2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

Leader Selection for Strong Structural Controllability in Networks
using Zero Forcing Sets

Waseem Abbas, Mudassir Shabbir, Yasin Yazicioglu, and Xenofon Koutsoukos

Abstract— This paper studies the problem of computing a
minimum zero forcing set (ZFS) in graphs. The problem is
important because it is directly related to the leader selection
problem for the strong structural controllability of networks
defined over graphs. Computing a ZFS of minimum size is
a well-known NP-hard problem in general. We show that
previously known greedy heuristic could give arbitrarily bad
solutions for some graphs. We study the problem on trees and
present an optimal algorithm to compute a minimum ZFS in
linear time in trees. For general graphs, we present a game-
theoretic solution by formalizing the minimum ZFS problem as
a potential game. Finally, we numerically evaluate our results
on random graphs.

Index Terms— Strong structural controllability, zero forcing
sets, dynamics over graphs.

I. INTRODUCTION

Network controllability is related to controlling a network
of agents as desired by injecting external input signals
through a subset of agents called leaders. Network con-
trollability has been a central theme in network control
systems and network science due to many applications
in multi-robot systems, sensor networks, social networks,
power systems, and other domains. Several aspects of this
problem have been studied in the literature, including graph-
theoretic characterization of network controllability, methods
to quantify network controllability, and energy-based control
of networks (e.g., [1], [2], [3]). Another crucial aspect is
the computation of the minimum set of leader agents to
completely control the network, or the minimum leader
selection problem (e.g., [4], [5], [6]).

Network topology-based approaches offer remarkable in-
sights into the minimum leader selection problem. In par-
ticular, it has been shown that the notion of zero forcing
sets (ZFS) in graphs adequately characterizes the leader
selection problem [7], [8], [9], [10]. To understand ZFS,
consider a graph whose nodes can be colored either white
or black. A black node can change the color of its white
neighbor to black following some rules. A ZFS is a set
of initial black nodes which render the entire graph black
by iteratively applying the color-changing rule. We note
that ZFS provides conditions on the leader nodes for the
network to be strong structurally controllable, which means

W. Abbas is with the Systems Engineering Department at
the University of Texas at Dallas, Richardson, TX (Email:
waseem.abbas@utdallas.edu). M Shabbir and X. Koutsoukos
are with the Electrical Engineering and Computer Science Department at
Vanderbilt University, Nashville, TN (Emails: {mudassir.shabbir,
xenofon.koutsoukos}@vanderbilt.edu). Y. Yazicioglu is with
the Department of Electrical and Computer Engineering at the University
of Minnesota, Minneapolis, MN, USA (Email: ayasin@umn.edu).

978-1-6654-5197-0/$31.00 ©2022 AACC

that controllability is guaranteed regardless of edge weights
(as long as they are non-zero).

We are interested in computing the minimum ZFS in
undirected graphs, which is a known NP-hard problem [11].
The ZFS problem has been an active research topic in
graph theory. However, most of the research in ZFS revolves
around finding useful upper and lower bounds on the size of
minimum ZFS, also called the zero forcing number, and then
refining these bounds for specific graph families (e.g., [12],
[13], [14]). There are known algorithms in the literature that
compute a minimum ZFS, for instance, wavefront algorithm
[15], [16], and Integer Programming formulations [14]; how-
ever, they are not suitable for large networks due to their
exponential time complexities. As a result, one has to rely
on efficient heuristics that return small-sized ZFS without
large time-complexity, for instance, greedy heuristic.

This paper studies various aspects of the minimum ZFS
problem, including a linear-time algorithm to compute min-
imum ZFS in trees and other graph families and efficient
heuristics for general graphs. The main contributions are:

e« We show that a greedy solution, though it typically
performs well, could give ZFS whose size is arbitrarily
large compared to the minimum ZFS.

o We analyze the effect of removing specific nodes and
edges on the minimum ZFS of a graph. We use this
analysis to design a linear-time algorithm to compute
an optimal ZFS in trees.

o We present heuristics for computing ZFS by formulating
the problem as a potential game and then using a
learning solution in games.

o Finally, we also numerically evaluate our results, illus-
trating the usefulness of the game-theoretic approach.

