ppm (goats)

Vitamins

- > Metabolic regulators, immune response
- B-vitamins provided by "healthy" rumenYeast products
 - Probiotics (?)
- > Vitamins A, D, E to be supplemented
 - Minimal need when on good pasture
 - Definitely needed with feeding of stored forages

Diet Formulation Process

- > Start with forage available
 - 1% BW as forage NDF (26-28% DM)
 - Max total NDF at 1.4% BW
- > Add energy sources up to intake potential leaving 1% for mineral
- > Replace some energy with protein source to meet needs
- > Add mineral/vitamin supplement to meet needs (1% dietary DM)

Summary

- > Many equally satisfactory methods sheep and goats can be fed to meet their nutrient needs
- No specific feed ingredient needed, only need is for essential nutrients
- Feed the rumen first!
 Energy and protein sources
 - Ensure adequate NDF intake
- > Supplements as necessary based on forage program

