

O'Connor Tract Co-Operative Water Co.

System 4110019
P.O. Box 1375
Palo Alto, California 94302
650-321-2723
oconnorwater@gmail.com

January 18, 2026

Report on Water Quality Measurements

Este informe contiene información muy importante sobre su agua potable. Si el aviso en español no va incluido aquí, contacte al sistema de agua para pedir una copia. Versión en español encontrada en www.oconnorwater.org

The U.S. Environmental Protection Agency (USEPA) requires that all water users be given a report on water quality measurements. Your Board hopes that this report helps you to understand water quality issues as they apply to our drinking water. If you have any questions about this report or about your water company, please contact the Secretary Ana Pedreiro at 650-321-2723. As always, you are invited to the Annual Meeting the last Thursday in January if you would like further information. You may also obtain information at Board meetings on the second Thursday of each month at 7:30 PM, via Zoom. Requests to attend should be directed to the company email above.

Our water is pumped from two wells on Oak Court into the treatment plant for pumping into the distribution system. We have a connection with East Palo Alto's water district that is used as an emergency supply, and that water is treated surface water. In 2025, we used water from East Palo Alto for a few minutes to a few hours on three days. For information on water quality for water from East Palo Alto, call or email O'Connor Water.

The O'Connor Tract Co-Operative Water Co. routinely monitors for contaminants in your drinking water according to Federal and State laws. Water quality is regulated under two types of standards: 1) Primary Drinking Water Standards set maximum contaminant levels for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. 2) Secondary standards are for substances affecting qualities such as taste and odor. Bacteriological tests are run on three samples a month. The accompanying tables show the results of our monitoring for the period of January 1 to December 31, 2025 and give values for drinking water standards and measurements made from samples from the two wells and the treatment plant. Values reported as ND indicate that the substance could not be detected with the testing procedure used or was below the detection limit for reporting purposes. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Water from the two wells is above the secondary drinking water standard of 50 ppb for manganese. Water sample results for monitoring in 2025 had manganese levels of 50 ppb in well #1 and 130 ppb in well #2. Construction of the manganese treatment plant was completed at the end of 2023, and the commissioning phase was started in January 2024. The commissioning phase has been completed, and the state issued a new operating permit to the company in April 2025. Water is being treated to lower the manganese concentration to meet the secondary drinking water standard. The treatment plant injects sodium hypochlorite (bleach) into the water to oxidize manganese that then drops out of solution. The water with manganese particles is then passed through tanks with greensand media to filter the solid particles onto the media. The

treated water has a small residual concentration of chlorine and manganese within the secondary standard (see table). The average manganese concentration in treated water was 10 ppb and many of the individual results are below the detection limit for reporting purposes of 20 ppb and could be reported as ND (not detected). A small amount of total trihalomethanes 1.53 ppb was measured in a sample from the end of the distribution system.

Manganese treatment plant residuals Average and range

				Source
Chlorine Cl ₂ (ppm)	Maximum residual disinfectant level = 4.0	Maximum residual disinfectant level goal = 4.0	Measured 0.28 (0.06–0.42)	Drinking water oxidizer added in Mn treatment process
Manganese (ppb)		MCL 50	10 (0–21)	Remaining from erosion of natural deposit after treatment

Chlorine treatment byproducts at end point of mains

	unit	MCL	value
Total trihalomethanes (TTHM)	ppb	80	1.53
Haloacetic acids (HAA5)	ppb	60	ND

The water from each well was tested for 27 organic chemicals in 2025, and none were found at the detection limits for reporting purposes. The water from each well was tested for 21 metals, and some were detected (see table). Hexavalent chromium was not detected in tests of water from each well.

Lead and Copper Testing

A requirement from USEPA was to test for lead and copper in the water in people's homes as it comes out of the tap. The supply water has no lead or copper at the detection limit, but these constituents can be leached from lead solder and copper pipe. Samples were tested in 2025 from 10 homes with copper pipe installed between 1983 and 1988 (lead solder for water pipes was banned in 1988). The lead Action Level (the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow) is 15 ppb, and the copper action level is 1.3 ppm. For tests conducted in 2025, the 90th percentile (ninth highest) value for lead was ND ppb, and for copper was 0.34 ppm.

Results for samples from homes taken in 2025

Substance	No. of samples	90 th percentile value	No. exceeding AL	Action Level	PHG	Source
Lead	10	ND ppb	0	ND–ND	15 ppb	0.2 ppb
Copper	10	0.34 ppm	0	ND–0.83	1.3 ppm	0.3 ppm

An inventory of service lines connecting mains to curb stops and curb stops to houses was completed in 2024, and no lead service lines were found.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. O'Connor Water Co. is responsible for

providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact O'Connor Water Co. 650-321-2723. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at <http://www.epa.gov/safewater/lead>.

A note to parents: Some neighboring districts fluoridate their water, but the O'Connor Water Company does not. Please discuss this with your pediatrician or your child's dentist. More information about fluoridation, oral health, and current issues can be obtained at http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.shtml.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California Law also establish limits for contaminants in bottled water that provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

O'Connor Tract Co-Operative Water Co.

2025 Annual Water Quality Report

Results from 2025 except where noted.

PRIMARY STANDARDS

Substance tested	Unit	MCL	MCLG	PHG	Well 1	Well 2	Source
<u>Inorganic constituents</u>							
Fluoride	ppm	2		1	0.17	0.14	Erosion of natural deposits
Nitrate as N	ppm	10	--	10	0.87	0.55	Erosion of natural deposits
Selenium	ppb	50	50	30	ND	6.7	Erosion of natural deposits
<u>Radionuclides</u>							
Gross Alpha (2018)pCi/L		15	0	--	ND	3.07	Erosion of natural deposits

SECONDARY STANDARDS

Substance tested	Unit	MCL	Well 1	Well 2	Source
Manganese	ppb	50	50	130	Erosion of natural deposits
Iron	ppb	300	ND	ND	Erosion of natural deposits
Chloride	ppm	500	61	58	Erosion of natural deposits
Sulfate	ppm	500	56	50	Erosion of natural deposits
Total dissolved solids	ppm	1000	490	470	Erosion of natural deposits
Color	Units	15	ND	ND	Erosion of natural deposits
Odor	TON	3	ND	ND	Erosion of natural deposits
Turbidity	NTU	5	ND	ND	Erosion of natural deposits
Foaming agents (MBAS)	ppb	500	ND	ND	Erosion of natural deposits

OTHER CONSTITUENTS (with no standards)

Total hardness	ppm	222	260	Erosion of natural deposits
Calcium	ppm	63	75	Erosion of natural deposits
Magnesium	ppm	16	18	Erosion of natural deposits
Sodium	ppm	80	63	Erosion of natural deposits
Bicarbonate	ppm	290	320	Erosion of natural deposits
Carbonate	ppm	10	ND	Erosion of natural deposits
pH (Laboratory)	pH Units	7.98	8.03	

Abbreviations:

MCL = Maximum Contaminant Level. The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

MCLG = Maximum Contaminant Level Goal. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by USEPA.

PHG = Public Health Goal. The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

AL = Regulatory Action Level. The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ppm = parts per million (mg/L) NTU = Nephelometric turbidity unit

ppb = parts per billion (µg/L) TON = threshold odor number

pCi/L = pico Curies per liter (a measure of radioactivity in water)

< = less than the amount given. May not be present.

ND = not detected or below detection limit for reporting purposes