The rest of the paper is organized as follows: Section II
presents notation and preliminaries. It also provides examples
in which greedy ZFS solution could be arbitrarily bad from
the optimal. Section III discusses the minimum ZFS problem
in trees. Section IV provides a game-theoretic formulation of
the game and also discusses heuristics. Section V contains
numerical evaluation and Section VI concludes the paper.

II. NOTATIONS AND PRELIMINARIES

We consider a multiagent network modeled by an undi-
rected graph G = (V, E), where V is the set of nodes repre-
senting agents and £ C V x V is the edge set representing
interconnections between agents. The cardinality of the given
set V' is denoted by |V|. The edge between u and v is denoted
by an unordered pair (u, v). The neighborhood of node w is
the set N, = {v € V|(u,v) € E}. The degree of a node u is

1444

defined as the size of its neighborhood, i.e., deg(u) = |N,|.
A path of length k in a graph G is a sequence of nodes,
Py :=< wvp,v1,v2,...,0; >, Where (v;,v;141) is an edge
in G for all 0 < 4 < k — 1. The distance d(u,v) between
nodes uw and v is the number of edges in the shortest path
between them. The diameter of G is the maximum distance
between any two nodes in the graph. A node v in a graph G
with deg(v) = 1 is called a leaf node. We define a family
of symmetric matrices associated with graph G = (V| E),

where |V| = n, as following:
M(G)={M e R™" | M = M7", and for i # j, 0
Mi; #0 < (i,5) € E(G)}.

Next, we define a finite dimensional leader-follower sys-
tem on G = (V, E) as follows:

&(t) = Mx(t) + Bu(t). (2)

Here x(t) € R™ is the system state, u(t) € R™ is the input,
M € M(G) (as in (1)), and B € R™*™ is the input vector
describing which nodes are leaders (i.e., input nodes). For

B, let Vi = {{1,4a,--- by} CV ={v1,v2, - ,v,}, then
o 1 if (o :éj,
[Blij = { 0 otherwise. @)

For a graph G, matrices in M(G) capture a broad class
of system matrices defined on undirected graphs and en-
countered in several applications. For example, the adjacency
and Laplacian matrices of G also belong to M(G). We are
interested in finding a minimum set of leader nodes that make
such systems strong structurally controllable.

A. Strong Structural Controllability and Zero Forcing

Consider a system (2) defined on a graph G = (V, E). We
say that the pair (M, B) is a controllable pair whenever the
rank of the controllability matrix I'(M, B), defined below, is
n (i.e., full rank).

I'(M,B)=[B MB M’B M"B). (4

It basically means that for a given pair (M, B), there always
exists an input that can drive the system from any initial state
x(to) to any final state x(ty).

Definition (Strong Structural Controllability) A graph G =
(V,E) with a given set of leaders V, C V (and the
corresponding B matrix) is strong structurally controllable if
and only if (M, B) is a controllable pair for all M € M(G).

We are interested in finding the minimum set of leaders
rendering the graph strong structurally controllable with a
given set of leader nodes V7. The notion of zero forcing set
(ZFS) is instrumental in this regard. We define it below and
then relate it to the strong structural controllability of G.

Definition (Zero forcing Process) Given a graph G = (V, E)
whose nodes are initially colored either black or white.
Consider the following node color changing rule: If v € V is
colored black and has exactly one white neighbor u, change

the color of u to black. Zero forcing process is the application
of the above rule until no further color changes are possible.

If the color of white node u is changed to black due to some
black node v, we say that v infected .

Definition (Derived Set) Consider a graph G = (V, E) with
V' C V be the set of initial black nodes. Then, the set of
black nodes obtained at the end of the zero forcing process
is the derived set, denoted by der(G, V'), or simply der(V")
when the context is clear.

The set of initial black nodes V' is also referred to as the
input set. For a given input set, the derived set is unique [17].

Definition (Zero Forcing Set (ZFS)) Consider a graph G =
(V,E) and V! C V. Then, V' is a ZFS if and only if
der(G, V') = V. We denote a ZFS of G by Z(G). The size
of the minimum zero forcing set is called the zero forcing
number, and denoted by ((G).

The ZFS and derived set ideas are illustrated in Figure 1.

vs U3 Ug s

Fig. 1: V' = {v1,v4,v7} is the input set. Since der(V') =V,
the input set is also a ZFS.

ZFS characterizes the leader selection for strong structural
controllability of G. It is shown in [7] that a graph G =
(V, E) with a given leader set V;, C V is strong structurally
controllable if and only if Vi, is a ZFS of G [7, Thm. IV.8,
Prop. IV.9]. Thus, solving the minimum leader selection for
strong structural controllability is equivalent to finding the
minimum zero forcing set. The next subsection reviews the
ZFS computation results and shows graphs for which greedy
heuristics can return ZFS of very large sizes.

B. ZFS Computation and Greedy Heuristics

Computing ¢(G) is an NP-hard problem in general [11].
One of the best known algorithms to compute ((G) (and
minimum ZFS) is the wavefront algorithm proposed in [15]
and analyzed in [16]. It is also shown in [16, Theorem 5]
that in the worst case, the wavefront algorithm is the same as
enumerating all possible subsets of vertices. Other competi-
tive approaches based on integer programming, satisfiability
(SAT)-based models, branch-and-bound techniques have also
been presented, whose performances rely on various graph
characteristics such as the existence of certain subgraphs,
density and other structural constraints [16], [14], [18].
Though these methods are exact, they are practically feasible
only for small graphs due to their large time complexities.
Thus, there is a need to design more practical heuristics that
return small ZFS.

We can utilize a simple greedy approach to iteratively
select a ZFS [14]. The main idea is that in each iteration,
change the color of a white node to black to maximize the

1445

size of the derived set. Continue this process until a ZFS is
obtained. As a final step, remove redundant nodes in a ZFS
to achieve a minimal ZFS.

Greedy Heuristics for ZFS

: given: G
: initialization: Z = (.
: while |der(Z)| < n
v* = argmax, oy z der(Z U {v;})
Z =ZU{v"}
: end while
777777777 removing redundancies
:for all v; € Z
if |der(Z \ {v:})| =n
Z j—

=7 V;

U W N

© 00

10 : end if
11 : end for
12 : return Z

The solution returned by the simple greedy approach
(lines 1-6) above could contain redundant nodes, and as a
result, the ZFS returned might not be minimal. Therefore, we
can improve the solution by removing the redundant nodes
(lines 7-11). Moreover, the greedy heuristic performs well
generally; however, there are instances where the difference
between greedy and optimal solutions can be quite large.

Proposition 2.1: There exists graphs for which
|Z4(G)|/¢(G) can be arbitrarily large. Here, Z,(G) is
a greedy ZFS solution.

Proof: Consider G = (X UY, E), where X and Y
are distinct sets of n and m nodes, respectively. Without the
loss of generality, assume n > m. Nodes in X induce a path
< x1,%2, -+ ,&y >, and similarly, nodes in Y induce a path
< Y1,Y2," - ,Ym >. Moreover, each node in X is adjacent
to all the nodes in Y. Figure 2 illustrates the graph. It is
easy to verify that Y U {x;} is a ZFS; thus, {(G) < m + 1.
Similarly, XU{y; } is a ZFS obtained by the greedy heuristic.
To see this, consider all nodes to be white initially. Making
any node black would increase the size of the derived set by
one. So, select x; to be black. In the next iteration, changing
any white node to black will again increase the size of the
derived set by one. So, include x5 in the solution. This trend
continues for the first n iterations, thus, making all nodes in
X black. In the (n + 1)*" iteration, changing the color of y;
to black will change the colors of all the remaining nodes
to black due to the zero-forcing process. Thus, Z,(G) =
X U{y1} and |Z,(G)| = n+ 1. Since we can choose n to
be arbitrarily large, 2L can also be arbitrarily large, which

X m+1
proves the desired claim. []

IIT. OpTIMAL ZFS IN TREES

This section studies the minimum ZFS problem on trees,
which represent the sparsest connected graphs. We present a
linear time algorithm to compute a minimum ZFS.!

'Proofs of all the results in this section are available in [19].

Fig. 2: A graph G with arbitrarily large Z,(G)/¢(G).

A. ZFS Tree Algorithms

A tree always contains leaf nodes. Since a leaf node
has only one neighbor, it can immediately force its only
white neighbor if the leaf node is included in a ZFS. This
observation gives an easy scheme to select a ZFS in trees: a
ZFS consists of all leaf nodes in a tree. The set of all leaf
nodes is indeed a ZFS because leaf nodes can force their
only neighbors, the predecessors of the leaf nodes, which in
turn can force their predecessors until all nodes in the tree
are colored black. This is an efficient scheme since all leaf
nodes in a tree can be computed in linear time. However, if
we run this algorithm on a path graph, we will select both end
nodes of a path as a ZFS, while only one end node suffices.
Therefore, the ZFS returned is not optimal. Finally, we note
that the ZFS returned by this scheme can be significantly
worse than the optimal solution.

Remark 3.1: Let Z,(T) be a ZFS of a tree consisting of
leaf nodes. Then, there exist trees whose zero forcing number
is almost the half of | Z,(T)|. For instance, consider the tree
in Figure 3. A root node u is adjacent to n nodes, each of
which is adjacent to a pair of leaf nodes. Thus, there are
2n leaf nodes. An optimal ZFS consists of node u and n
leaf nodes, as shown in Figure 3. As a result, {(T) =n+1
compared to |Z,(T)| = 2n.

u

2n leaf nodes

Fig. 3: An optimal ZFS (dark colored nodes) consists of the
root node u and n leaf nodes.

We develop some tools to design an efficient algorithm
that returns an optimal ZFS for any arbitrary tree in linear
time. While these tools are applied to a particular family
of graphs here, they are general and may help improve the
performance of algorithms for general graphs by reducing
the input graph size. We first show that a path of length two
can be contracted to an edge without increasing the zero
forcing number of the graph.

Proposition 3.2: Let G = (V,E) be a graph, and let
u,v be two non-adjacent nodes with a path of length two
< u,w,v >, and deg(w) = 2. Let H = (V', E’) be an

1446

other graph, where
V=V \ {w}v E' =FE \ {(uvw)7 (w’v)} U {(u,v)},

i.e., H is constructed from replacing the two length path
< u,w,v > with an edge (u,v). Then, {(G) > ((H).

Remark 3.3: Given the conditions of proposition 3.2, in
general, it is not true that ((G) = ((H), that is, the degree
two vertices can not be collapsed in general without affecting
the zero forcing number. To claim that, we need slightly more
strict conditions.

In the following, we show that in a special case, when one
of the nodes on a path of length two is a leaf, the path can
be contracted to an edge, and the zero forcing number will
remain unchanged.

Lemma 3.4 (Collapsing Lemma): Let < u,w,v > be a
path in a graph G = (V, E), with deg(w) = 2,deg(v) = 1.
Let H = (V', E’) be an other graph, where

V=V \{w}, FE =E\{(vw),(w,v)}U{(w,v)}

i.e., H is constructed from replacing the two length path
< u,w,v > with an edge (u,v). Then, {(G) = ((H).
A proof of the above Lemma is available in [19].

Definition A pendant Sj, = (V;, E;) in a graph G = (V, E)
is an induced star graph, where Vi = {a,by,--- ,bx} and
E; = {(a,b;)| 1 <i <k} with the added condition that all
b;’s are leaf nodes in G.

We observe that most of the nodes of any arbitrary pendant
of a graph must be included in a ZFS, as we state in the
following proposition.

Proposition 3.5: Let S; be a pendant in graph G with
nodes a, by,bs,...,br, k > 1, where b; are the leaf nodes.
At least k£ — 1 of the leaf nodes of S, must be in a ZFS of
G.

Based on the proposition 3.5, we outline a scheme to reduce
the size of a graph by removing a pendant from a graph
while computing its effect on the zero forcing number.

Lemma 3.6 (Pruning Lemma): Let S; be a pendant in
graph G with nodes a, by, bo, ..., bg, kK > 1 where b; are the
leaf nodes. Let H be constructed from G by removing the
nodes a, by, by, ..., b of G. Then, {(G) =((H) +k — 1.

Next, using the above results, we present an optimal
algorithm to compute the minimum ZFS of a tree.

Theorem 3.7: There is a linear time algorithm to compute
an optimal ZFS of any tree graph.

A proof of the the above theorem is available in [19].

I1V. ZFS HEURISTICS USING POTENTIAL GAMES

In this section, we present a game-theoretic approach for
finding an optimal ZFS in a distributed manner in arbitrary
graphs. Given a graph G = (V,E) with n nodes, V =
{v1,...,v,}, let a € {0,1}"™ be an indicator of the node
colors. Accordingly, a; = 1 if v; is black, and a; = 0 if v; is
white. Next, we define a function, ¢(a), whose maximization

is equivalent to finding an optimal ZFS as we will show in
Lemma 4.1:

ba) = - (Ider(a) - Zm) ! 5)
=1

which is equal to 1/n times the size of the derived set,
der(a), minus the number of black nodes when the colors
are assigned as per a. We use der(a) to denote the derived
set of black nodes indicated by a, and the scaling term 1/n
is used for keeping ¢(a) finite regardless of the network size.
Lemma 4.1: Let G = (V, E) be a connected graph and
let a € {0,1}™ represent the node colors, i.e., a; = 1 if v;
is black. A vector a € {0,1}" is a maximizer of ¢ in (5),
ie., ¢(a) > ¢(a’),Va' € {0,1}", if and only if a indicates
an optimal ZFS.
Proof: (= :) Let a € {0,1}"™ be a maximizer of ¢ in
(5). We will first show that a necessarily indicates a ZFS,
i.e., der(a) = V. For the sake of contradiction, suppose that
this is not true and der(a) C V. Then, pick any v; ¢ der(a)
and define a new vector @’ € {0,1}" as follows: a; = 1 if
a; =1 orwv; ¢der(a)\{v;}, and a; = 0 otherwise. In other
words, the black nodes under a’ comprise of all the black
nodes under a and all the nodes other than v; that are not
included in the derived set der(a). Accordingly, the resulting
increase in the number of black nodes is

Za;fZai:n—|der(a)|+1. (6)
i=1 i=1

Since every black node under « is also black under a’, we
have der(a) C der(a’). Furthermore, since every node other
than v; that are not included in the derived set der(a) are
also selected as black, then either der(a’) =V or der(a’) =
V' \{v,}. However, der(a’) = V '\ {v;} is not possible since
it implies that the zero forcing process ends with a single
white node v;, which is guaranteed to be the only white
neighbor of a black node in the end since G is connected.
Such a node v; must become infected under the zero forcing
process. Hence, der(a’) = V. Accordingly,

p(a’) — ¢(a) = % (n — |der(a)| + Za; - Zaz>)

Note that (6) and (7) together imply ¢(a’) > ¢(a), which
contradicts with a being a maximizer of ¢(a). Hence, a must
indicate a ZFS.

Next, we will show that @ must indicate an optimal ZFS,
i.e., a ZFS with the fewest possible number of nodes. For
the sake of contradiction, suppose that a does not correspond
to an optimal ZFS. Then, there exists a’ € {0,1}" which
corresponds to a ZFS and has fewer black nodes compared
to a. Accordingly, |der(a)| = |der(a’)| and Y a; <
>oi, a;, which imply ¢(a’) > ¢(a). Hence, once again
we obtain a contradiction with a being a maximizer of ¢.
Consequently, any maximizer of ¢ is an optimal ZFS.

(<) If any two vectors, a and o/, both indicate optimal
ZF sets, then ¢(a) = ¢(a’) for ¢ in (5) since |der(a)| =
|der(a’)] = n and, by definition, both @ and a’ have the

1447

minimum number of leaders among the ZF sets (hence
Yo a; =" a;). Since every optimal ZFS have equal
¢ and we have already shown that any maximizer of ¢(a) is
necessarily an optimal ZFS, we conclude that every optimal
ZFS is a maximizer of ¢. []
Based on Lemma 4.1, an optimal ZFS can be obtained
by searching for a maximizer of ¢(a) in (5). Such a maxi-
mization can be achieved in a distributed manner by using
a game-theoretic formulation (e.g., [20]). More specifically,
the problem of finding an optimal ZFS can be formulated
as a potential game with the potential function ¢(a) and a
learning algorithm such as log-linear learning [21] can be
used to find an optimal a. Before presenting such a game-
theoretic approach, we first provide some preliminaries.

A. Game Theory Basics

A finite strategic game I' = (I, A,U) has three compo-
nents: (1) a set of players (agents) I = {1,2,...,n}, (2) an
action space A = A; X Ay X ... X A,, where each A; is
the action set of player i, and (3) a set of utility functions
U=U,U,,...,U,, where each U; : A — R is a mapping
from the action space to real numbers. For any action profile
a € A, we use a_; to denote the actions of players other
than 7. Using this notation, an action profile a can also be
represented as a = (a;,a—;).

A class of games that is widely utilized in cooperative
control problems is the potential games. A game is called a
potential game if there exists a potential function, ¢ : A —
R, such that the change of a player’s utility resulting from its
unilateral deviation from an action profile equals the resulting
change in ¢. More precisely, for each player ¢, for every a;,
a; € A;, and for all a_; € A_;,

Ui (aj,a—i) — Ui (ai,a—;) = ¢ (aj, a—;) — ¢ (az,a—;) . ()

In game-theoretic learning, the agents start with arbitrary
initial actions and follow a learning algorithm to update
their actions based on past observations in a repetitive play
of the game. For potential games, noisy best-response type
algorithms such as log-linear learning (LLL) [21] can be
used to have the agents spend most of their time at the
global maximizers of ¢(a). More specifically, LLL induces
an irreducible and aperiodic Markov chain over the action
space A such that the limiting distribution, ., satisfies
l_i)rgl+ pe(a) >0 <= ¢(a) > ¢(a’),Va' € A, (9)

€

where € > 0 is the noise parameter of LLL.

B. ZFS Game

We formulate the problem of finding an optimal ZFS as a
game, I'zps = (I, A, U), where the set of players is the set
of nodes, i.e., I =V, and the action space is A = {0,1}".
Accordingly, the action of each agent v; is a binary variable
indicating its initial color in the zero forcing process, i.e.,
black (a; = 1) or white (a; = 0). Finally, we need to define
the utility functions U;(a) such that Tzps = (I, A,U) is a
potential game whose potential function is ¢(a) in (5). While
there are also other methods to design such utility functions

(e.g., wonderful life utility [22]), one choice is to set all the
utilities equal to the global objective, i.e.,

Ui(a) = % <|der(a)| - Zal) ,Viel. (10
1=1

One can easily verify that the resulting game, I'zrg, is a
potential game with the potential function ¢(a) in (5), i.e.,
the utilities in (10) satisfy (8). Accordingly, an optimal ZFS
can be found by employing LLL in a repetitive play of the
resulting game, I'zpg.

Theorem 4.2: Let ' pg be the ZFS game on a connected
G = (V,E). Then, log-linear learning (LLL) induces a
Markov chain over the action space A = {0,1}" whose
limiting distribution, ., satisfies

lim+ te(a) > 0 <= a corresponds to an optimal ZFS,

e—0 (1 1)
where € > 0 is the noise parameter of LLL.

A proof of Theorem 4.2 is available in [19]. In light of
Theorem 4.2, when « is updated via LLL with a sufficiently
small noise parameter, ¢, it indicates an optimal ZFS with a
very high probability as the number of iterations goes to
infinity. However, since there is only a finite amount of
time to search for an optimal ZFS in real-life problems,
we propose an LLL-based heuristic that has three steps: 1)
following LLL to update a for a finite number of iterations,
2) if the resulting a does not indicate a ZFS, then switching
all the nodes in V' \ der(a) to black (a becomes a ZFS), and
3) removing redundant black nodes in a.

Log-Linear Learning (LLL) Based Heuristic for ZFS

1: given: G = (V, E), #iterations E (large), noise € > 0 (small)
2 : initialization: arbitrary a € {0, 1}!V!

77777 running LLL for k iterations —--—-
3:fork=1tok
4 : Pick a random node v;.
5: Randomize a; based on the utility function in (10):

Prla; = aj] ~ exp <M>, Va; € {0,1}.

6 : end for
7:Z:{vieV\ai:1},

—- adding leaders if Z is not a ZFS —-—
8: Z=7ZU((V\dset(2)),

————————— removing redundancies —--—————-—
9:forallv;, € Z
10 : if |der(Z \ {v:})| =n

11 : Z = Z\{vi}
12: end if
13 : end for

14 : return a

V. NUMERICAL EVALUATION

In this section, we compare the LLL-based ZFS solution
with the greedy solution. First, we compute the ZFS of
graphs discussed in Proposition 2.1 using LLL. These are
the graphs for which the greedy heuristic performed poorly.
In our experiments, the LLL solution returned a ZFS, whose

1448

size is at most one more than the minimum ZFS. For
instance, consider G = (X UY, E) (as in Proposition 2.1),
where |X| =40 and |Y| = 10, the greedy heuristic returned
ZFS with 41 nodes, whereas LLL returned ZFS with 11
nodes, which is optimal. Figure 4(a) illustrates the potential
function as a function of the number of iterations in LLL for
the above example. The value of € used is 0.004. As shown in
Figure 4(a), after about 250 iterations the potential function
equals 0.78 most of the time, which is the maximum possible
value of (5) for this example. In particular, ¢(a) = 0.78 only
when a corresponds to an optimal ZFS, i.e., Y . a; = 11
and |der(a)| = n = 50.

Next, we consider Erdos-Rényi (ER) random graphs with
n = 50 nodes. Figure 4(b) plots the size of ZFS returned
by greedy and LLL solutions as functions of p, where p is
the probability of having an edge between any two nodes
in the graph. Each point on the plots is an average of 25
randomly generated instances. In LLL solution, ¢ = 0.005
and the 2000 iterations are performed in each instance. We
observe that LLL produces ZFS of smaller size compared to
the greedy solution. Similarly, in Figure 4(c), the same results
are plotted for the A-disk proximity graphs with n = 50
nodes. In such a graph, nodes u and v are adjacent whenever
the Euclidean distance between them is at most A. In our
simulation, nodes are randomly placed in a planar region of
area 15 x 15 [unit length]®. Again, each point on the plots is
an average of 25 randomly generated instances. For LLL, we
used € = 0.008 and 2000 iterations in each instance. Again,
the LLL solution outperforms the greedy solution. We note
that greedy heuristics typically provide ZFS of small sizes,
which are not too far from the optimal solution. However,
as illustrated in the plots, LLL based solution can perform
even better than the greedy when € is chosen properly and
the algorithm runs for a sufficient number of iterations.

Potential function

s o o o

5 2 5 &
2ZFS size

°

. 15
200 400 600 800 1000 0.1 02 03 04 3) 5
No. of itertations

po

(a) (b) ER (c) A-disk

Fig. 4: Comparison of the greedy and LLL based heuristics
for ZFS in (a) ER graphs and (b) A-disk graphs. (c) An
example of potential function as a function of number of
iterations in LLL.

VI. CONCLUSION

We studied the minimum ZFS problem in undirected
graphs to solve the minimum leader selection problem for
strong structural controllability in undirected networks. The
minimum ZFS problem is computationally challenging, and a
greedy heuristic could give arbitrarily bad solutions in some
cases. We provided a linear time algorithm to optimally solve
the problem in trees. Further, we formulated the problem as
a potential game and utilized log-linear learning to solve the

game. The numerical evaluation showed that the LLL based
method performed better than the greedy heuristic. There are
some interesting directions to further pursue, for instance, if
two graphs G; and G are combined through some operation
(e.g., Cartesian product, join), how can we obtain a ZFS of
the resulting graph in terms of ZF sets of G; and Ga.

REFERENCES

[1] A. Chapman and M. Mesbahi, “On strong structural controllability of
networked systems: A constrained matching approach.” in American
Control Conference (ACC), 2013, pp. 6126-6131.

[2] F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics,
limitations and algorithms for complex networks,” IEEE Transactions
on Control of Network Systems, vol. 1, no. 1, pp. 40-52, 2014.

[3] T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity and
controllability in complex dynamical networks,” IEEE Transactions
on Control of Network Systems, vol. 3, no. 1, pp. 91-101, 2015.

[4] A. Y. Yazicioglu and M. Egerstedt, “Leader selection and network
assembly for controllability of leader-follower networks,” in 2013
American Control Conference. IEEE, 2013, pp. 3802-3807.

[5] J. Ruths and D. Ruths, “Control profiles of complex networks,”
Science, vol. 343, no. 6177, pp. 1373-1376, 2014.

[6] F. Lin, M. Fardad, and M. R. Jovanovic¢, “Algorithms for leader selec-
tion in stochastically forced consensus networks,” IEEE Transactions
on Automatic Control, vol. 59, no. 7, pp. 1789-1802, 2014.

[71 N. Monshizadeh, S. Zhang, and M. K. Camlibel, ‘“Zero forcing sets
and controllability of dynamical systems defined on graphs,” IEEE
Transactions on Automatic Control, vol. 59, pp. 2562-2567, 2014.

[8] M. Trefois and J.-C. Delvenne, “Zero forcing number, constrained
matchings and strong structural controllability,” Linear Algebra and
its Applications, vol. 484, pp. 199-218, 2015.

[9] S. S. Mousavi, M. Haeri, and M. Mesbahi, “On the structural and
strong structural controllability of undirected networks,” IEEE Trans-
actions on Automatic Control, vol. 63, no. 7, pp. 2234-2241, 2018.

[10] Y. Yazicioglu, M. Shabbir, W. Abbas, and X. Koutsoukos, “Strong
structural controllability of diffusively coupled networks: Comparison
of bounds based on distances and zero forcing,” in IEEE Conference
on Decision and Control (CDC), 2020, pp. 566-571.

[11] A. Aazami, “Hardness results and approximation algorithms for some
problems on graphs,” Ph.D. dissertation, University of Waterloo, 2008.

[12] R. Davila, T. Kalinowski, and S. Stephen, “A lower bound on the
zero forcing number,” Discrete Applied Mathematics, vol. 250, pp.
363-367, 2018.

[13] M. Gentner and D. Rautenbach, “Some bounds on the zero forcing
number of a graph,” Discrete Applied Mathematics, vol. 236, pp. 203—
213, 2018.

[14] B. Brimkov, D. Mikesell, and 1. V. Hicks, “Improved computational
approaches and heuristics for zero forcing,” INFORMS Journal on
Computing, 2021.

[15] S. Butler, L. DeLoss, J. Grout, H. Hall, J. LaGrange, T. McKay,
J. Smith, and G. Tims, “Minimum rank library. Sage programs
for calculating bounds on the minimum rank of a graph, and for
computing zero forcing parameters,” 2014, accessed 04-Sep-2021.
[Online]. Available: https://github.com/jasongrout/minimum_rank

[16] B. Brimkov, C. C. Fast, and I. V. Hicks, “Computational approaches for
zero forcing and related problems,” European Journal of Operational
Research, vol. 273, no. 3, pp. 889-903, 2019.

[17] AIM Minimum Rank Special Graphs Work Group, “Zero forcing sets
and the minimum rank of graphs,” Linear Algebra and its Applications,
vol. 428, no. 7, pp. 1628-1648, 2008.

[18] A. Agra, J. O. Cerdeira, and C. Requejo, “A computational comparison
of compact MILP formulations for the zero forcing number,” Discrete
Applied Mathematics, vol. 269, pp. 169-183, 2019.

[19] W. Abbas, M. Shabbir, A. Y. Yazicioglu, and X. Koutsoukos, “Leader
selection for strong structural controllability in networks using zero
forcing sets,” arxiv, 2022.

[20] J. R. Marden, G. Arslan, and J. S. Shamma, “Cooperative control
and potential games,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 39, no. 6, pp. 1393-1407, 2009.

[21] L. E. Blume, “The statistical mechanics of strategic interaction,”
Games and Economic Behavior, vol. 5, no. 3, pp. 387-424, 1993.

[22] K. Tumer and D. H. Wolpert, Collectives and the design of complex
systems. Springer Science & Business Media, 2004.

1449

